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Abstract

Modelling of the breath signal is of high interest to both
healthcare professionals and computer scientists, as a source
of diagnosis-related information, or a means for curating higher
quality datasets in speech analysis research. The formation of
a breath signal gold standard is, however, not a straightforward
task, as it requires specialised equipment, human annotation
budget, and even then, it corresponds to lab recording settings,
that are not reproducible in-the-wild. Herein, we explore deep
learning based methodologies, as an automatic way to predict a
continuous-time breath signal by solely analysing spontaneous
speech. We address two task formulations, those of continuous-
valued signal prediction, as well as inhalation event prediction,
that are of great use in various healthcare and Automatic Speech
Recognition applications, and showcase results that outperform
current baselines. Most importantly, we also perform an initial
exploration into explaining which parts of the input audio signal
are important with respect to the prediction.

Index Terms: breath prediction from speech, end-to-end deep
learning, neural attention, biological signal monitoring

1. Introduction

Breathing patterns provide medical doctors and speech therapists
with vital information about an individual’s physical health state,
as well as insight into human affective states [1, 2] and cognitive
and neurological circumstances [3, 4] more broadly. In the case
of speech, respiratory activity reflects important motor planning
processes [5]. The ability to rapidly and flexibly sequence chest
movements to produce speech breathing is considered unique to
modern humans (and potentially neanderthals) [6], and the loss
of fine respiratory control during vocalisation can be an early
and acute symptom of neurodegenerative motor disorders, such
as Parkinson’s disease (PD) [7, 8]. Recent work, for example,
demonstrates that patients with PD are more likely to breathe
between syntactic boundaries [9] than neurotypical speakers,
and that both patients and their healthy ageing counterparts need
to breathe more often than younger adults to meet metabolic
demands during speech [10].

Although the latter work was focused on the sentence-
structural aspects of speech breathing, relatively little is known
of the sub-second temporal dynamics of the breath signal, in
part because respiratory recording is relatively intrusive and the
manual annotation of breathing patterns is laborious, resulting in
a high cost to benefit ratio of data collection. For example, the
authors of the study performed in [1] identified and annotated
the breath events manually by listening to the speech record-
ings. This approach is certainly limited to the research domain,
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is not scalable, and is dependent on variable human annotator
skill, as well as being vulnerable to bias. Established meth-
ods for measuring respiratory activity include the application of
electromyography [11], chest pneumograph [12], and inductive
plethysmography, which entails subjects being fitted with an
elastic belt that shrinks or expands with breathing movements
[13]. These devices require direct application to the human
body, which could affect the natural and spontaneous expression
of the speaker [1]. A possible non-contact method would be
the usage of a thermal camera [14], which is, however, a less
cost-effective approach, and furthermore also requires human
annotation. Computational methods that automatically detect
breathing events purely by analysing recorded speech should
facilitate the aforementioned healthcare applications [15, 13].
Although ‘laboratory speech’ (e. g., formulaic texts that are read
aloud) forms the basis of much linguistic and speech sciences re-
search [16], a deeper challenge arises in the case of spontaneous
speech, where greater cognitive effort is required in compari-
son to reading, as well as the adaptation of speech rhythm to
accommodate breathing [17, 5].

It is apparent then that there is great importance in breath
sensing of spontaneous speech, so we focus on developing
a computational, deep-learning methodology for transforming
speech into breath signal. The breath signal we use to form our
ground-truth is recorded by elastic piezoelectric belts worn by
the participants. We focus on two different task formulations
of the speech-based, breath sensing problem: a) Predicting the
continuous-time, real-valued breath belt signal (BELT), and
b) detecting maximum inhalation events (MAX). The former
task works as a proof of concept towards the development of a
breath sensing solution that does not require specialised equip-
ment, other than a microphone. The latter task is of more interest
in studies that are based on the detection and localisation of
inhalation events, either for removal [15, 18, 19, 4, 20, 21, 22],
or further processing [23, 24, 25, 26] (see Section 2).

Herein, we propose two computational improvements for
breath sensing: a) the eschewing of the feature extraction step,
in favour of a fully end-to-end approach [27], which involves
learning to extract features from the speech waveform using
Convolutional Neural Networks (CNNs), b) the application of
attention mechanisms [28] for enhanced performance, as well
as a gateway towards continuous-time interpretation through the
analysis of the attention weights (see Figure 2) according to the
high standards of recent research [29], and c) the application
thereof on two tasks with real-world applications.

2. Related work

In the study performed in [15], the authors have proposed a
methodology for identifying and removing breath sound seg-
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Figure 1: Attention maps for the same 2 second segment (50 time
steps), averaged across 10 trials. Left corresponds to the weights
learnt for the BELT task, and Right for the MAX task. Deviations
from a diagonal indicate unequal importance allocation to all
sequence elements. Specifically, for the MAX task, we observe
that a lot of weight is placed at an element within the max
inhalation event, as this is the minority class of interest.

ments in speech recordings. This is done by utilising recorded
breath examples to train a breath sound template based on the
extraction and analysis of Mel Frequency Cepstral Coefficients
(MFCCs), and then using the latter within a pattern matching
framework on longer songs and narrated speech recordings. In a
recent extension on this method that was applied on a database
of news reports, a Voice Activity Detection (VAD) step is also
applied such that the template matching is only focused on non-
speech segments [21]. Elaborate post-processing, requiring do-
main knowledge, was also used for unifying closely spaced
breath segments, as well as discarding small breaths. The goal
of such studies is to identify and remove sharp inhalation sounds
towards the improvement of the recording quality.

This approach has also been used for the removal of breath
segments in order to curate a clean speech corpus for speech syn-
thesis [22], Automatic Speech Recognition (ASR) in Japanese
[20], as well as classification of speech as being produced by
subjects with schizophrenia [18], breathing problems due to
lung cancer [19], or rapid eye movement sleep behaviour dis-
order and PD [4]. On the other hand, acoustic analysis of the
breathing sounds themselves has also been applied for a variety
of problems, such as improving speaker recognition [24, 25],
and detecting obstructive sleep apnea [26] or major respiratory
diseases (i. e., flu, pneumonia, and bronchitis) [23]. Our study
is not only useful in detecting inhalation events, which is of
great interest to the aforementioned studies, but at predicting
continuous-time breath signals, towards the provision of a more
holistic understanding of the breathing activity of a subject.

The study that is closest to our BELT task is the one per-
formed in [13], as it utilises deep learning for continuous-time
breath signal regression, as recorded from elastic breath belts.
In this paper, the authors employ an approach that consists of
an MFCC feature extraction step, followed by the application of
a stacked Recurrent Neural Network (RNN) model on speech
segment sizes between 4 and 8 seconds. We instead follow our
work in [30], and consider uninterrupted spontaneous speech
segments of 4 minutes, the predictive modelling of which we
improve, and take first steps towards interpreting the temporal
patterns that are potentially informative in breath prediction.
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Figure 2: The attention importance weights (red) plotted against
the breath signal (teal) for both the BELT task (upper), and the
MAX task (middle). The attention curve is an average across
10 trials, followed by standardisation. We also show the speech
waveform volume (gray, lower) for reference.

We additionally experiment with a categorical, continuous-
time prediction task, i. e., max-breath event detection. The au-
thors of [22] extracted speech segments from a podcast conver-
sation, annotated as being either speech or breath produced by
one of two speakers, and applied a classification mechanism
based on [31] in a multi-class framework. In contrast, we treat
the max breath event detection task as time-continuous, where a
sequence element is either within an event, or not, and further-
more focus on the more general task of spontaneous speech with
speaker-independent partitioning.

2.1. Attention for Explanation?

Attention mechanisms [28, 32] have extensively been used to
provide a dimension of explainability as to what the model be-
lieves is an important part of the input, however, they have
recently received criticism on that account [33] for generating
inconsistent attentive explanations, for example across different
trials. More recently, the authors of [29] have addressed the crit-
icisms by claiming that the existence of alternative explanations
is not indicative of lack of explanatory power, as there may be
multiple explanations for the predictions of a model, something
also indicated by the success of models that utilise multi-head
self-attention [34]. They further quantify this attention distribu-
tion variability by using the Jensen-Shannon divergence. In all
our visualisations of attention maps, weights, and discussions
thereupon, we utilise averages across multiple trials, and we
further report attention distribution correlations.

3. From speech to breath

In the context of this study, we denote by z; € RT“ %" the
i-th sample utterance, regardless of the model to be used. Each
input sample is sequential, with 7 being the number of time
steps for the inputs, and d the dimensionality. For example, if
we are working on the raw audio waveform, d corresponds to
1, whereas if we are working on MFCCs, d®, T correspond
to the number of MFCCs, and the length of the spectrogram,
respectively. We denote our model by M, that receives x; and
outputs the corresponding prediction y; € RT”*4"  The number
of time steps for our label sequences for both considered tasks is
denoted by T". In the continuous-valued breath signal prediction



Table 1: Summary of the gender balanced (F — Female, M —
Male), speaker independent UCL-SBM database partitions.

# Train Dev Test X
F 9 10 10 29
M 8 6 6 20
P 17 16 16 49
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Figure 3: The upper plot depicts the continuous-valued breath
signal (teal), along with the parts that we assume constitute
maximum breath events (starred red). The lower plot depicts the
speech waveform volume (gray) for reference.

dY equals to 1, signifying the prediction of the continuous breath
belt signal. As for the max-breath event detection, the model
outputs 2 logits per time step, one per class.

3.1. Breath sensing task formulation

Breath belt signal prediction (BELT): In this sequential re-
gression problem, the task is to predict a signal (in mV) that
resembles the piezoelectric breath belt output. We thus train a
model that is able to provide a breath belt-like signal to be used
in absence of the required instruments, as a proxy for them. We
evaluate this task with the Pearson Correlation Coefficient (r).

Max-breath event detection task (MAX): Maximum belt
extension events have been localised in time using peak detection,
as proxies of maximum air volume inhalation events. The task
would be the accurate detection of max-breath events along
time. We detected peaks with topographic prominence more than
0.1, and assumed that a time window of 440 ms centred around
the peak corresponds to a max-breath event. The evaluation
measure used here is the Macro averaged F1 score (Macro-F1).
The prediction labels of the two tasks are depicted in Figure 3,
alongside the speech waveform, for reference.

3.2. Attentive end-to-end deep learning

Both the BELT and the MAX tasks are sequential in nature.
Thus, we adopt a common two-layer stack of Long Short-Term
Memory (LSTM) RNNs to be applied on the various feature
baselines, where each layer has 256 hidden units. For our pro-
posed method, we engage an end-to-end training method from
the raw speech waveform [27] by the usage of a stacked CNN.
‘We use three stacked CNN layers with 64, 128, and 256 hidden
units, respectively; each layer was followed by a max-pooling
operation, with corresponding rates 10-8-8. We then segment
the hidden state sequence into sub-segments of 2 seconds (i. e.,
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50 time steps), and apply to each of them in such a localised
manner the Luong dot product attention [32]. This produces a
50x50 map, where each element is the corresponding dot prod-
uct. A 1-dimensional softmax function is used to produce an
attention map comprising 50 discrete probability distributions of
size 50, one per hidden state, where the probabilities signify the
relation of another hidden state towards the one under examina-
tion. Each probability distribution is used to perform a weighted
average of the hidden state sequence per time step. Finally, a
fully connected layer is applied to the new sequence to extract
the final numerical prediction, or logit. In Figure 1, we show
attention maps for the same 2 second segment, for both tasks.
By adding all the probabilities related to a hidden state found on
all distributions, we get a measure of importance for this hidden
state, hereby an importance weight. In Figure 2, we show for
both tasks the attention weights plotted against the labels for an
8 second segment. Both attention maps and importance weights
are averaged across 10 trials.

4. Speech-breath database

We utilise the UCL-SBM database, which was the basis of the
Breathing Sub-challenge of Interspeech 2020 ComParE [30].
The partitions are summarised in Table 1. Here, we use only
spontaneous speech recordings that pose a greater challenge in
terms of respiratory planning [5], and data from one of the two
piezoelectric respiratory belts worn by the subjects. The belt was
positioned approximately four centimetres below the collarbone
to record chest breathing, and produces a linear voltage read-
ing in response to changes in thoracic circumference associated
with respiration. All signals were sampled at 40 kHz; speech
was downsampled to 16 kHz and breath belts to 25 Hz in post-
processing. The breath signal was further normalised by dividing
each value by the maximum recorded value across the dataset.
All 49 speakers' (29 f, 20 m) reported English as a primary lan-
guage, but ranged in regional accent (e. g., American, Irish, etc.),
as well as sociolect; ages range from 18 to approximately 55
years old (mean age 24 years; std. dev. = ~10 years). Each par-
ticipant contributed five minutes of spontaneously generated
speech, following instructions to imagine having a conversation
with a new acquaintance in a polite, yet informal situation. The
recordings were edited at the four minute mark to a common
duration for conformity, as well as to avoid background noise or
the experimenter’s instructions.

5. Experiments
5.1. Baselines

We apply the common LSTM RNN architecture described in
Sub-section 3.2 on all the following baseline feature sets, both
with the attention step (denoted by ATT) and without. r was
optimised directly using Adam [35] with initial learning rate
.001. We ran our experiments for 100 epochs, validating every
5, and report test measures using the model that yields the best
validation performance. We execute 10 trials of each method.
WAV - Raw Audio Waveform: In this case, we utilise
an additional stacked CNN (described in Subsection 3.2) model
at the beginning that processes the raw waveform and learns to
extract shift-invariant features in an End-to-End manner [27, 30].

!Participants were recruited via word of mouth and an online psy-
chology subject pool database. Informed written consent was obtained
prior to testing, and the project received approval from the UCL research
ethics committee.



Table 2: Test performance results for the UCL-SBM database.

BELT (r) MAX (Macro-F1 %)

Method No ATT ATT NoATT ATT
ComParE+RNN 721 712 74.643 74.721
MFCC+RNN 721 730 72.818 74.148
WAV+CRNN 728 731 74.743 75.469

MFCC - Mel Frequency Cepstral Coefficients: We cal-
culate 80 MFCCs using a 25 ms raised cosine Fast Fourier win-
dow, with 10 ms stride. An RNN processing MFCCs correspond-
ing to a 4-8 second segment was the approach recently utilised in
[13], without attention. MFCCs were also the features of choice
in [22], albeit in a non speaker independent, utterance-level
prediction task.

COMPARE - Low-level Descriptor Acoustic Feature Set:
65 COMPARE feature set low-level descriptors (LLDs) were
extracted at a 40 ms hop size, as well as their first derivation
(delta), resulting in a 130 dimensional LLD feature set. A full
description of the feature set can be found in [36].

5.2. Predictive performance results

Comparison results are summarised in Table 2. The COMPARE
features, but mostly the utilisation of end-to-end learning yield
some computational improvement over the MFCC baseline, espe-
cially for the MAX task. Furthermore, the utilisation of attention
brings an improvement across the board, again more noticeable
in the MAX task. We hypothesise this is because it is easier to
focus the attention on the minority positive class.

5.3. Discussion — Where does the network attend to?

In Figure 2, there is no easily discernible pattern for attention
with respect to the BELT task. This might be due to the continu-
ous valued nature of the task, where many different locations in
the sequence are important. For the MAX task, we observe that
there is a tendency for high attention weights to concentrate at
the beginning of the max breath event (the r between importance
weights and the continuous binary MAX labels is a non-trivial
0.141). This makes sense, as the positive class is the minority,
and the network learns to properly focus on the corresponding
segments. Finally, low importance weights appear to correspond
to segments with lack of speech, perhaps a consequence of the
network realising that there is no useful signal there. A no-
table exception, in terms of high attention during the absence of
speech, occurs immediately before an inhalation; this may be
attributable to the presence of inhalation sounds.

Towards a more quantitative examination, attentional weight
vectors were resampled to 1 kHz, low-pass filtered at 10 Hz us-
ing a 4th order Butterworth filter, and rescaled between -1 and
1. Attentional peaks of peak prominence more than .25 were
detected (determined by piloting to strike a balance between
humanly-discernible peaks and noise). Inter-peak intervals (IPI)
were calculated to ascertain the relative degree of periodicity
and any underlying patterns in terms of the temporal structure of
attentional weighting. Concerning the end-to-end method, the
median BELT attentional IPI was calculated on a speaker-by-
speaker basis, with a group average of 1743.75 (SD 723.4) ms,
and an inter-quartile range of 1991.69 (SD 972.86) ms. For the
MAX task, the corresponding group average of median atten-
tional IPI was 1314.13 (SD 304.74) ms, with an inter-quartile
range of 1684.38 (SD 405.59) ms. This suggests that attention

2085

Table 3: Cross-trial attention distribution correlations. Based
on r, the attention distributions are well correlated across tri-
als, which is an indication that they are neither arbitrary, nor
conditional on chance, as hypothesised in [33].

Method BELT MAX
ComParE+RNN 583 534
MFCC+RNN .536 .559
WAV+CRNN .624 .466

Table 4: Cross-method attention distribution correlations. The
non-trivial correlation scores indicate that regardless of input
level feature representation, there exist universal temporal pat-
terns that are of use towards breath prediction.

Method Pair BELT MAX
WAV & MFCC .626 .553
WAV & ComParE 462 242
MFCC & ComParE  .504 .198

in the MAX task operated on a faster and less variable timescale
in comparison with attention in the BELT task. In both cases,
the data were largely positively skewed, with modal peaks at
approximately 940 ms for the BELT task, and 555 for the MAX
task, and inter-speaker variability.

5.4. Discussion — Are the attention weights brittle?

We try to quantify the attention distribution distances in a manner
inspired by [29]. For each cross-trial pair, we calculate the r
values for corresponding attention distributions, in each 2 sec
attention segment, and each speaker. We report the averages
corresponding to each attentive method and task in Table 3. In
Table 4, we perform a similar 7 calculation, this time across
attention distributions by different methods, after trial averaging.

6. Conclusions & future work

We have shown that learning audio features in an end-to-end
manner is beneficial towards breath sensing from speech, and
that attention mechanisms help identify useful patterns from the
speech signal, that persist across choice of method. An impor-
tant next step is to validate the possibility of cross-corpus breath
sensing, thus verifying that our method can stand in place of
more specialised measurement equipment. Towards a deeper
understanding of the relation between speech and breath, a fur-
ther exploration of the explanatory potential of attention weights
should be attempted via more powerful attentional models [34].
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