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We use elementary algebraic methods to reprove a theo-
rem which was proved by Pop using rigid analytic geometry
and in a less general form by Harbater using formal algebraic
patching:

Let C be an algebraically closed field of cardinality m. Con-
sider a subset S of P1(C) of cardinality m. Then the funda-
mental group of P1(C) r S is isomorphic to the free profinite
group of rank m.

We also observe that if char(C) 6= 0 and 0 < card(S) < m,
then π1(P1(C) r S) is not isomorphic to a free profinite group.

Introduction.

The goal of this note is to provide an elementary algebraic proof of the
following result:

Main Theorem. Let C be an algebraically closed field of cardinality m.
Let x be a transcendental element over C. Then the absolute Galois group
of C(x) is the free profinite group F̂m of rank m.

The Main Theorem was first proved in characteristic 0 [Dou, Thm. 2].
The essential part of the proof, for C = C, uses algebraic topology and
complex analysis, specifically, the Riemann Existence Theorem, to give a
detailed description of the relative Galois group of the maximal Galois ex-
tension of C(x) ramified at most at finitely many given points of P1(C).
(See the survey [Ja1, §1].) Unfortunately, this proof fails in positive char-
acteristic. Worse, in this case, the structure of the relative Galois group is
still unknown. Nevertheless, it is possible to prove that G(C(x)) is free by
solving finite embedding problems over C(x). Indeed, if card(C) = ℵ0, a
criterion of Iwasawa reduces the proof to showing that each finite embed-
ding problem over C(x) has a solution. If m > ℵ0, then, by Chatzidakis’
criterion, it suffices to prove that each finite embedding problem over C(x)
has m distinct solutions.

There is a standard way to construct m solutions to a given embedding
problem. If β is an ordinal number of cardinality less than m and if for
each α < β, Solutionα is a solution to the embedding problem, then one
constructs Solutionβ such that it has a new branch point.
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Harbater [Har] and Pop [Pop] have (independently) carried out this con-
struction. Harbater uses formal patching in his construction. Pop applies
methods of rigid analytic geometry. Both methods rely on heavy machiner-
ies, which have also been applied in Raynaud’s proof of Abhyankar’s con-
jecture and its generalization by both authors.

For the purpose of proving the Main Theorem, it suffices, however, to use
the more elementary technique of algebraic patching which Völklein and the
first author introduced in [HaV] and which resulted, among others, in the
proof of the Main Theorem for m = ℵ0. The work [HaV] was followed by
[HJ1] and [HJ2]. Both works apply algebraic patching to solve embedding
problems, however, ignoring ramification. The present note therefore com-
plements [HaV], [HJ1], and [HJ2] and fills up the gap of [HJ1] and [HJ2]
by taking care of ramification. As a result we provide here an elementary
algebraic proof of the Main Theorem.

It turns out that the same method allows us to prove the freeness of
certain fundamental groups. Let S be a subset of C∪{∞} with card(S) = m.
Denote the compositum of all finite Galois extensions of C(x) unramified
outside S by ES . Then G(ES/C(x)) is called the fundamental group of
P1(C) rS and is usually denoted by π1(P1(C) rS). If S = C ∪ {∞}, then
ES is the separable closure of E and π1(P1(C) rS) = G(C(x)). We prove
by algebraic patching that π1(P1(C) rS) ∼= F̂m (Theorem 3.4). Harbater
[Har] uses formal patching to prove the same result in the case where C rS
is a finite set. Pop [Pop] uses rigid patching to prove a stronger result:
π1(X(C) rS) ∼= F̂m for any irreducible projective curve X over C and for
each subset S of X(C) of cardinality m.

Using complex analytic methods, notably the Riemann Existence Theo-
rem, one proves in characteristic 0 that if S is finite, then π1(P1(C) rS) is
a free profinite group. Indeed, the result is much stronger and allows to de-
duce the freeness of π1(P1(C) rS) for an arbitrary algebraically closed field
C of characteristic 0 and for an arbitrary subset of C ∪{∞}. If char(C) > 0
and S is finite, then by [Ser], π1(P1(C) rS) is not free. We point out here
(Theorem 3.6), that if card(S) < m, then π1(P1(C) rS) is not free. So, the
results of the preceding paragraph are optimal.

1. Ramification.

Let K be a field and let E be the field of rational functions of one variable
over K, say, E = K(x). Each α ∈ K̃ ∪ {∞} defines a K-place φ : E →
K̃ ∪ {∞} by φ(x) = α. Let us denote the corresponding prime divisor of
E/K (the equivalence class of φ) by px,α. Then px,α = px,β if and only if
α, β are conjugate over K (letting ∞ to be conjugate only to itself). Thus
we may identify the prime divisors of E/K with the conjugacy classes of
K̃ ∪ {∞}.
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Let F/E be a finite extension. An element α ∈ K̃ ∪ {∞} is a branch
point of F/E (with respect to x) if px,α is ramified in F . Denote the set
of all branch points of F/E with respect to x by Branchx(F/E); this set is
finite.

Remark 1.1. Every K-automorphism θ of E = K(x) is given by θ(x) =
ax+b
cx+d , where

(
a
c

b
d

)
∈ Gl2(K). It induces

(i) a permutation θ′ of K̃ ∪ {∞} by θ′(α) = aα+b
cα+d ; and

(ii) a permutation θ∗ of the set of prime divisors of E/K by mapping the
equivalence class of the place φ onto the equivalence class of φ ◦ θ.

In particular, θ(x) is another generator of E/K. It is easy to check that

θ∗(px,α) = px,θ′(α) and pθ(x),θ′(α) = px,α.(1)

Furthermore, let F/E be a finite extension, and extend θ to an isomorphism
of fields F → θ(F ). Then θ(F ) is a finite extension of E and we have

θ′
(
Branchx(θ(F )/E)

)
= Branchx(F/E),(2)

θ′
(
(Branchx(F/E))

)
= Branchθ(x)(F/E).

Indeed, let α ∈ K̃ ∪ {∞} and let φ′ : E → K̃ ∪ {∞} be the representative of
px,α given by φ′(x) = α. Then φ′ ◦ θ : E → K̃ ∪ {∞} represents θ∗(px,α) =
px,θ′(α). If ψ′ : θ(F ) → K̃ ∪ {∞} extends φ′, then ψ′ ◦ θ : F → K̃ ∪ {∞}
extends φ′ ◦ θ. Clearly ψ′ ramifies in θ(F )/E if and only if ψ′ ◦ θ ramifies in
F/E. Therefore px,α is ramified in θ(F )/E if and only if px,θ′(α) is ramified
in F/E. This proves the first equation of (2).

Furthermore, α ∈ Branchx(F/E) if and only if px,α is ramified in F/E if
and only if pθ(x),θ′(α) is ramified in F/E if and only if θ′(α)∈Branchθ(x)(F/E).

To simplify the notation, write Branch(F/E) instead of Branchx(F/E)
from now on.

For the rest of this section assume that K is complete under a non-trivial
ultrametric absolute value | |. Extend | | from K to E by |

∑
anx

n| =
maxn |an|, an ∈ K.

Let I 6= ∅ be a finite set. Let ci ∈ K, for i ∈ I, such that |ci| ≤ |ci−cj | = 1
for i 6= j. For each i ∈ I put wi = 1

x−ci
∈ K(x). Let R = K{wi| i ∈ I} be the

completion of the subring K[wi| i ∈ I] of E. Thus (cf. [HJ1, Lemma 3.3])
each element f of R has a unique presentation as a multiple power series:

f = a0 +
∑
i∈I

∞∑
n=1

ainw
n
i ,

where a0, ain ∈ K, and |ain| → 0 as n → ∞. Moreover, |f | = maxi,n{|a0|,
|ain|}. Let Q = Quot(R) be the quotient field of R.

Extend the absolute value | | from K to K̃ (uniquely, since K is complete).
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Lemma 1.2. Let px,α be a prime divisor of E/K and let v be be the asso-
ciated discrete valuation of E/K.

(a) If |α− ci| ≥ 1 for all i ∈ I, then v extends to a valuation v̂ of Q such
that the extension (Q, v̂)/(E, v) is immediate.

(b) Let F/E be a finite Galois extension such that F ⊆ Q. If α ∈
Branch(F/E), then there is i ∈ I such that |α− ci| < 1.

Proof. (a) The map φ : R→ K(α) given by

a0 +
∑
i∈I

∞∑
n=1

ainw
n
i 7→ a0 +

∑
i∈I

∞∑
n=1

ain

( 1
α− ci

)n

is clearly an epimorphism of rings. Fix i ∈ I. By [HJ1, Prop. 3.9] and its
proof, R is a principal ideal domain and the ideal Ker(φ) of R is generated
by an element q ∈ K[wi] such that Ker(φ) ∩K[wi] = qK[wi].

Since q is irreducible in R, the localization RqR is a discrete valuation
ring, and hence φ uniquely extends to a place φ : Q→ K(α)∪{∞}. Clearly,
φ extends px,α. Thus the corresponding discrete valuation v̂ on Q extends
v. It has the same residue field K(α) as v has, and q is a uniformizer for
both v and v̂. Therefore v̂/v is immediate.

(b) Suppose that |α − ci| ≥ 1 for each i ∈ I. By (a), v extends to Q
such that the extension is immediate; in particular, it is unramified. But
E ⊆ F ⊆ Q, hence v is unramified in F . �

Now assume that I has at least 2 elements. For each i ∈ I let

Qi = Quot(K{wj | j 6= i}) and Q′i = Quot(K{wi}).
Then
(3a)

⋂
i∈I Qi = E and Q′i =

⋂
j 6=iQj , for each i ∈ I [HJ1, Prop. 3.10];

(3b) For each positive integer n and for all B ∈ GLn(Q) and i ∈ I there
exist B1 ∈ GLn(Qi) and B2 ∈ GLn(Q′i) such that B = B1B2 [HJ1,
Cor. 4.5].

Furthermore, let Gi ≤ G, i ∈ I, be finite groups and Fi, i ∈ I, be fields such
that
(3c) Fi/E is a Galois extension with group Gi, i ∈ I;
(3d) Fi ⊆ Q′i;
(3e) G = 〈Gi| i ∈ I〉.

Remark 1.3. Conditions (3a)-(3e) amount to saying that E=(E,Fi, Qi, Q;
Gi, G)i∈I is a patching data in the sense of [HaV, Definition 3.3], [HJ1,
Definition 1.1], and [HJ2, Definition 3.1]. In what follows we shall consider
the compound F of E . As explained in [HaV, Lemma 3.6], F is a certain
Galois extension of E contained in Q with Galois group G. More precisely,
by (3a) we have for each i ∈ I that Qi ∩Q′i = E, and hence the restriction
map of Galois groups G(FiQi/Qi) → G(Fi/E) = Gi is an isomorphism. If
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we identify G(FiQi/Qi) with Gi via this map, then F is the largest subfield
of
⋂

i∈I FiQi, on which G acts so that each subgroup Gi of G acts via the
restriction of automorphisms to F [HaV, Lemma 3.6(b),(c)].

Lemma 1.4. Let F be the compound of E = (E,Fi, Qi, Q;Gi, G)i∈I .
(a) Let i ∈ I. If α ∈ Branch(Fi/E), then |α − ci| < 1. In particular, the

sets Branch(Fi/E), for i ∈ I, are disjoint.
(b) Branch(F/E) =

⋃
· i∈I Branch(Fi/E).

(c) Suppose that the set I contains the symbol 1 and G = H nG1, where
H = 〈Gi| i ∈ I r{1}〉 / G. Then FH = F1 and Branch(FG1/E) =⋃
· i∈I

i6=1
Branch(Fi/E).

Proof. (a) By assumption, Fi ⊆ Q′i. By Lemma 1.2(b), with I = {i}, each
α ∈ Branch(Fi/E) satisfies |α− ci| < 1.

(b) Let px,α be prime divisor of E/K and let v be the corresponding
discrete valuation of E. Assume first that v is ramified in Fi. By (a),
|α − ci| < 1. For each j 6= i we have |ci − cj | = 1, hence |α − cj | = 1.
By Lemma 1.2(a), v extends to a valuation vi on Qi which is immediate in
Qi/E. By [HaV, Lemma 3.6(e)], v is ramified in F .

Conversely, assume that v is ramified in F . We claim that there is i ∈ I
such that

(∗) |α− cj | ≥ 1 for all j 6= i.

Indeed, if there is i ∈ I such that |α − ci| < 1, then i satisfies (∗), because
|ci − cj | = 1 for all j 6= i. Otherwise each i ∈ I satisfies (∗).

Fix i ∈ I that satisfies (∗). By Lemma 1.2(a), v extends to a valuation vi

on Qi which is immediate in Qi/E. By [HaV, Lemma 3.6(e)], v is ramified
in Fi.

(c) We have FH = F1 by [HJ2, Cor. 3.4(d)] with Γ = 1. It follows that
F1 ∩ FG1 = E and F1F

G1 = F . Hence Branch(F/E) = Branch(F1/E) ∪
Branch(FG1/E).

Let α ∈
⋃

i6=1 Branch(Fi/E). By (b), α ∈ Branch(F/E); but, by (a),
α /∈ Branch(F1/E). Hence α ∈ Branch(FG1/E).

Conversely, let α ∈ Branch(FG1/E). Then α ∈ Branch(F/E). By (b),
there is i ∈ I such that α ∈ Branch(Fi/E). If i = 1, then, as in the
first paragraph of the proof of (b), the valuation v corresponding to px,α

extends to a valuation vi on Qi which is immediate in Qi/E. But FG1 ⊆
(F1Q1)G1 = Q1, so vi is ramified over v. A contradiction. Therefore α ∈⋃

i6=1 Branch(Fi/E). �

2. The fundamental group of a subset of a line.

Let K be an algebraically closed field, and fix a transcendental element x
over K. The set P of prime divisors of E = K(x) can be identified with
K ∪{∞}. For each subset S of P let ES be the maximal Galois extension of
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E unramified outside S, and let GS(E) = G(ES/E). In particular, GP (E)
is the absolute Galois group G(E) of E.

The main result of this section is that if K is complete with respect to
a non-trivial ultrametric absolute value, and card(K rS) < card(K), then
GS(E) is the free profinite group of cardinality card(K).

Recall [FrJ, p. 289] that a finite embedding problem for a profinite
group G

(1) (α : B → A, φ : G→ A)

consists of an epimorphism α : B → A of finite groups and a continuous
epimorphism φ : G → A. The kernel of (1) is Kerα. A solution (resp.
a weak solution) is a continuous epimorphism (resp. homomorphism)
ψ : G→ B such that α ◦ ψ = φ.

Without loss of generality φ is the quotient map modulo Kerφ. Thus if G
is a Galois group, say G = G(Ê/E), then A = G(F1/E), where F1 is a finite
Galois extension of E contained in Ê, and φ is the restriction map from Ê
to F1. In this case we usually abbreviate (1) as

(2) α : B → G(F1/E).

A solution field of (2) is a Galois extension F of E such that E ⊆ F1 ⊆
F ⊆ Ê with an isomorphism λ : G(F/E) → B such that α ◦λ = resF/F1

. By
Galois theory, the solutions fields F of (2) correspond to the kernels of the
solutions ψ : G(Ê/E) → B. Notice that only finitely many solutions may
have the same kernel.

We begin with a weaker assertion:

Lemma 2.1. Let S ⊆ P . Then GS(E) is projective, i.e., every finite em-
bedding problem for GS(E) has a weak solution.

Proof. If S is finite, this is the content of [Ser, Prop. 1] or [Ja2, Theo-
rem 2.7]. (If S = ∅ then GS(E) = 1 by the Riemann-Hurwitz genus formula
[FrJ, Prop. 2.15].)

In the general case we have to show that each finite embedding problem
(2) for GS(E) has a weak solution. Here F1 ⊆ ES .

Let T = Branch(F1/E). Then T ⊆ S, and hence F1 ⊆ ET ⊆ ES . Factor
the restriction φ : GS(E) → G(F1/E) into the restrictions res1 : GS(E) →
GT (E) and res2 : GT (E) → G(F1/E). As T is finite, by the above quoted
result there is a homomorphism ψ2 : GT (E) → B such that α ◦ ψ2 = res2.
Put ψ = ψ2 ◦ res1. Then α ◦ ψ = resF1 . �

Lemma 2.2. For each integer n > 1 there exists a cyclic extension F/E of
degree n such that Branch(F/E) = {1,∞}. If char(K) > 0 and n is a power
of char(K), then there exists a cyclic extension F/E of degree n such that
Branch(F/E) = {∞}.
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Proof. If char(K) - n, let F = E(y), where yn = x−1. If n = p = char(K) >
0, let F = E(y), where either yp − y = x or yp − y = x2

x−1 . In the first case
Branch(F/E) = {∞} and in the second case Branch(F/E) = {1,∞}.

The rest of the proof reduces the general case to these two cases.

Part A. Without loss of generality n is a prime power. Indeed, if n =∏m
i=1 p

ri
i , where p1, . . . , pm are distinct primes, and for each 1 ≤ i ≤ m

there is a cyclic extension Fi/E of degree pri
i , ramified at {1,∞}, then the

compositum F =
∏m

i=1 Fi has the required properties.

Part B. Without loss of generality n is prime. Indeed, assume that n is a
power of a prime p and there is a cyclic extension F1/E of degree p, ramified
at {1,∞}. Let S = {1,∞}. By Lemma 2.1, the embedding problem

(α : Z/nZ → Z/pZ = G(F1/E), res : GS(E) → G(F1/E))

for GS(E) has a weak solution, say, ψ : GS(E) → Z/nZ. But ψ is surjective,
since α(ψ(Z/nZ)) = Z/pZ and Z/nZ is the only subgroup H of Z/nZ with
α(H) = Z/pZ. The fixed field F of Kerψ has the required properties. �

Lemma 2.3. Assume that K is complete with respect to a non-trivial ul-
trametric absolute value | |. Let c ∈ K and put w = 1

x−c . Let n > 1
be an integer. Then there is 0 < r < 1 such that for all b1, b2 ∈ K with
|b1 − c|, |b2 − c| ≤ r there is a cyclic extension F/E of degree n, with
Branch(F/E) = {b1, b2} and F ⊆ Quot(K{w}).

Proof. Lemma 2.2 produces a cyclic extension F1/E of degree n with
Branch(F1/E) = {1,∞}. Since F1/E is unramified at 0, we have F1 ⊆
K((x)). By [HaV, Lemma 4.2(b)] there is r > 0 with the following prop-
erty: If a ∈ K× and |a| ≤ r, then theK-automorphism of E given by x 7→ ax
extends to an embedding µa : F1 → Quot(K{x}). Without loss of generality
r < 1. Let b1, b2 ∈ K such that |b1 − c|, |b2 − c| ≤ r. Put a = b2 − b1 and
denote F2 = µa(F1). By Remark 1.1,

Branch(F2/E) = (µ′a)
−1(Branch(F1/E)) =

1
a
{1,∞} =

{
1

b2 − b1
,∞
}
.

Let θ be the K-automorphism of E given by θ(x) = w. Extend θ to an
isomorphism of fields θ : F2 → F3. Then F3 ⊆ Quot(K{w}). We have

Branch(F3/E) = (θ′)−1(Branch(F2/E))

= (θ′)−1

{
1

b2 − b1
,∞
}

= {c+ b2 − b1, c}.
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Let d = c − b1. Then |d| ≤ r ≤ 1. Let λ be the automorphism of K[[w]]
that maps f =

∑∞
n=0 anw

n onto

λ(f) =
∞∑

n=0

an(w + d)n =
∞∑

n=0

an

n∑
k=0

(
n

k

)
dn−kwk

=
∞∑

k=0

( ∞∑
n=k

(
n

k

)
and

n−k

)
wk.

Then ∣∣∣∣∣
∞∑

n=k

(
n

k

)
and

n−k

∣∣∣∣∣ ≤ max
n≥k

|an|

and hence λ(K{w}) ⊆ K{w}. Therefore we can extend λ to an automor-
phism of Quot(K{w}). The restriction of λ to E is the map w 7→ w + d.
Let F = λ(F3). Then F ⊆ Quot(K{w}) and

Branch(F/E) = (λ′)−1(Branch(F3/E)) = {c+ b2 − b1 − d, c− d} = {b2, b1}.
�

To prove that a projective group is free, we need the following crite-
rion, essentially due to Iwasawa [FrJ, Cor. 24.2] and Chatzidakis [FrJ,
Lemma 24.14 and Prop. 24.18].

Lemma 2.4. Let m be an infinite cardinal number and let G be a projective
group of rank ≤ m. Put

m′ =

{
1 if m = ℵ0,

m if m > ℵ0,

and assume that each finite split embedding problem for G with a non-trivial
kernel has m′ distinct solutions. Then G ∼= F̂m.

Proof. The existence of m solutions of (1) for A = 1 and B = Z/2Z implies
that G is of rank m.

By [FrJ, Cor. 24.2] in the first case and by [FrJ, Lemma 24.14 and
Prop. 24.18] or [Ja1, Lemma 2.1] in the second case, it suffices to prove
that each (i.e., not necessarily split) finite embedding problem (1) for G
with Kerα 6= 1 has m′ distinct solutions. As G is projective, there exists a
homomorphism ψ : G → B such that α ◦ ψ = φ. Then Â = G/Kerψ is a
finite group and there exist homomorphisms φ̂ : Â→ A and ψ̂ : Â→ B such
that φ̂ ◦ π = φ, ψ̂ ◦ π = ψ, and α ◦ ψ̂ = φ̂, where π : G → Â is the quotient
map. Let B̂ = B×A Â and let α̂ : B̂ → Â and β : B̂ → B be the projections
from B̂. Then there exists θ : Â → B̂ such that α̂ ◦ θ = idÂ and β ◦ θ = ψ̂

[FrJ, Lemma 20.6]. So, (π : G→ Â, α̂ : B̂ → Â) is a finite split embedding
problem for G and Ker α̂ ∼= Kerα 6= 1.
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By assumption, there exist m′ distinct epimorphisms ψi : G → B̂ such
that α̂ ◦ ψi = π, i ∈ I. If i, i′ ∈ I and β ◦ ψi = β ◦ ψi′ , then ψi = ψi′

[FrJ, Lemma 20.6]. Conclude that β ◦ ψi, i ∈ I, are m′ distinct solutions of
embedding problem (1). �

A disk in K ∪ {∞} is a set of the form

D = θ({a ∈ K| |a| ≤ r})

where r > 0 and θ is a Möbius transformation over K. Thus each set of the
form D = {a ∈ K| |a − c| ≤ r′} or D = {a ∈ K| |a| ≥ r′} ∪ {∞} , where
r′ > 0 and c ∈ K, is a disk. (In fact, each disk is of this form; but we shall
not use this fact.) Note that the cardinality of a disk is the same as the
cardinality of K.

Lemma 2.5. Assume that K is complete with respect to a non-trivial ul-
trametric absolute value. Let F1/E be a finite Galois extension with group
G1. Let

(3) α : G = H×|G1 → G1 = G(F1/E)

be a finite split embedding problem for G(E). Suppose that H = Kerα is
generated by a finite family {Gi}i∈J of non-trivial cyclic subgroups. Then
there exists a family of pairwise disjoint disks {Di}i∈J in K∪{∞} such that
for every B ⊂

⋃
i∈J Di with card(B ∩Di) = 2, for each i ∈ J , there exists a

solution field F to (3) with Branch(FG1/E) = B.

Proof. For the sake of compatibility with [HJ2] assume that J does not
contain the symbol 1 and put I = J ∪ {1}. Then G = 〈Gi| i ∈ I〉. For each
i ∈ I let ci ∈ K, wi, etc., be as in Section 1 (see Remark 1.3). In particular,
Qi = Quot(K{wj | j 6= i}) and Q′i = Quot(K{wi}).

Claim. We may assume that F1 ⊆ Q′1. Indeed, as K is algebraically
closed, every prime divisor of F1/K is of degree 1. In particular, F1/K
has an unramified prime divisor of degree 1. By [HaV, Lemma 4.2] there
is a K-automorphism of E that extends to an embedding θ : F1 → Q′1.
Let F ′1 = θ(F1) and extend θ to an automorphism of Ẽ. Then θ defines
isomorphisms θ∗ : G(F1/E) → G(F ′1/E) and θ∗ : G(E) → G(E) such that
the following diagram commutes

G(E) θ∗−−−→ G(E)yres

yres

G
α−−−→ G(F1/E) θ∗−−−→ G(F ′1/E).

Suppose that there is a family of disks {D′
i}i∈J such that for every B′ ⊂⋃

i∈J D
′
i with card(B′ ∩D′

i) = 2 , for each i ∈ J , there exists a solution field
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F ′ to the embedding problem

(θ∗ ◦ α : G→ G(F ′1/E), res : G(E) → G(F ′1/E))

with Branch(F ′G1/E) = B′. Then the disks Di = θ′(Di), for i ∈ J , have
the required property.

Indeed, if B ⊂
⋃

i∈J Di and card(B ∩ Di) = 2 , for each i ∈ J , put
B′ = (θ′)−1(B), and let F ′ be as above. Clearly, F = θ−1(F ′) solves (3). By
Remark 1.1, Branch(FG1/E) = B.

Thus, replacing F1 by F ′1 we may assume that F1 ⊆ Q′1.
By Lemma 2.3 there is 0 < r < 1 such that the (necessarily disjoint)

disks Di = {a ∈ K| |a− ci| ≤ r}, for i ∈ J , have the following property. For
every B ⊂

⋃
i∈J Di with card(B ∩Di) = 2, for each i ∈ J , there exist Galois

extensions Fi/E with the cyclic Galois group Gi and Branch(Fi/E) = B∩Di

and Fi ⊆ Quot(K{wi}), for each i ∈ J .
By Remark 1.3, E = (E,Fi, Qi, Q;Gi, G)i∈I is a patching data. Its com-

pound F is, by [HJ2, Cor. 3.4(d)] with Γ = 1, a Galois extension of E that
solves (3). By Lemma 1.4(c),

Branch(FG1/E) =
⋃
i∈J

Branch(Fi/E) =
⋃
i∈J

B ∩Di = B.

�

3. Descent.

We wish to apply Lemma 2.5 to a sufficiently large complete extension of a
given algebraically closed field.

Thus we consider the following situation. Let C1 ⊆ C2 be two alge-
braically closed fields and let x be transcendental over C2. Denote E1 =
C1(x) and E2 = C2(x). Let

(1) ρ : G = H nG1 → G1 = G(F1/E1)

be a finite split embedding problem for G(E1) with a non-trivial kernel. Let
F2 = F1E2. Then the restriction G(F2/E2) → G(F1/E1) is an isomorphism.
Identify G(F2/E2) with G1 = G(F1/E1) via this map. Then (1) induces a
finite split embedding problem

(2) ρ : G = H nG1 → G1 = G(F2/E2)

for G(E2) with a nontrivial kernel.
Before dealing with embedding problems let us notice a simple fact:

Remark 3.1. Let A be an infinite subset of a field K. Then every non-
empty Zariski K-open subset of An meets An. Indeed, the only polynomial
in n variables over K that vanishes on An is 0.
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Lemma 3.2. Let A be an infinite subset of C1. Assume that (2) has
a solution field L2 such that ∞ /∈ Branch(LG1

2 /E2) and the elements of
Branch(LG1

2 /E2) are algebraically independent over C1. Then (1) has a so-
lution field L1 with Branch(LG1

1 /E1) ⊆ A.

Proof. There is an irreducible monic polynomial h ∈ C2[x,Z] such that L2 =
E2(z), where h(x, z) = 0. Furthermore, there are irreducible polynomials
f1, . . . , fr ∈ C2[x,Z] such that a root zi of fi is a primitive element of
LG1

2 /E2 (and hence also of L2/F2), and

(3) Branch(LG1
2 /E2) =

r⋂
j=1

Discr(fj)

[Has, p. 64].
There is an integer l and a l-tuple u = (u1, . . . , ul) of elements of C2 such

that h, f1, . . . , fr ∈ C1[u][x, Z]. Without loss of generality Branch(LG1
2 /E2)

⊆ {u1, . . . , ul}, say, Branch(LG1
2 /E2) = {u1, . . . , uk}, where k ≤ l.

Now, u generates a variety U = Spec(C1[u]) over C1. For each u′ ∈
U(C1) the C1-specialization u → u′ extends to a C1(x)-homomorphism
′ : C1(x)[u] → C1(x), and from there to an F1-homomorphism ′ : F1[u] → F1.
Extend it to an F1-place from L2 into the algebraic closure of F1. Let
B = {u′1, . . . , u′k} ⊆ C1 be the image of Branch(LG1

2 /E2) = {u1, . . . , uk}.
The variety U has a nonempty Zariski open subset U ′ such that if u′ ∈ U ′,

then, in the above notation,

(4a) h, f ′1, . . . , f
′
r ∈ C1[x, Z] are irreducible over C1(x) [FrJ, Prop. 8.8];

(4b) L1 = E1(z′) is Galois over E1 and G(L1/E1) ∼= G(L2/E2) = G [FrJ,
Lemma 5.5];

(4c) the respective roots z′1, . . . , z
′
r of f ′1, . . . , f

′
r are primitive elements for

LG1
1 /E1.

Thus L1 solves (1). From (3), B =
⋂r

j=1 Discr(f ′j). In particular, since
LG1

1 /E1 is unramified at each point outside Discr(f ′1),

(4d) Branch(LG1
1 /E1) ⊆ B.

By assumption, u1, . . . , uk are algebraically independent over C1. Thus the
projection on the first k coordinates pr : U → Ak is a dominant map, and
hence pr(U ′) contains a Zariski open subset of Ak [Lan, Prop. 4 on p. 88].
By Remark 3.1 we may choose u′ so that B = {u′1, . . . , u′k} ⊆ A. Thus
Branch(LG1

1 /E1) ⊆ A. �

To achieve the algebraic independence in Lemma 3.2 we use:
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Lemma 3.3. Let C1 ⊆ C2 be two algebraically closed fields such that
card(C1) < card(C2). Let {Dj}j∈J be a finite collection of pairwise disjoint
subsets of C2 of cardinality card(C2). Then there exists a set B ⊆

⋃
j∈J Dj

such that card(B ∩ Dj) = 2 for each j ∈ J and the elements of B are
algebraically independent over C1.

Proof. Write J as {1, . . . , k}, and suppose, by induction, that we have al-
ready found bj , b′j ∈ Dj , for j = 1, . . . , k− 1, such that b1, b′1, . . . , bk−1, b

′
k−1

are algebraically independent over C1. The cardinality of the algebraic
closure C̃1 of C1(b1, b′1, . . . , bk−1, b

′
k−1) in C2 is card(C1) < card(C2) =

card(Dk), so there exist bk, b′k ∈ Dk algebraically independent over C̃1. Thus
b1, b

′
1, . . . , bk, b

′
k are algebraically independent over C1. �

The preceding lemmas yield the main result:

Theorem 3.4. Let C be an algebraically closed field of cardinality m and
let E = C(x) be the field of rational functions over C. Let S ⊆ C ∪ {∞} of
cardinality m. Then GS(E) is isomorphic to the free profinite group of rank
m.

Proof. Put C1 = C and E1 = E. By Lemma 2.1, GS(E) is projective.
Therefore, by Lemma 2.4, it suffices to show that every finite split embedding
problem (1) for GS(E) has m′ solution fields, where m′ = 1 if m = ℵ0, and
m′ = m otherwise.

Let β < m be an ordinal number. Suppose, by transfinite induction, that
{Lα}α<β is a family of distinct solution fields of (1). For each α, the set
Branch(Lα/E) is finite. Hence, A = Sr⋃

α<β Branch(Lα/E) is infinite.
Choose an algebraically closed field K = C2 which contains C, complete

with respect to a non-trivial ultrametric absolute value, such that card(C) <
card(K). For instance, choose a field C ′ that contains C such that card(C) <
card(C ′), and let K be the completion of the algebraic closure of C ′((t)).
Consider the induced embedding problem (2).

By Lemma 2.5 there exists a family of disks {Dj}j∈J in K ∪ {∞} such
that for every B ⊂

⋃
j∈J Dj with card(B ∩Dj) = 2 , for each j ∈ J , there

exists a solution field L2 to (2) with Branch(LG1
2 /K(x)) = B. Choose such

a set B. By Lemma 3.3, with Dj r{∞} instead of Dj , we may assume
that the elements of B are algebraically independent over C. Therefore by
Lemma 3.2, (1) has a solution field F such that Branch(FG1/E) ⊆ A.

Since F = F1F
G1 , we have

Branch(F/E) = Branch(F1/E) ∪ Branch(FG1/E).

Furthermore, Branch(F1/E),Branch(FG1/E) ⊆ S. Thus Branch(F/E) ⊆
S. Also, let α < β. Then Branch(FG1/E) ∩ Branch(Lα/E) = ∅.
But Branch(FG1/E) 6= ∅ by the Riemann-Hurwitz genus formula [FrJ,
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Prop. 2.15] and Branch(FG1/E) ⊆ Branch(F/E). Therefore Branch(F/E)
6= Branch(Lα/E), whence F 6= Lα. �

Corollary 3.5. Let C be an algebraically closed field of cardinality m. Let
E be a field of algebraic functions in one variable over C. Then G(E) is
isomorphic to the free profinite group of rank m.

Proof. If E is the field of rational functions, apply Theorem 3.4 with S = P .
In the general case E is a finite separable extension of C(x). Therefore
G(E) is an open subgroup of G(C(x)). The assertion follows from [FrJ,
Prop. 15.27]. �

If char(C) = 0 and S is an arbitrary subset of C ∪ {∞}, then, using the
Riemann Existence Theorem and a result of Douady for the case when S is
finite, one can prove that GS(E) is a free profinite group (as in [Ja1, §1.8]).
If, however, char(C) > 0 and card(S) < card(C), then this is no longer true.
In fact, GS(E) is even not free:

Theorem 3.6. Let C be an algebraically closed field of positive character-
istic and of cardinality m. Let E be a finite extension of C(x) and let S be a
non-empty subset of prime divisors of E/C of cardinality less than m. De-
note the maximal Galois extension of E unramified outside S by ES. Then
G(ES/E) is not a free profinite group.

Proof. Assume that G(ES/E) is isomorphic to the free profinite group of
rank k. For each prime number p denote the maximal pro-p extension of
E in ES by E(p)

S . Then G(E(p)
S /E) is isomorphic to the free pro-p group of

rank k. Denote the family of Galois extensions of degree p in E(p)
S by DS(p).

Let dS(p) be the cardinality of DS(p). Then dS(p) is the cardinality of the
family of open normal subgroups of G(E(p)

S /E) of index p. Hence, dS(p) is
finite if k is finite [FrJ, Lemma 15.1] and dS(p) = k if k is infinite [FrJ,
Supplement 15.2]. But this contradicts the conjunction of the following two
claims.

Claim A. If p 6= char(C), then dS(p) < m.

Indeed, if S is a finite set, then dS(p) is finite [Ja2, Prop. 3.2]. In the
general case, let A be the collection of all finite non-empty subsets of S. Its
cardinality is, like that of S, less than m. Then E

(p)
S is the compositum of

all fields E(p)
A , with A ∈ A. Hence, dS(p) ≤

∑
A∈A dA(p) < m.

Claim B. If p = char(C), then dS(p) = m.
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Indeed, the case where m = ℵ0 is covered by [Ja2, Prop. 3.3]. So, assume
m > ℵ0. Since E/C(x) is a finite extension, it suffices to constructm linearly
disjoint cyclic extensions of C(x) of degree p unramified outside S|C(x). We
may therefore assume without loss that E = C(x). Also, apply a Möbius
transformation on E, if necessary, to assume that ∞ ∈ S.

For each ordinal number α < m choose aα ∈ C such that the transfinite
sequence (aα| α < m) is linearly independent over Fp. Each of the fields
E(zα) with zp

α − zα = aαx is a cyclic extension of E of degree p. Moreover,
Branchx(E(zα)/E) = {∞}. Finally, the field extensions E(zα), α < m, of
E are linearly disjoint.

Indeed, by the theory of Artin-Schreier, it suffices to prove that the set
{aαx| α < m} is linearly independent over Fp modulo ℘(E), where ℘(y) =
yp−y. Suppose that there exist relatively prime polynomials f and g in C[x]
such that

∑
α<m uαaαx = f(x)p

g(x)p − f(x)
g(x) , with elements uα in Fp which are zero

for all but finitely many α. Then each irreducible factor of g(x) is a pole of
the right hand side but not of the left hand side. So, we may assume that
g(x) = 1 and that f(x) =

∑n
j=0 cjx

j with cj ∈ C and cn 6= 0. It follows that∑
α<m uαaαx =

∑n
j=0 c

p
jx

jp −
∑n

j=0 cjx
j . Comparison of the coefficients of

xjn proves that n = 0 and
∑

α<m uαaα = 0. Hence, by assumption, uα = 0
for each α. �
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