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HOMOGENEITY GROUPS OF ENDS OF OPEN 3-MANIFOLDS

DENNIS J. GARITY AND DUŠAN REPOVŠ

For every finitely generated abelian group G, we construct an irreducible
open 3-manifold MG whose end set is homeomorphic to a Cantor set and
whose homogeneity group is isomorphic to G. The end homogeneity group
is the group of self-homeomorphisms of the end set that extend to homeo-
morphisms of the 3-manifold. The techniques involve computing the embed-
ding homogeneity groups of carefully constructed Antoine-type Cantor sets
made up of rigid pieces. In addition, a generalization of an Antoine Cantor
set using infinite chains is needed to construct an example with integer ho-
mogeneity group. Results about the local genus of points in Cantor sets and
about the geometric index are also used.

1. Introduction

Each Cantor set C in S3 has for complement an open 3-manifold M3 with end
set C . Properties of the embedding of the Cantor set give rise to properties of
the corresponding complementary 3-manifold M3. See [Souto and Stover 2013],
[Garity and Repovš 2013], and [Garity et al. 2014] for examples of this.

We investigate possible group actions on the end set C of the open 3-manifold
M3 in the following sense: the homogeneity group of the end set is the group of
homeomorphisms of the end set C that extend to homeomorphisms of the open
3-manifold M3. Referring specifically to the embedding of the Cantor set, this
group can also be called the embedding homogeneity group of the Cantor set. See
[Dijkstra 2010] and [van Mill 2011] for some other types of homogeneity.

The standardly embedded Cantor set is at one extreme here. The embedding
homogeneity group is the full group of self-homeomorphisms of the Cantor set,
an extremely rich group (there is such a homeomorphism taking any countable
dense set to any other). Cantor sets with this full embedding homogeneity group are
called strongly homogeneously embedded. See [Daverman 1979] for an example of
a nonstandard Cantor set with this property.

At the other extreme are rigidly embedded Cantor sets, those Cantor sets for
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which only the identity homeomorphism extends. Shilepsky [1974] constructed
Antoine-type [1920] rigid Cantor sets. Their rigidity is a consequence of Sher’s
result [1968] that if two Antoine Cantor sets are equivalently embedded, the stages
of their defining sequences must match up exactly. In the last decade, new examples
[Garity et al. 2006; 2011] of nonstandard Cantor sets were constructed that were
both rigidly embedded and had simply connected complement. See [Wright 1986]
for additional examples of rigidity.

These examples naturally lead to the question of which types of groups can
arise as end homogeneity groups between the two extremes mentioned above. In
this paper we show that for each finitely generated abelian group G, there is an
irreducible open 3-manifold with end set homeomorphic to a Cantor set and end
homogeneity group isomorphic to G. (See Corollary 6.3.)

The Cantor sets produced are unsplittable, in the sense that for each such C , no
2-sphere in the complement of C separates points of C . We produce these examples
by constructing, for each natural number m greater than one, 3-manifolds with
end homogeneity groups Zm , and by separately constructing 3-manifolds with end
homogeneity group Z. We then link the Cantor sets needed for a given abelian
group in an unsplittable manner.

In Section 2, we give definitions and the basic results needed for the rest of
the paper. In Section 3, we review the needed results about Antoine Cantor sets.
In Section 4 we produce Cantor sets with embedding homogeneity group Zm . In
Section 5 we produce Cantor sets with embedding homogeneity group Z. Section 6
ties together the previous results and lists and proves the main theorems. Section 7
lists some remaining questions.

2. Preliminaries

Background. Refer to [Garity et al. 2005; 2006; 2014] for a discussion of Cantor
sets in general and of rigid Cantor sets, and to [Željko 2005] for results about
the local genus of points in Cantor sets and defining sequences for Cantor sets.
The bibliographies in these papers contain additional references to results about
Cantor sets. Two Cantor sets X and Y in S3 are said to be equivalent if there is
a self-homeomorphism of S3 taking X to Y ; otherwise they are inequivalent, or
inequivalently embedded. A Cantor set C is rigidly embedded in S3 if the only
self-homeomorphism of C that extends to a homeomorphism of S3 is the identity.

Geometric index. We list the results we need on geometric index. See [Schubert
1953] and [Garity et al. 2011] for more details.

If K is a link in the interior of a solid torus T , the geometric index of K in T ,
denoted by N(K , T ), is defined as the minimum of |K ∩ D| over all meridional
disks D of T intersecting K transversely. If T is a solid torus and M is a finite
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union of disjoint solid tori such that M ⊂ Int(T ), then the geometric index N(M, T )
of M in T is N(K , T ), where K is a core of M .

Theorem 2.1 [Schubert 1953; Garity et al. 2011, Theorem 3.1]. Let T0 and T1 be
unknotted solid tori in S3 with T0 ⊂ Int(T1) and N(T0, T1)= 1. Then ∂T0 and ∂T1

are parallel; i.e., the manifold T1− Int(T0) is homeomorphic to ∂T0× I , where I is
the closed unit interval [0, 1].

Theorem 2.2 [Schubert 1953; Garity et al. 2011, Theorem 3.2]. Let T0 be a finite
union of disjoint solid tori. Let T1 and T2 be solid tori such that T0 ⊂ Int(T1) and
T1 ⊂ Int(T2). Then N(T0, T2)= N(T0, T1) ·N(T1, T2).

There is one additional result we will need:

Theorem 2.3 [Schubert 1953; Garity et al. 2011, Theorem 3.3]. Let T be a solid
torus in S3 and let T1, . . . , Tn be unknotted pairwise disjoint solid tori in T , each of
geometric index 0 in T . Then the geometric index of

⋃n
i=1 Ti in T is even.

Defining sequences and local genus. We review the definition and some basic
facts from [Željko 2005] about the local genus of points in a Cantor set. See that
work for a discussion of defining sequences.

Let D(X) be the set of all defining sequences for a Cantor set X ⊂ S3. Let
(Mi ) ∈ D(X) be a specific defining sequence for an X . For A ⊂ X , denote by M A

i
the union of those components of Mi which intersect A. The genus g(M A

i ) of M A
i

is the maximum genus of a component of M A
i . Define

gA(X; (Mi ))= sup{g(M A
i ) : i ≥ 0}, gA(X)= inf{gA(X; (Mi )) : (Mi )∈D(X)}.

The number gA(X) is called the genus of the Cantor set X with respect to the subset
A. For A = {x} we call the number g{x}(X) the local genus of the Cantor set X at
the point x and denote it by gx(X).

Let x be an arbitrary point of a Cantor set X and h : S3
→ S3 a homeomorphism.

Then the local genus gx(X) is the same as the local genus gh(x)(h(X)). Also note
that if x ∈ C ⊂ C ′, then the local genus of x in C is less than or equal to the local
genus of x in C ′. See [Željko 2005, Theorem 2.4].

The following result is needed to show that certain points in our examples have
local genus 2.

Theorem 2.4 [Željko 2005]. Let X, Y ⊂ S3 be Cantor sets and p ∈ X ∩Y . Suppose
there exists a 3-ball B and a 2-disk D ⊂ B such that

(1) p ∈ Int(B), ∂D = D ∩ ∂B, D ∩ (X ∪ Y )= {p}; and

(2) X∩B⊂ BX∪{p} and Y ∩B⊂ BY ∪{p}, where BX and BY are the components
of B− D.

Then gp(X ∪ Y )= gp(X)+ gp(Y ).



102 DENNIS J. GARITY AND DUŠAN REPOVŠ

Discussion and examples of ends and homogeneity groups. For background on
Freudenthal compactifications and theory of ends, see [Dickman 1968; Freudenthal
1942; Siebenmann 1965]. For an alternate proof using defining sequences of the
result that every homeomorphism of the open 3-manifold extends to a homeomor-
phism of its Freudenthal compactification, see [Garity and Repovš 2013].

At the end of the next section, we will discuss elements of the homogeneity group
of a standard self-similar Antoine Cantor set. Note that removing n points from
S3 yields a reducible open 3-manifold with end homogeneity group the symmetric
group on n elements. It is not immediately obvious how to produce examples that
are irreducible, have a rich end structure (for example a Cantor set), and at the same
time have specified abelian end homogeneity groups.

3. Properties of the Antoine Cantor set

An Antoine Cantor set is described by a defining sequence (Mi ) as follows: Let M0

be an unknotted solid torus in S3. Let M1 be a chain of at least four linked, pairwise
disjoint, unknotted solid tori in M0, as in Figure 1. Inductively, Mi consists of
pairwise disjoint solid tori in S3 and Mi+1 is obtained from Mi by placing a chain
of at least four linked, pairwise disjoint, unknotted solid tori in each component
of Mi . If the diameter of the components goes to 0, the Antoine Cantor set is
C =

⋂
∞

i=0 Mi .

Figure 1. Antoine chain with Z6 group action.
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We refer to [Sher 1968] for basic results and description of Antoine Cantor sets.
The key result we shall need is the following:

Theorem 3.1 [Sher 1968, Theorems 1 and 2]. Two Antoine Cantor sets in S3, with
defining sequences (Mi ) and (Ni ), respectively, are equivalently embedded if and
only if there is a self-homeomorphism h of S3 with h(Mi )= Ni for each i .

In particular, the number and adjacency of links in the chains must match up
at each stage. Because we need a modification of this result for infinite chains in
Section 5, we outline an alternative proof of the forward implication.

Proof of forward implication of Theorem 3.1. It suffices to show that if C has two
Antoine defining sequences (Mi ) and (Ni ), then there is a homeomorphism h as in
the theorem.

Step 1: There is a general position homeomorphism h1, fixed on C , such that
h1(∂(M1) ∪ ∂(M2)) is in general position with ∂(N1) ∪ ∂(N2). The curves of
intersection of h1(∂(M1) ∪ ∂(M2)) ∩ (∂(N1) ∪ ∂(N2)) can be eliminated by a
homeomorphism h2 also fixed on C , by a standard argument and the facts that any
nontrivial curve on ∂(Mi ) does not bound a disk in the complement of C and that
no 2-sphere separates the points of C . For details on the type of argument in this
step, see [Sher 1968] or [Garity et al. 2011].

Step 2: Let T be a component of h2 ◦h1(M1) and assume T intersects a component
S of N1. Either T ⊂ Int(S) or S⊂ Int(T ). First assume T ⊂ Int(S). If the geometric
index of T in S is 0, then since the other components of h2 ◦ h1(M1) are linked to
T by a finite chain, all components of h2 ◦h1(M1) are in the interior of S. This is a
contradiction since there are points of C not in S. So the geometric index of T in S
is greater than or equal to 1.

Note that T cannot be contained in any component of N2 that is in S since these
have geometric index 0 in S. So T contains all the components of N2 that are
in S. Each of these components has geometric index 0 in T , so the union of these
components has an even geometric index in T by Theorem 2.3. This geometric
index must then be 2 and the geometric index of T in S must be 1. Now there is a
homeomorphism h3, fixed on C and the complement of S, that takes T to S.

If instead S ⊂ Int(T ), a similar argument shows there is a homeomorphism h3,
fixed on C and the complement of T , taking S to T . The net result is that it is
possible to construct a homeomorphism h′3 taking the components of h2 ◦ h1(M1)

to the components of S. One now proceeds inductively, matching up further stages
in the constructions, obtaining the desired homeomorphism h as a limit. �

Remark 3.2. A standard argument shows that an Antoine Cantor set cannot be
separated by a 2-sphere. This is also true if the construction starts with a finite open
chain of linked tori as in Figure 3.
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Remark 3.3. Also note that the homeomorphism of Theorem 3.1 can be realized
as the final stage of an isotopy since each of the homeomorphisms in the argument
can be realized by an isotopy.

Homogeneity groups of Antoine Cantor sets. Let C be obtained by a standard
Antoine construction where the same number of tori are used in tori of previous
stages in each stage of the construction. For example, the Antoine pattern in Figure 1
with 24 smaller tori, each geometrically similar to the outer torus, can be repeated
in each component at each stage of the construction.

We now consider some elements of the embedding homogeneity group of C .
There is an obvious Z24 group action on the resulting Cantor set obtained by rotating
and twisting the large torus. There is also a Z24 ⊕ Z24 action on C obtained by
considering the first two stages, where we require each torus in the second stage to
rotate the same amount. If we allow the tori in the second stage to rotate different
amounts, we get an even larger group action by a wreath product of Z24 with itself.
Considering more stages results in even more complicated group actions.

In addition to these group actions arising from rotating and twisting, there are
also orientation-reversing Z2 actions that arise from reflecting through a horizontal
plane (containing the core of the large torus) or through a vertical plane (containing
meridians of the large torus).

From this we see that even for a simple self-similar Antoine Cantor set, the
embedding homogeneity group is more complex than just the group of obvious
rotations from the linking structure. In the next section we shall carefully combine
certain Antoine constructions to produce a more rigid example with nontrivial
end homogeneity group, in such a way that these kinds of orientation-reversing
homeomorphisms are not possible, and that also restricts the possible rotations.

4. A Cantor set with embedding homogeneity group Zm

Fix an integer m > 1. We describe how to construct a Cantor set in S3 with
embedding homogeneity group Zm .

Construction 4.1. As in the previous section, let S0 be an unknotted solid torus
in S3. Let {S(1,i) : 1≤ i ≤ 4m} be an Antoine chain of 4m pairwise disjoint linked
solid tori in the interior of S0 and let

S1 =

4m⋃
i=1

S(1,i).

See Figure 1 for the case when m = 6. Let C j , 1 ≤ j ≤ 4, be a rigid Antoine
Cantor set with first stage S(1, j). Choose these four rigid Antoine Cantor sets so
that they are inequivalently embedded in S3. Let h be a homeomorphism of S3,
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fixed on the complement of the interior of S0, that takes S(1, j) to S(1, j+4 mod 4m) for
1≤ j ≤ 4m. Require that hm is the identity on each S(1,i).

For 4k < i ≤ 4k+ 4, let Ci be the rigid Cantor set in S(1,i) given by hk(Ci−4k).
Note that this produces m copies of each of the rigid Cantor sets C1, C2, C3, and C4.
Again, see Figure 1, where the coloring indicates the four classes of rigid Cantor
sets. The Cantor set we are looking for is

C =
4m⋃
i=1

Ci .

Theorem 4.2. The Cantor set C from the previous construction has embedding
homogeneity group Zm and is unsplittable.

Proof. Let ` : S3
→ S3 be a homeomorphism taking C to C . We show that `|C =hk

|C

for some k, 1≤ k ≤ m. By [Sher 1968], we may assume that ` takes each S(1,i) to
some S(1, j), and so `(Ci )= C j . Because of the distinct rigid Cantor sets involved,
this is only possible if j − i ≡ 0 mod 4.

So assume that `(S(1,1))= S(1,4k+1). Then `(S(1,2)) must be one of the two tori
linked with S(1,4k+1), namely S(1,4k) or S(1,4k+2). Since (4k−2) 6≡0 mod 4, `(S(1,2))
must be S(1,4k+2). Continuing inductively, one sees that `(S(1,i))= S(1,4k+i mod 4m).
Thus `(Ci )= C4k+i mod 4m . But hk(Ci ) is also C4k+i mod 4m . Since these are rigid
Cantor sets, `|Ci = hk

|Ci for each i .
So the embedding homogeneity group of C is {hk

: 1 ≤ k ≤ p} ' Zm . By
Remark 3.2, C is unsplittable. The assertion follows. �

5. A Cantor set with embedding homogeneity group Z

We now construct a Cantor set in S3 with embedding homogeneity group Z. This
requires careful analysis of an infinite chain analogue of the Antoine construction.

Construction 5.1. Let S0 be a pinched solid torus in S3, i.e., the quotient of a
solid torus with a meridional disk collapsed to a single point w. Let Ti , i ∈ Z,
be a countable collection of unknotted pairwise disjoint solid tori in S0 such that
each Ti is of simple linking type with both Ti−1 and Ti+1, and is not linked with
T j , j 6= i − 1 or i + 1. Place the tori Ti so that the Ti , i > 0, and the Ti , i < 0, have
w as a limit point as in Figure 2.

For 1≤ j ≤ 3, let C j be a rigid Antoine Cantor set with first stage T j . Choose
these three rigid Antoine Cantor sets so that they are inequivalently embedded in S3.
Let α be a homeomorphism of S3, fixed on the complement of the interior of S0,
that takes T j to T j+3 for j ∈ Z.

For 3k < i ≤ 3k + 3, let Ci be the rigid Cantor set in Ti given by αk(Ci−3k).
Note that this produces a countable number of copies of each of the rigid Cantor
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S0 w

T0

T1

T2

T
−1

T
−2

Figure 2. Infinite Antoine chain.

sets C1, C2, and C3. Again, see Figure 2. The Cantor set we are looking for is

C =
⋃
i∈Z

Ci =
⋃
i∈Z

Ci ∪ {w}.

Note that C is a Cantor set since it is perfect, compact, and totally disconnected.

Theorem 5.2. The Cantor set C from the previous construction has embedding
homogeneity group Z and is unsplittable.

Proof. It is clear from the construction that each point of C−{w} has local genus 1.
Theorem 2.4, applied to w and the Cantor sets C+ =

⋃
i>0 Ci and C− =

⋃
i<0 Ci ,

shows that w has local genus 2 in C . Thus, any homeomorphism of S3 that takes
C to C must fix w.

Let h be such a homeomorphism of S3 taking C to C . Let T ′i be the union of the
linked tori in the Antoine chain at the second stage of the construction of Ci . Let

3N =

N⋃
i=−N

Ti , 0N =

N⋃
i=−N

Ci , and 3′N =

N⋃
i=−N

T ′i .

Fix an integer n ∈ Z. Since h(Tn) does not contain w, there is a positive integer
N1 > |n| such that h(Cn)⊂ 0N1 . Similarly, there is a positive integer N2 > N1 such
that h−1(0N1)⊂ 0N2 .

As in Step 1 in the proof of Theorem 3.1, there is a homeomorphism k of S3 to
itself, fixed on C , such that

k
(
h(∂(3N2+1)∪ ∂(3

′

N2+1))
)
∩
(
∂(3N2+1)∪ ∂(3

′

N2+1)
)
=∅.

Fix a point p of Cn and let k(h(p))= h(p)=q ∈Cm . We will show that k(h(Cn))=

h(Cn) = Cm . Let ` = k ◦ h. Since `(Tn)∩ Tm 6= ∅, and since the boundaries do
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not intersect, either `(Tn)⊂ Int(Tm) or Int(`(Tn))⊃ Tm . We consider these cases
separately.

Case I: `(Tn) ⊂ Int(Tm). If `(Tn) has geometric index 0 in Tm , then `(Tn) is
contained in a cell in Tm and so it contracts in Tm . Since a contraction of `(Tn)

meets the boundary of the linked `(Tn+1), and since the boundary of `(Tn+1) is
disjoint from the boundary of Tm , `(Tn+1)⊂ Int(Tm). Continuing inductively, one
finds that one of the following two situations occur when `(Tn) has geometric
index 0 in Tm :

Case Ia: Each `(T j ), for n ≤ j ≤ N2, is contained in Tm and has geometric index 0
there. It follows that `(TN2+1) ⊂ Int(Tm). But then Cm ⊂ 0N1 and h−1(Cm) ∩

CN2+1 6=∅, contradicting the choice of N2.

Case Ib: There exists j with n< j ≤ N2 and such that `(T j ) is contained in Int(Tm)

and geometric index k in Tm , where k > 1. Then, by Theorem 2.2, `(T j ) cannot be
contained in any component of the next stage of the construction contained in Tm ,
since these have geometric index 0 in Tm . So some component of the next stage in
Tm is contained in `(T j ) and has geometric index 0 there by Theorem 2.2. Since
the components of the next stage are linked, all components of the next stage in
Tm are contained in `(T j ). The geometric index of the union of the next stages of
in Tm in `(Tn) is even by Theorem 2.3 and cannot be equal to 0. Otherwise, by
Theorem 2.2 the union of the next stages of Tm would have index 0 in Tm , which is
a contradiction. So the geometric index of the union of the next stages of in Tm in
`(Tn) is at least 2. Then by Theorem 2.2, the geometric index of the union of the
next stages of in Tm in Tm is at least 4, contradicting the fact that this geometric
index is 2.

It follows that `(T j ) has geometric index 1 in Tm and contains the union of
the next stages contained in Tm . Since ` is a homeomorphism that takes C to
C , it follows from the construction of C that `(C j ) = Cm . Since `(p) ∈ Cm ,
`(Tn)∩ `(C j ) 6=∅, contradicting the fact that ` is a homeomorphism.

Thus, neither Case Ia nor Case Ib can occur. So the geometric index of `(Tn) in
Tm must be at least 1. Repeating the argument from Case Ib above with T j replaced
by Tn , we see that `(Tn) has geometric index 1 in Tm and contains the union of
the next stages contained in Tm . Since ` is a homeomorphism that takes C to C , it
follows from the construction of C that `(Cn)= Cm as desired.

Case II: Int(`(Tn))⊃ Tm . Then `−1(Tm)⊂ Int(Tn). The argument from Case I can
now be repeated, replacing ` by `−1 and interchanging Tn and Tm . It follows that
`−1(Cm)= Cn and so `(Cn)= Cm as desired.

Since `(Cn) = h(Cn) = Cm , it must be the case that (m − n) ≡ 0 mod 3. Con-
tinuing as in the proof of the Zm result (Theorem 4.2), we have that for each i ,
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h(Ci )= Ci+(m−n). Recall that for the homeomorphism α from the construction of
C , it is also the case that α(m−n)/3(Ci )= Ci+(m−n). By the rigidity of these Cantor
sets, it follows that α(m−n)/3

|Ci = h|Ci . Thus the embedding homogeneity group of
C is {αk

: k ∈ Z} ' Z.
We now show that C is unsplittable. Assume that 6 is a 2-sphere in S3 that

separates C . Choose ε > 0 so that the distance from 6 to C is greater than ε.
Choose N so that each Ti , |i | ≥ N , has diameter less than ε/6 and is within ε/6
of w. Since 6 separates C , w∪

⋃
|i |≥N Ti must be in one component of S3

−6 and
there must be points of C in the other component of S3

−6. So
⋃
|i |≤N Ti contains

points in both components of S3
−6.

Form an Antoine Cantor set C ′ related to C as follows. Use
⋃
|i |≤N Ti as a part

of the first stage of the construction. Complete the first stage of the construction
by adding an unknotted solid torus T , linked to TN and T−N , that is within the
ε/3-neighborhood of w. For successive stages of the Antoine Cantor set C ′ in
Ti , |i | ≤ N , use the successive stages in forming the Cantor set Ci ⊂ C . For
successive stages of the Antoine Cantor set C ′ in T , use any Antoine construction.

By construction and the properties of 6, the 2-sphere 6 separates the Antoine
Cantor set C ′, contradicting Remark 3.2. �

6. Main results

Given a finitely generated abelian group G, we use the results from the previous
two sections to construct an unsplittable Cantor set CG in S3 with embedding
homogeneity group G.

Construction 6.1. Let G ' Zn
⊕Zm1 ⊕Zm2 ⊕ · · ·⊕Zmk be any finitely generated

abelian group. Form a simple chain of n + k pairwise disjoint unknotted solid
tori. Figure 3 illustrates the case n+ k = 6. Label the tori as T1, T2, . . . , Tn+k so
that T1 is only linked with T2, Tn+k is only linked with Tn+k−1, and each Ti , for
2≤ i ≤ n+ k− 1, is linked with Ti−1 and Ti+1.

For 1≤ i ≤ n, perform Construction 5.1 in Ti , treating a pinched version of Ti

in the interior of Ti as the torus S0 in Construction 5.1. Let wi be the limit point
corresponding to w in Construction 5.1. This yields a Cantor set Ci in Ti with
embedding homogeneity group Z. See Figure 4.

Figure 3. An Antoine chain containing CG .
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Ti

wi

Figure 4. Pinched torus in Ti .

For n+ 1≤ i ≤ n+ k, perform Construction 4.1 for the group Zmi−n in Ti . This
yields a Cantor set Ci in Ti with embedding homogeneity group Zmi−n . Choose all
the rigid Cantor sets from Constructions 5.1 and 4.1 to be inequivalent.

Let

CG =

n+k⋃
i=1

Ci .

Theorem 6.2. The Cantor set CG constructed above has embedding homogeneity
group G and is unsplittable.

Proof. For 1 ≤ i ≤ n + k, let hi be a self-homeomorphism of S3, fixed on the
complement of Ti , such that hi |Ci generates the embedding homeomorphism group
of Ci (Z for 1≤ i ≤ n and Zmi−n for n+ 1≤ i ≤ n+ k). Then{

(h j1
1 ◦ h j2

2 ◦ · · · ◦ h jn+k
n+k )

∣∣
CG

}
' G ' Zn

⊕Zm1 ⊕Zm2 ⊕ · · ·⊕Zmk .

Let h be a homeomorphism of S3 to itself taking CG to CG . We will show that
h|CG = (h

j1
1 ◦ h j2

2 ◦ · · · ◦ h jn+k
n+k )

∣∣
CG

for some choice of ji .

Step 1: The homeomorphism h must take each Ci to itself. As in the proof of
Theorem 5.2, there are exactly n points of genus 2 in CG , one in each Ci , 1≤ i ≤ n.
These are the points {w1, w2, . . . , wn}. The homeomorphism must take this set of
genus 2 points to itself.

Let T be one of the solid torus components of the first stage of the Antoine
construction for some Ci , 1 ≤ i ≤ n + k. As in the proofs of Theorems 4.2 and
5.2, after a general position adjustment, either h(T ) must lie in the interior of some
solid torus component T ′ of the first stage of the Antoine construction for some C j ,
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or T ′ must lie in the interior of h(T ). A similar argument to that in Theorem 5.2
shows that N (h(T ), T ′)= 1 or N (T ′, h(T ))= 1, and that h(Ci ∩ T )= C j ∩ T ′.

This same argument can be applied to all first stage tori in Ci , resulting in the
fact that h(Ci )= C j . Because of the inequivalence of the rigid Cantor sets used in
the construction, i = j and h(Ci )= Ci .

Step 2: For each i , h|Ci = hk(i)
i |Ci for some k(i). By Step 1, we have that h(Ci )=Ci .

It follows from the construction that h|Ci = hk(i)
i for some k(i). From this, it follows

that h|CG = (h
j1
1 ◦ h j2

2 ◦ · · · ◦ h jn+k
n+k )|CG for some choice of ji .

Thus, the embedding homeomorphism group of CG is isomorphic to G.

Step 3: CG is unsplittable. Let 6 be a 2-sphere in S3 separating CG . As in the proof
of Theorem 5.2, an Antoine Cantor set with first stage

⋃n+k
i=1 Ti can be formed so that

6 separates this Antoine Cantor set. This is a contradiction. (See Remark 3.2.) �

Corollary 6.3. Let G ' Zn
⊕ Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmk be any finitely generated

abelian group. There is a irreducible open 3-manifold MG with the following
properties:

(a) The Freudenthal compactification of MG is S3.

(b) The end set of MG is homeomorphic to a Cantor set.

(c) The end homogeneity group of MG is isomorphic to G.

(d) The genus of MG at infinity is 2 at the n points corresponding to Zn and is 1
otherwise.

Proof. Let MG be S3
−CG , where CG is as in Construction 6.1. The end set of

MG is CG and the end homogeneity group of MG is isomorphic to the embedding
homogeneity group of CG . MG is irreducible because CG is unsplittable. Claims
(b) and (c) now follow from Theorem 6.2, while (d) follows from the proof of that
theorem. �

Remark 6.4. For each finitely generated abelian group G as above, there are
uncountably many nonhomeomorphic 3-manifolds as in the corollary. This follows
from varying the rigid Cantor sets used in the construction.

7. Questions

Question 7.1. If a finitely generated abelian group is infinite, is there an open
3-manifold with end homogeneity group G that is genus 1 at infinity?

Question 7.2. Given a finitely generated abelian group G, are there simply con-
nected open 3-manifolds with end homogeneity group G?

Question 7.3. Is the mapping class group of the open 3-manifold MG isomorphic
to G?
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Question 7.4. If G is a finitely generated nonabelian group, is there an open 3-
manifold with end homogeneity group G?

Question 7.5. If G is a nonfinitely generated group, is there an open 3-manifold
with end homogeneity group G?
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