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Using the formal reduction by a method of deformation of
orbits under the adjoint representation of GL(n, C), we have
proved the existence and uniqueness (up to equivalence under
GL(n, C)) of a formal canonical form of systems of singular lin-
ear difference equations. In this paper we study the stability
of the irregular part of the canonical form under perturbation
of the matrix coefficients.

1. Introduction and Notations.

The formal reduction of singular linear difference systems or of difference
equations is studied in many ways: Formal classification, canonical forms
or formal solutions (see [9], [4], [8], [2], [3]). One of the approaches is the
reduction to canonical forms given in [3] by using the method of Babbitt and
Varadarajan [1] for singular differential systems. We study in this paper the
stability of the canonical forms of singular linear difference systems. Similar
results for singular differential systems can be found in [1] or [7].

We shall use the following notations.
Let K = C((1/x)) be the field of formal power series with coefficients in C.

φ is the C-automorphism of K defined by φ(x) = x + 1. For q ∈ N∗, x1/q is
a fixed root of yq = x, Oq = C[[x−1/q]], Kq = C((x1/q)) and K =

⋃
q∈N∗ Kq

is the field of formal Puisieux power series over C. φ can be extended to
K by φ(x1/q) = x1/q(1 + x−1)1/q. Let a ∈ Kq be nonzero, then it can be
written in the form

a = a(x) = x−k/q
+∞∑
j=0

ajx
−j/q, a0 6= 0

where k is an integer. We write ord(a) for k/q, (ord(0) = +∞). For A ∈
gl(n, Kq), A 6= 0, we define

ord(A) = max
{

r

q
| r ∈ Z, A ∈ x−r/qgl(n,Oq)

}
and ord(0) = +∞.
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We consider systems of linear difference equations of the following type

φ(u) = Au(1)

where A ∈ GL(n, Kq), q ∈ N∗. One can write

A =
∞∑

j=0

Ar+j

x(r+j)/q
∈ GL(n, Kq)(2)

where r ∈ Z, Ar+j ∈ gl(n,C) and Ar 6= 0.
Recall ([3]) that a matrix A or its associate system is said of level 0 if

A = I +
∞∑

m=q

Am

xm/q
;

of level ≤ 1 if

A = I +
∞∑

m=0

Ar+m

x(r+m)/q
, r ∈ N∗, 1 ≤ r < q, Ar 6= 0,(3)

where I denotes the n× n identity matrix.
Let T ∈ GL(n, Kq). The change ũ = Tu transforms the system (1) to

φ(ũ) = Ãũ where

Ã = T [A] def= φ(T )AT−1.

We shall say that the matrices A, Ã (or the corresponding difference systems)
are equivalent (under GL(n, Kq)).

We recall (cf. [3]) the definition of a canonical form for a matrix or its
associate linear difference system.

Definition 1.1. Let p ∈ N∗. We shall say that a matrix B ∈ GL(n, Kp) is

in canonical form if B =
1

xr/p

s⊕
i=1

Bi

x`i
with

r ∈ Z, `i ∈
1
p
N, `1 < `2 < · · · < `s,

Bi ∈ GL(n(i),Op), n(i) ∈ N∗,

s∑
i=1

n(i) = n, Bi =
ti⊕

α=1

λ(i)
α

(
B(i)

α +
C

(i)
α

x

)
where

B(i)
α = I(i)

α +
D

(i)
α,1

xr
(i)
α,1

+ · · ·+
D

(i)

α,j
(i)
α

x
r
(i)

α,j
(i)
α

and
• λ

(i)
α ∈ C∗, λ

(i)
α 6= λ

(i)
β for α 6= β,
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• I
(i)
α is the n

(i)
α × n

(i)
α identity matrix, n

(i)
α ∈ N∗,

∑ti
α=1 n

(i)
α = n(i),

• r
(i)
α,j ∈

1
pN

∗, r
(i)
α,1 < r

(i)
α,2 < · · · < r

(i)

α,j
(i)
α

< 1, D
(i)
α,j ∈ gl

(
n

(i)
α ,C

)(
1 ≤ j ≤

j
(i)
α

)
are nonzero diagonal matrices,

• C
(i)
α ∈ gl

(
n

(i)
α ,C

)
commutes with the D

(i)
α,j for 1 ≤ j ≤ j

(i)
α .

We make the convention that for j
(i)
α = 0, B

(i)
α = I

(i)
α .

We will call
1

xr/p

s⊕
i=1

⊕ti
α=1 λ

(i)
α B

(i)
α

x`i
the irregular part of the canonical

form. The aim of this paper is to study the dependency of the irregular part
in the canonical form of a singular linear difference system on the matrix
coefficients Ar+j .

In [3] we have proved that for any matrix A ∈ GL(n, Kq) there exist some
p ∈ qN∗ and T ∈ GL(n, Kp) such that T [A] ∈ GL(n, Kp) is in a canonical
form and its irregular part is unique up to equivalence in GL(n,C). It is
based on the formal reduction using the method of Babbitt and Varadarajan
[1], i.e., the method of deformation of orbits under the adjoint representation
of GL(n,C) in the nilpotent case of the leading matrix.

Recall that a canonical form for a matrix (or the associate difference
system) of level ≤ 1 is in the form:

I +
D1

xr1
+ · · ·+ Dk

xrk
+

C

x

where the Dj(1 ≤ j ≤ k) are nonzero diagonal matrices, 0 < r1 < · · · <
rk are rational numbers and the matrix C commutes with the matrices
Dj(1 ≤ j ≤ k). According to the convention of Definition 1.1, for k = 0 the
canonical form is reduced to I + Cx−1. The canonical form of level ≤ 1 is
similar as in the differential case (see [1]). But for general difference systems
the canonical form is more complicated.

We study in this paper the stability of the irregular part of the canonical
form of a matrix or its associate linear difference system under perturbation
of the matrix coefficients. A perturbed system of (1) is

φ(u) =
(

A +
P

x(r+N)/q

)
u(4)

with N ∈ N∗ and P ∈ gl(n,Oq), i.e., ord(P ) ≥ 0.
Note that in [2] the first author of this paper has studied similar prob-

lems for formal solutions. More precisely it is proved that the irregular part
in a fundamental matrix of formal solutions of difference systems associ-
ated to a matrix of level ≤ 1 (resp. of general systems) depends only on
Ar, Ar+1, . . . , Ar+n(q−r)−1 (resp. Ar, Ar+1, . . . , Ar+ν+nq−1) where ν denotes
the integer such that ν

q = ord(detxr/qA).
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We shall prove, by using the method of [1], similar results on canonical
forms for these two difference systems. More precisely, we will prove in
Section 3 that for systems of level ≤ 1, if N ≥ n(q− r), the two systems (1)
and (4) have the same irregular part in their canonical forms. This result is
similar to the differential case [1]. In the general case the situation is more
complicated and is considered in Section 4. Basing on the method of [1] for
differential systems, we use also frequently the formal reduction procedure
of linear difference systems presented in [3]. We state some of the results of
[1] and [3] in Section 2 for the use in the sequel.

2. Preliminaries.

We present now some preliminary results which will be used in the next
sections (see also [1] and [3]).

For T ∈ GL(n, Kq) we define the lag (see also [1]) of T as

σq(T ) = min
{

m

q
| m ∈ N, A ≡ 0(mod x−m/q) =⇒ TAT−1 ∈ gl(n,Oq)

}
.

It is clear that if σq(T ) ≤ m/q then

A ≡ B(mod x−m′/q) =⇒ T [A] ≡ T [B](mod x−(m′−m)/q).(5)

Therefore if one controls the lag of a transformation matrix T , then one
controls the first terms in the transformed system T [A].

One has immediately the following properties (see also [1], p. 10-11):
(i) If q′ is a multiple of q then for T ∈ GL(n, Kq) ⊂ GL(n, Kq′), σq′(T ) =

σq(T ). We will write σ(T ) for σq(T ) in the sequel.
(ii) σ(T ) = 0 for T ∈ GL(n,Oq) · Zq where Zq is the group of elements of

the form x−k/q · 1 for k ∈ Z.
(iii) σ(T1T2) ≤ σ(T1) + σ(T2) for T1, T2 ∈ GL(n, Kq).
(iv) σ(QTQ̃) = σ(T ), Q, Q̃ ∈ GL(n,Oq) · Zq and T ∈ GL(n, Kq).
(v) If T = xH for some semi-simple matrix H in gl(n,C) with eigenvalues

λi ∈ 1
qZ (i = 1, . . . , n) then

σ(T ) = max
1≤i,j≤n

{|λi − λj |}.

(vi) σ(T ) = σ(T−1) for T ∈ GL(n, Kq).

Let O× be the group of units of O =
⋃

q∈N∗ Oq. We define

◦GL(n, F ) = {T ∈ GL(n, F )|det T ∈ O×}
where F may represent K,Kq,Oq etc. If H is semi-simple in gl(n,C) with
eigenvalues in Q, it is immediate that

xH ∈ ◦GL(n, K) ⇐⇒ tr(H) = 0.

We then have (cf. [1], Proposition 1.2).
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(vii) Let T =
⊕m

i=1 Ti where Ti ∈ ◦GL(ni,Kq) and n =
∑m

i=1 ni. Then
T ∈ ◦GL(n, Kq) and

σ(T ) ≤ σ(T1) + · · ·+ σ(Tm).

Let G = gl(n,C). For M ∈ G, GM and [G,M ] denote respectively the
kernel and the image of the adjoint homomorphism ad(M). d(M) is the
dimension of the GL(n,C)-orbit of M with respect to the adjoint represen-
tation of G.

Proposition 2.1 ([6], [1]). Let Y be a nonzero nilpotent in G; then we can
find H,X ∈ sl(n,C) such that H is semi-simple, X is nilpotent and

[H,X] = 2X, [H,Y ] = −2Y, [X, Y ] = H.

(Y, H,X) is called a standard triple.

Proposition 2.2 ([1]). Let Y be a nonzero nilpotent and (Y, H, X) a stan-
dard triple. Let Z ∈ GX , Z 6= 0. Suppose that Y + Z is nilpotent. Then
d(Y + Z) > d(Y ).

For a standard triple (Y, H, X), we have G = GX ⊕ [G, Y ]. Moreover there
exists a basis {Z1, . . . , Z`} of GX such that Z1 = I, Zj ∈ sl(n,C) for j ≥ 2
(see [1], p. 15) and

[H,Zj ] = λjZj , λj ∈ N for 1 ≤ j ≤ `.

In particular λ1 = 0. Define Λ = max
1≤j≤`

(
λj

2
+ 1
)

, then 1 ≤ Λ ≤ n.

{Z1, . . . , Z`} can be extended to a basis {Z1, . . . , Z`, Z`+1, . . . , Zn2} of G
with the following properties:

For all j > `, [H,Zj ] = λjZj , λj ∈ Z, |λj | ≤ max
1≤i≤`

λi.

If M ∈ gl(n,C) is such that [H,M ] = cM for some c ∈ Z then

xαHMx−αH = xcαM, for α ∈ Q.

In particular

xαHY x−αH = x−2αY ; xαHZjx
−αH = xλjαZj .(6)

One has for α ∈ Q

σ(xαH) ≤ |α| max
1≤j≤n2

{|λj |} ≤ 2(Λ− 1)|α|.(7)

We need also the following lemmas.

Lemma 2.1 ([3]). Let a matrix A ∈ GL(n, Kq) be in one of the following
forms,

(I) I +
∞∑

j=0

Ar+j

x(r+j)/q
, 1 ≤ r < q.
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or

(II) x−r/q
∞∑

j=0

Ar+j

xj/q
, r ∈ Z;

where Ar+j ∈ G, Ar 6= 0. Let L ⊂ G be a linear subspace such that G =
L+ [G, Ar]. Then there exist sequences (Tj)j≥1 in G, (A′r+j)j≥1 in L,

T =
1∏

j=∞

(
I +

Tj

xj/q

)
= lim

J→∞

1∏
j=J

(
I +

Tj

xj/q

)
such that A′r = Ar and

T [A] = I +
∞∑

j=0

A′r+j

x(r+j)/q
, in the case (I),

or

T [A] = x−r/q
∞∑

j=0

A′r+j

xj/q
, in the case (II).

Moreover A′r+j only depends on Ar, Ar+1, . . . , Ar+j.

Corollary 2.1 ([3]; Splitting lemma). Let notations be as in the above lem-
ma. Let Σ be the set of eigenvalues of Ar, Pλ be the matrix of the projection
of Cn on the eigenspace corresponding to λ in Σ. Let S be the semi-simple
part of Ar. Choose L = GS. Then A′r+j commutes with Pλ for j ≥ 1;

moreover T [A] =
⊕
λ∈Σ

A′λ where

A′λ = I +
∞∑

j=0

PλA′r+j

x(r+j)/q
in the case (I),

A′λ = x−r/q
∞∑

j=0

PλA′r+j

xj/q
in the case (II).

Corollary 2.2 ([3]). Let notations be as in the above lemma. Assume that
Ar is nilpotent and (Ar,H, X) a standard triple. Let L = GX and let m ≥ 2
be an integer. There exists

T =
(

I +
Tm−1

x(m−1)/q

)
· · ·
(

I +
T1

x1/q

)
∈ GL(n, Kq)

such that

T [A] = I +
∞∑

j=0

A′r+j

x(r+j)/q
, in the case (I)

T [A] = x−r/q
∞∑

j=0

A′r+j

xj/q
, in the case (II)
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with A′r = Ar, A′r+j ∈ GX for 1 ≤ j < m. Furthermore for j ∈ N∗, A′r+j

only depends on Ar, . . . , Ar+j.

Lemma 2.2 ([3]). Let a matrix B ∈ GL(n, Kp) be in the form

B = I +
D1

x1/p
+ · · ·+ Dp−1

x(p−1)/p
+

C

x
+ RB

where the Dj ∈ gl(n,C) are diagonal matrices, C ∈ gl(n,C), ord(RB) > 1.
Then B is equivalent to a canonical matrix of the form I + D1

x1/p + · · · +
Dp−1

x(p−1)/p + C′

x for some C ′ ∈ gl(n,C).

3. Difference Systems of Level ≤ 1.

We consider at first, as in [3], difference systems of level ≤ 1, i.e., systems
(1) with matrix A in the special form (3):

A = I +
∞∑

j=0

Ar+j

x(r+j)/q
∈ GL(n, Kq)

with Ar 6= 0, 1 ≤ r < q.
We will prove, using the method of [1], that the irregular part of a canon-

ical form of difference systems of level ≤ 1 is determined by the matri-
ces Ar, Ar+1, . . . , Ar+n(q−r)−1. Similar result for formal solutions has been
proved in [2] by a different method.

Recall (cf. [3]) that a canonical form for matrices of level ≤ 1 is in the
form:

Acano = I +
D1

xr1
+ · · ·+ Dk

xrk
+

CA

x
∈ GL(n, Kp)(8)

for some p ∈ N∗ and the irregular part of this canonical form is I + D1
xr1 +

· · ·+ Dk
xrk . If A is of level 0, the irregular part in its canonical form is reduced

to I.
Since the irregular part is the first terms of a canonical form, from (5)

one needs to make normalizations by matrices with convenient lags. The
following proposition shows that, by a transformation matrix with a lag not
exceeding a certain number, a difference system of level ≤ 1 with nilpotent
leading matrix can be converted to a new one with non nilpotent leading
matrix.

Proposition 3.1. Let a matrix A = I +
∞∑

j=0

Ar+j

x(r+j)/q
∈ GL(n, Kq) with

Ar 6= 0 be of level ≤ 1, i.e., 1 ≤ r < q. Then we can find a matrix
U ∈ ◦GL(n, Kp) for some p ∈ qN∗ and 1 ≤ s ≤ p, such that:

(1) U [A] = I +
∑∞

j=0 Ãs+jx
−(s+j)/p ∈ GL(n, Kp) where either U [A] is of

level 0 in which case s = p or Ãs is not nilpotent.
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(2) σ(U) ≤ (n− 1)( s
p −

r
q ).

Proof. If Ar is not nilpotent then the proposition is true with s = r, p = q
and U = I, σ(U) = 0.

If Ar is nilpotent we prove it by downward induction on d(A), the dimen-
sion of the GL(n,C)-orbit of Ar.

Let (Y, H,X) be a standard triple with Y = Ar. We apply at first the
Corollary 2.2 (for the case (I)) with m = Λ(q − r). Recall that

T =
(

I +
TΛ(q−r)−1

x(r+Λ(q−r)−1)/q

)
· · ·
(

I +
T1

xr/q

)
and

A′ = T [A] = I +
Ar

xr/q
+

A′r+1

x(r+1)/q
+ · · ·

where A′r+j ∈ GX for 1 ≤ j < Λ(q− r). Then T ∈ ◦GL(n, Kq) and σ(T ) = 0
according to the property (ii) of Section 2.

We can write

A′r+j =
∑̀
i=1

ar+j,iZi, 1 ≤ j < Λ(q − r),

A′r+j =
n2∑
i=1

ar+j,iZi, j ≥ Λ(q − r).

Define

E =

{
j

λi
2 + 1

∣∣∣1 ≤ j < Λ(q − r), 1 ≤ i ≤ `, ar+j,i 6= 0

}
.

Let

β =
{

inf E if E 6= ∅
∞ otherwise.

Define α = min{q − r, β} and S = xαH/(2q). It is clear that β > 0, α > 0.
According to (7), σ(S) ≤ (Λ − 1)α/q ≤ (n − 1)α/q. Since tr(H) = 0,
S ∈ ◦GL(n, Kp). According to (6) we have,

S[Y ] =
(
1 + x−1

)αH/(2q)
x−α/qY,

S[Zj ] =
(
1 + x−1

)αH/(2q)
xαλj/(2q)Zj , 1 ≤ j ≤ n2.
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Therefore

A′′
def= S[A′] =

(
1 + x−1

)αH/(2q)

[
I + x−(r+α)/q

(
Y

+
∑

1≤j<Λ(q−r)
1≤i≤`

ar+j,iZi

x
1
q
[j−(

λi
2

+1)α]
+

∑
j≥Λ(q−r)
1≤i≤n2

ar+j,iZi

x
1
q
[j−(

λi
2

+1)α]

)]
.

If α = q − r then s = p = q and σ(S) ≤ (n− 1)
(

s
p −

r
q

)
. A′′ is of level 0.

If 0 < α < q − r, write α = r′/q′. Then

A′′ = S[A′] = ST [A] = I + Y ′x−r̃/q̃ + · · · ∈ GL(n,Oq̃)

where r̃ = 2(q′r + r′), q̃ = 2q′q and Y ′ = Y +
∑

(j,i)∈Ω

ar+j,iZi with

Ω =

{
(j, i)

∣∣∣1 ≤ j < Λ(q − r), 1 ≤ i ≤ `, ar+j,i 6= 0, α =
j

λi
2 + 1

}
.

Moreover Y ′ = Y + Z 6= Y with Z ∈ GX . We have σ(S) ≤ (n − 1)α
q =

(n− 1)
(

r̃
q̃ −

r
q

)
. There are two distinct cases.

(a) If Y ′ is not nilpotent (this case occurs when d(Y ) has the maximal
dimension, i.e., when Y is a principal nilpotent) then take p = q̃, s = r̃,
and

σ(S) ≤ (n− 1)
(

s

p
− r

q

)
.

Hence U = ST ∈ ◦GL(n, Kp) has the claimed properties.
(b) If Y ′ is nilpotent, then d(Y ′) > d(Y ) according to Proposition 2.2. The

induction hypothesis is applicable to A′′. One deduces the existence
of a S′ ∈ ◦GL(n, Kp) for some p ∈ q̃N∗ and 1 ≤ s ≤ p such that

σ(S′) ≤ (n−1)
(

s
p −

r̃
q̃

)
and S′[A′] has the property (1). Let U = S′ST

then U ∈ ◦GL(n, Kp) and

σ(U) ≤ σ(S′) + σ(S) ≤ (n− 1)
(

s

p
− r̃

q̃

)
+ (n− 1)

(
r̃

q̃
− r

q

)
= (n− 1)

(
s

p
− r

q

)
.

�

The next proposition proves that for a system of level ≤ 1 one can obtain
the irregular part of a canonical form with a transformation matrix whose
lag is not greater than the number (n− 1)

(
1− r

q

)
.
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Proposition 3.2. Let A be as in the above proposition. Then we can find
a matrix U ∈ ◦GL(n, Kp) for some p ∈ qN∗, such that

(1) there exists a canonical form

Acano = I +
D1

xr1
+ · · ·+ Dk

xrk
+

CA

x
∈ GL(n, Kp)

such that U [A] = Acano + RA ∈ GL(n, Kp) with ord(RA) > 1.
(2) σ(U) ≤ (n− 1)(1− r

q ).

Remark. With the convention of Definition 1.1, if k > 0 then Dj(1 ≤ j ≤
k) are nonzero diagonal matrices and for k = 0, Acano = I + CAx−1 is of
level 0.

Proof. We prove the proposition by induction on n. For n = 1 one can take
U = 1. Suppose n > 1. We assume the assertion in dimension < n.

Assume at first that Ar has at least two distinct eigenvalues. By applying
the Corollary 2.1 we obtain a matrix T =

∏1
j=∞(I + Tjx

−j/q). Take

TA =
1∏

j=n(q−r)−1

(
I +

Tj

xj/q

)
and A′ = TA[A].

Let A′′ be the matrix obtained from A′ by omitting all terms of x−j/q with
j ≥ r + n(q − r). Then A′ = A′′ + E where ord(E) ≥ (r + n(q − r))/q and
A′′ commutes with the spectral projections of Ar.

If Ar =
⊕

λ A
(r)
λ with nλ = dim

(
A

(r)
λ

)
then A′′ =

⊕
λ A′′λ. By induction

we can find matrices Uλ ∈ ◦GL(nλ,Kp) verifying the condition (1) and

σ(Uλ) ≤ (nλ − 1)
(
1− r

q

)
. We now use the property (vii) (cf. Section 2) to

conclude that if U ′ =
⊕

λ Uλ, then U ′ ∈ ◦GL(n, Kp) and

σ(U ′) ≤
∑

λ

σ(Uλ) ≤
∑

λ

(nλ − 1)
(

1− r

q

)
≤ (n− 2)

(
1− r

q

)
and U ′[A′′] verifies the condition (1). We now check that ord(U ′[E]) > 1 by
using (5):

ord(U ′[E]) ≥ r + n(q − r)
q

− (n− 2)(q − r)
q

> 1.

Then U = U ′TA has the claimed properties.
We now consider the case where Ar has a unique eigenvalue, Ar = ωI +Y

where Y is nilpotent. We proceed by induction on the number k = k(A)
in the canonical form. If this number is 0 then by the above proposition
one can find a matrix T ∈ ◦GL(n, Kp) for some p ∈ qN∗ such that σ(T ) ≤
(n− 1)

(
1− r

q

)
and T [A] is of level 0.
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We may thus suppose that k ≥ 1. If ω 6= 0 then let A = (1 + ωx−r/q)Ã.
We have k(Ã) < k(A). Therefore the induction hypothesis is applicable to
Ã and proves the proposition for A.

Suppose now that ω = 0 so that Ar = Y is a nonzero nilpotent matrix. Let
U1 be chosen to satisfy the conditions of Proposition 3.1 for some p∗ ∈ qN∗.
Then

A∗ = U1[A] = I + A∗sx
−s/p∗ + · · ·

and σ(U1) ≤ (n − 1)
(

s
p∗ −

r
q

)
. Either A∗ is of level 0 in which case s = p

the proof is thus finished or A∗s is not nilpotent which we consider in the
following.

If A∗s has at least two distinct eigenvalues, the earlier result allows us
to find a matrix U∗ ∈ ◦GL(n, Kp) for some p ∈ p∗N∗ such that σ(U∗) ≤
(n − 1)

(
1− s

p∗

)
and U∗[A∗] has the property (1). If U = U∗U1, then one

has immediately the second assertion:

σ(U) ≤ (n− 1)
(

1− s

p∗

)
+ (n− 1)

(
s

p∗
− r

q

)
= (n− 1)

(
1− r

q

)
.

If A∗s has a single eigenvalue ω∗ (which should be nonzero), one can write

A∗ = (1 + ω∗x−s/p∗)A∗∗

where k(A∗∗) < k(A∗) = k(A). The induction hypothesis applied to the
matrix

A∗∗ = I + A∗∗s′ x
−s′/p∗ + · · · (with s′ ≥ s)

gives a matrix U∗∗ having properties (1) and

σ(U∗∗) ≤ (n− 1)
(

1− s′

p∗

)
≤ (n− 1)

(
1− s

p∗

)
.

As before we take U = U∗∗U1 and note that σ(U) ≤ (n − 1)
(
1− r

q

)
. The

proof is thus complete. �

Let A ∈ GL(n, Kq) be a matrix of level ≤ 1 as in the above propositions.
We denote by Ω(A,m) the set of matrices B ∈ GL(n, Kq) of the same form
as A with Br+j = Ar+j for all 0 ≤ j < m, i.e., B ≡ A(mod x−(r+m)/q).

Corollary 3.1. Let notations be as in the proposition, m = n(q − r). If
B ∈ Ω(A,m) then

U [B] = I +
D1

xr1
+ · · ·+ Dk

xrk
+

CB

x
+ RB ∈ GL(n, Kp)

where ord(RB) > 1. If further B ≡ A(mod x−(r+m′)/q) for some m′ > m
then CB = CA.
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Proof. σ(U) ≤ (n − 1)
(
1− r

q

)
. From B ≡ A(mod x−(r+m)/q) and (5) we

have

U [A] ≡ U [B]
(

mod x
−

h
r+m

q
−(n−1)

“
1− r

q

”i)
and r+m

q − (n− 1)
(
1− r

q

)
= 1, proving the first assertion.

If B ≡ A

(
mod x

− r+m′
q

)
then U [A] ≡ U [B]

(
mod x

−[1+m′−m
q

]
)

, proving

the second statement. �

According to Lemma 2.2, the canonical form of Acano + RA is I + D1
xr1 +

· · ·+ Dk
xrk + C′

x where only the matrix C ′ may be different from CA of Acano.
The following theorem is now immediate.

Theorem 3.1. Let A be a matrix as in the above propositions. Let m =
n(q− r). If B = I + Brx

−r/q + · · · and Ar+j = Br+j for 0 ≤ j < m, then A
and B are either both of level 0 or both not, and have canonical forms with
the same irregular part.

As a consequence of this theorem, for systems of level ≤ 1, the irregular
part in a fundamental matrix of formal solutions depends only on the matrix
coefficients Ar+j , 0 ≤ j < n(q − r) (see also [2]).

4. General Difference Systems.

We now consider general difference systems of the form (1). We study at first
as in the preceding section the nilpotent case, i.e., the case where the leading
matrix Ar is nilpotent. We prove that for N ≥ 2ν + nq the two difference
systems (1) and (4) have the same irregular part in their canonical forms.

Definition 4.1. Let notations be as in Definition 1.1. We shall say that a

matrix B′ is in quasi-canonical form if B′ =
1

xr/p

s⊕
i=1

B′
i

x`i
with

B′
i =

ti⊕
α=1

λ(i)
α

(
B(i)

α +
C

(i)
α

x
+ R(i)

α

)

where ord(R(i)
α ) > 1.

Remark. A quasi-canonical form of a matrix of level ≤ 1 is simply a
matrix of the form Acano +RA where Acano is a canonical matrix of the form
(8) and ord(RA) > 1. It is clear that the matrices B and B′ have the same
irregular part according to Lemma 2.2.

At first we prove in the following proposition that one can always reach
a non nilpotent leading matrix by a transformation with a convenient lag.



STABILITY OF CANONICAL FORMS 251

Proposition 4.1. Let A =
∞∑

j=0

Ar+j

x(r+j)/q
∈ GL(n, Kq) with r ∈ Z, Ar 6= 0.

Let ν be the integer such that ν
q = ord(detxr/qA). Then we can find a matrix

U ∈ ◦GL(n, Kp) for some p ∈ qN∗ so that

(1) Ã = U [A] = Ãsx
−s/p + · · · ∈ GL(n, Kp), where Ãs is not nilpotent.

(2) σ(U) ≤
(
1− 1

n

) (
ν
q −

ν̃
p

)
where ν̃

p = ord(detxs/pÃ).

Proof. If Ar is not nilpotent then s = r, p = q and U = I, σ(U) = 0.
If Ar is nilpotent we prove it by induction on d(Ar), the dimension of

the GL(n,C)-orbit of Ar. Let Y = Ar and (Y, H,X) a standard triple. We
apply at first Corollary 2.2 (for the case II) with m = νΛ + 1. We have

T =
1∏

j=νΛ

(
I +

Tj

xj/q

)
∈ ◦GL(n, Kq)

and σ(T ) = 0 according to the property (ii) of the Section 2. Let A′ = T [A].
Then

A′ = x−r/q

(
Y +

A′r+1

x1/q
+ · · ·+

A′r+νΛ

x(νΛ)/q
+ · · ·

)
with A′r+j ∈ GX for j = 1, . . . , νΛ. Furthermore for j ∈ N∗, A′r+j only
depends on Ar, . . . , Ar+j .

Write

A′r+j =
∑̀
i=1

ar+j,iZi, 1 ≤ j ≤ νΛ,

A′r+j =
n2∑
i=1

ar+j,iZi, j > νΛ.

Define

E =

{
j

λi
2 + 1

∣∣∣∣1 ≤ j ≤ νΛ, 1 ≤ i ≤ `, ar+j,i 6= 0

}
.

We claim that E 6= ∅ and inf E ≤ ν since det(
∑ν

j=0 Ar+jx
−j/q) 6= 0. Let

β = inf E > 0 and S = xβH/(2q). By (7), σ(S) ≤ (Λ− 1)β/q. According to
(6),

S[Y ] = (1 + x−1)βH/(2q)x−β/qY,

S[Zi] = (1 + x−1)βH/(2q)xβλi/(2q)Zi, 1 ≤ i ≤ n2.
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Hence

S[A′] = (1 + x−1)βH/(2q)x−(r+β)/q

Y +
∑

1≤j≤νΛ
1≤i≤`

ar+j,iZi

x
1
q

h
j−

“
λi
2

+1
”
β

i

+
∑
j>νΛ

1≤i≤n2

ar+j,iZi

x
1
q

h
j−

“
λi
2

+1
”
β

i
 .

Write β = r′

q′ with r′, q′ ∈ N∗. Recall that 0 < β ≤ ν. For all j > νΛ and

1 ≤ i ≤ n2, j −
(

λi
2 + 1

)
β > 0. Then S[A′] ∈ GL(n,O2qq′). More precisely,

with r′′ = 2(q′r + r′), q′′ = 2q′q,

A′′ = S[A′] = x−r′′/q′′
[
Y ′ + O(x−1/q′′)

]
where

Y ′ = Y +
∑

(j,i)∈Ω

ar+j,iZi 6= Y.

The summation is over the (nonempty) set

Ω =

{
(j, i)

∣∣∣1 ≤ j ≤ νΛ, 1 ≤ i ≤ `, ar+j,i 6= 0, β =
j

λi
2 + 1

}
.

Let ν′′

q′′ = ord(detxr′′/q′′A′′). Since H is semi-simple and tr(H) = 0 then
S ∈ ◦GL(n, Kp) and we have also

σ(S) ≤ (Λ− 1)
β

q
≤ (n− 1)

(
r′′

q′′
− r

q

)
=
(

1− 1
n

)(
ν

q
− ν ′′

q′′

)
.

We distinguish two cases.
(a) Y ′ is not nilpotent (we have this case if d(Y ) is of the maximal di-

mension, i.e., if Y is a principal nilpotent). We take s = r′′, p = q′′,
U = ST . Then U ∈ ◦GL(n, Kp). Ã = U [A] = A′′ verifies the assertion
(1). With ν̃ = ν ′′ the second assertion follows from

σ(U) ≤ σ(S) ≤
(

1− 1
n

)(
ν

q
− ν̃

p

)
.

(b) Y ′ is nilpotent. We have d(Y ′) > d(Y ) by the Proposition 2.2. The
induction hypothesis is applicable to A′′. One deduces the existence of
U1 ∈ ◦GL(n, Kp) for some p ∈ q′′N∗ such that σ(U1)≤

(
1− 1

n

) (
ν′′

q′′ −
ν̃
p

)
and

Ã = U1[A′′] = Ỹ x−s/p + · · · ∈ GL(n, Kp)
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with Ỹ non nilpotent. Let U = U1ST . Then U ∈ ◦GL(n, Kp). U [A]

has the property (1) and σ(U) ≤ σ(U1) + σ(S) ≤
(
1− 1

n

) (
ν
q −

ν̃
p

)
.

�

The next proposition shows that one can obtain the irregular part of a
canonical form by a transformation matrix with a lag not exceeding a certain
number that depends only on n, q and ν.

Proposition 4.2. Let A and ν be as in the above proposition and m an
integer ≥ ν. We can find a matrix T ∈ ◦GL(n, Kp) for some p ∈ qN∗ such
that

(1) T [A] = Aq−cano + RA where Aq−cano is a quasi-canonical matrix as in
the Definition 4.1 and ord(RA) > r+m

q + 1.
(2) σ(T ) ≤ n− 1 + ν

q .

Proof. If r 6= 0 one considers xr/qA in the place of A. Then we can assume
that r = 0. We prove the theorem by induction on n. It is trivial for n = 1.
Suppose n > 1. We assume the assertion in dimension < n.

Assume that the leading matrix A0 has at least two distinct eigenval-
ues. Then according to Corollary 2.1, there exists T̃ =

∏1
j=∞

(
I + Tj

xj/q

)
∈

◦GL(n,Oq) such that

T̃ [A] =
∞∑

j=0

A′jx
−j/q

where A′0 = A0 and A′j commutes with A0 for all j ≥ 1. Take N = max{νΛ+
1,m + ν + nq} and

TA =
1∏

j=N−1

(
I +

Tj

xj/q

)
∈ ◦GL(n, Kq).

Then A′ = TA[A] = A′′ + R where A′′ =
∑N−1

j=0 A′jx
−j/q and ord(R) ≥ N/q.

A′′ commutes with the spectral projections of A0.
If A0 =

⊕
λ A

(0)
λ with nλ = dim

(
A

(0)
λ

)
then A′′ =

⊕
λ A′′λ. Let

νλ

q
= ord(detxrλ/qA′′λ) ≥ 0

with rλ/q = ord(A′′λ) ≥ 0. We can find matrices Uλ ∈ ◦GL(nλ,Kp) such that
Uλ[A′′λ] = A

(λ)
q−cano + Rλ with A

(λ)
q−cano in quasi-canonical form of dimension

nλ, ord(Rλ) > rλ+m
q + 1 ≥ m

q + 1 and

σ(Uλ) ≤ nλ − 1 +
νλ

q
.
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Since ν ≥
∑

λ νλ, n =
∑

λ nλ, we now use the property (vii) (cf. Section 2)
to conclude that if U ′ =

⊕
λ Uλ, then U ′ ∈ ◦GL(n, Kp) and

σ(U ′) ≤
∑

λ

σ(Uλ) ≤ n− 2 +
ν

q
.

And U ′[A′′] has the property (1). We now check that

ord(U ′[R]) ≥ N

q
− (n− 2)− ν

q
>

m

q
+ 1.

Then T = U ′TA has the claimed properties.
We now consider the case where A0 has a unique eigenvalue, A0 = ωI +Y

with Y nilpotent. Then either ω = 0 or not.

Case 1. ω = 0, then A0 is nilpotent. According to Proposition 4.1, one can
find a matrix U ∈ ◦GL(n, Kp̃), p̃ ∈ qN∗ with

σ(U) ≤
(

1− 1
n

)(
ν

q
− ν̃

p̃

)
≤ ν

q
− ν̃

p̃

such that
Ã = U [A] = Ãsx

−s/p̃ + · · · ∈ GL(n, Kp̃)

where Ãs is not nilpotent and ν̃
p̃ = ord(detxs/p̃Ã). Two cases may occur:

(a) Ãs has at least two distinct eigenvalues.
According to the above result one can find a matrix T ′ ∈ ◦GL(n, Kp) with

p ∈ p̃N such that σ(T ′) ≤ n − 1 + ν̃
p̃ and T ′[Ã] is in the desired form (1).

Let T = T ′U then T ∈ ◦GL(n, Kp) and

σ(T ) ≤ σ(T ′) + σ(U) ≤ n− 1 +
ν

q
.

(b) Ãs = wI + Y has only one nonzero eigenvalue w so that ν̃ = 0 and Y
is nilpotent.

• If Y = 0 then Ã = x−s/p̃wA′ where A′ = I +
∑∞

j=0 A′r′+jx
−(r′+j)/p′ ∈

GL(n,Op′) is a matrix of level ≤ 1 with r′ ≥ 2 and p′ = 2p̃.
• If Y 6= 0 then let (Y, H,X) be a standard triple. Let p′ = 2np̃ and

S = xH/(2np̃). Then S ∈ ◦GL(n, Kp′) and σ(S) ≤ n−1
np̃ . Write Ã =

x−s/p̃(wI + B) with B = Y +
∑∞

j=1 Ãs+jx
−j/p̃.

Write Ãs+j =
∑n2

k=1 ãs+j,kZk. According to (6), one has

S[wI] = (1 + x−1)H/(2np̃)wI, S[Y ] = (1 + x−1)H/(2np̃)x−1/(np̃)Y

and

S[Zk] = (1 + x−1)H/(2np̃)xλk/(2np̃)Zk for 1 ≤ k ≤ n2.
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Hence

S[B] = (1 + x−1)H/(2np̃)x−1/np̃

Y +
∑
j≥1

n2∑
k=1

ãs+j,kZk

x
1
p̃

h
j−

“
λj
2

+1
”

1
n

i
 .

For all j ≥ 1, since λj

2 +1 ≤ n, j−
(

λj

2 + 1
)

1
n ≥ 0. Hence ord(S[B]) ≥

1
np̃ = 2

p′ . One has therefore S[Ã] = x−s/p̃wA′ where

A′ = I +
∞∑

j=0

A′r′+j

x(r′+j)/p′
∈ GL(n,Op′) with r′ ≥ 2

is a matrix of level ≤ 1.
If r′ ≥ p′ then the matrix A′ is of level 0. We are through.
If r′ < p′ we apply the Proposition 3.2 to the matrix A′ to obtain an integer

p ∈ p′N∗ and a matrix U ′ ∈ ◦GL(n, Kp) such that σ(U ′) ≤ (n− 1)
(
1− r′

p′

)
and

U ′[A′] = A′cano + RA′ = A′q−cano ∈ GL(n, Kp)
where A′cano is a canonical matrix of the form (8) of level ≤ 1 and ord(RA′) >
1. Let T = U ′SU then we have the assertion (1) and

σ(T ) ≤ σ(U ′) + σ(S) + σ(U)

≤ (n− 1)
(

1− r′

p′
+

2
p′

)
+

ν

q
≤ n− 1 +

ν

q
.

Case 2. If ω 6= 0 then ν = 0 and the treatment is the same as in the case
(b). �

Theorem 4.1. Let notations be as above. Take m = ν and N = 2ν + nq.
Let B be a matrix in the same form as A such that Br+j = Ar+j for all
0 ≤ j < N . Let T be as in the above proposition. Then T [B] = Bq−cano+RB

where Bq−cano is a quasi-canonical matrix and ord(RB) ≥ r+ν
q +1. The two

matrices A and B have the same irregular part in their canonical forms.

Proof. Since ν
q =

∑s
i=1 n(i)`i and `i ≥ 0, for all i ∈ {1, . . . , s}, one has

`i ≤ ν
q , where n(i) and `i are as in Aq−cano (see Definition 4.1 and Definition

1.1).
From σ(T ) ≤ n− 1 + ν

q , B ≡ A(mod x−(r+N)/q) and (5) we obtain

T [A] ≡ T [B]
(

mod x
−

h
r+N

q
−(n−1)− ν

q

i)
.

Since r+N
q −(n−1)− ν

q = r+ν
q +1 and T [A] = Aq−cano +RA with ord(RA) >

r+ν
q + 1 the first assertion follows since `i ≤ ν

q for all 1 ≤ i ≤ s. The second
one follows from Lemma 2.2. �



256 GUOTING CHEN AND ABDELMAJID FAHIM

References

[1] D.G. Babbitt and V.S. Varadarajan, Formal reduction theory of meromorphic differ-
ential equations: A group theoretic view, Pacific J. Math., 109 (1983), 1-80.

[2] G. Chen, Forme normale d’Arnold et réduction formelle de systèmes d’équations
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