
University of Toronto 
Department of Economics 

 

May 17, 2017

By Rahul Deb, Yuichi Kitamura, John Quah and Joerg Stoye

Revealed Price Preference: Theory and Stochastic Testing

Working Paper 582



REVEALED PRICE PREFERENCE: THEORY AND STOCHASTIC TESTING

RAHUL DEB, YUICHI KITAMURA, JOHN K.-H. QUAH, AND JÖRG STOYEG
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ABSTRACT. We develop a model of demand where consumers trade-off the utility of consumption
against the disutility of expenditure. This model is appropriate whenever a consumer’s demand
over a strict subset of all available goods is being analyzed. Data sets consistent with this model
are characterized by the absence of revealed preference cycles over prices. The model is readily
generalized to the random utility setting, for which we develop nonparametric statistical tests. Our
application on national household consumption data provides support for the model.

1. INTRODUCTION

Imagine a consumer who is asked what quantity she will purchase of L goods at given prices; in
formal terms, she is asked to choose a bundle xt ∈ RL

+ at the price vector pt ∈ RL
++. To fix ideas,

we could think of these goods as grocery items and xt as the monthly purchase of groceries if pt

are the prevailing prices. With T such observations, the data set collected is D = {(pt, xt)}T
t=1.

What patterns of choices in D should we expect to observe?

There are at least two ways to approach this question. If, at observations t and t′, we find that
pt′ · xt < pt′ · xt′ , then

the consumer has revealed that she strictly prefers the bundle xt′ to the bundle xt.

If this were not true, then either xt or a nearby bundle would be strictly preferred to xt′ and cost
less, which means the choice of xt′ is not optimal. The standard revealed preference theory of
consumer demand is built on requiring that this preference over grocery bundles, as revealed by a
data set such as D, is internally consistent. In particular, Afriat (1967)’s Theorem says that so long
as the consumer’s revealed preferences over bundles do not contain cycles (a property known as
the generalized axiom of revealed preference or GARP, for short) then there is a strictly increasing utility
function U : RL

+ → R such that xs maximizes U(x) in the budget set {x ∈ RL
+ : ps · x ≤ ps · xs},
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for every observation s = 1, 2, ..., T.1 Notice that this theory implicitly assumes that it makes sense
to speak of the consumer’s preference over groceries, independently of her consumption of other
goods, currently or in the future. In formal terms, this requires that the consumer has a preference
over grocery bundles that is weakly separable from her consumption of all other goods.2

But, presented with the same data set D = {(pt, xt)}T
t=1, it would be entirely natural for us (as

observers) to think along different lines; instead of inferring the consumer’s preference over gro-
cery bundles from the observations, we could draw conclusions about the consumer’s preference
over prices. If at observations t and t′, we find that pt′ · xt < pt · xt, then

the consumer has revealed that she strictly prefers the price pt′ to the price pt.

This is because, at the price vector pt′ the consumer can, if she wishes, buy the bundle bought at
the price pt and would still have money left for the purchase of other, non-grocery, consumption
goods. (Put another way, if pt and pt′ are the prices at two grocery stores and the consumer could
choose to go to one store or the other, then the observations in D will lead us to conclude that
she will opt for the store where the prices are pt′ .) This concept of revealed preference recognizes
that there are alternative uses to money besides groceries and that expenditure on groceries has an
opportunity cost. Is it possible to build a revealed preference theory of consumer demand based
on this alternate requirement that the consumer’s preference over grocery prices, as revealed by
the data set D, is internally consistent; if so, what would such a theory look like? The objective
of this paper is to answer this question and to demonstrate the appealing features of a theory of
revealed price preference.

1.1. The expenditure-augmented utility model

We show that the absence of revealed preference cycles over prices — a property we call the gen-
eralized axiom of revealed price preference or GAPP, for short — has a very natural characterization. It
is both necessary and sufficient for the existence of a strictly increasing function U : RL

+×R− → R

such that xs ∈ arg maxx∈RL
+

U(x,−ps · x) for all s = 1, 2, ..., T. The function U should be interpreted
as an expenditure-augmented utility function, where U(x,−e) is the consumer’s utility when she ac-
quires x at the cost of e. Unlike the standard consumer optimization problem, notice that the con-
sumer does not have a budget constraint; instead, she is deterred from choosing arbitrarily large
bundles by the increasing expenditure it incurs, which reduces her utility. This is a reduced form
utility function which implicitly holds fixed all other variables that may be relevant to the con-
sumer’s preference over (x,−e); these variables could include the consumer’s wealth, the prices
of other goods which the consumer considers relevant to her consumption decision on these L
goods, etc.

1The term GARP is from Varian (1982), which also contains a proof of the result. An extension of Afriat’s Theorem to
nonlinear budget sets can also be found in Forges and Minelli (2009).
2The consumer’s overall utility function will have the form V(U(x), z), where U is the utility function defined over
grocery bundles x, z is the bundle of all other goods consumed by the consumer and V is the overall utility function.
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Besides being behaviorally compelling in its own right, the expenditure-augmented utility model
has two distinctive features that makes it a worthwhile alternative to the standard model. (i) No-
tice that the marginal rate of substitution between two goods at a given bundle x ∈ RL

+ will typ-
ically depend on the expenditure incurred in acquiring that bundle; it follows that the marginal
rate of substitution can vary with unobserved goods (whose consumption levels could change
as e changes). In other words, our model does not require the assumption of weak separability
and so it could be appropriate is situations where that assumption is problematic. (ii) Essentially
because the standard model only tries to model the agent’s preference among bundles of the L
goods, the only price information it requires are the prices of those goods relative to each other: it
does not require the researcher to have any information on the prices of any other good that the
consumer may also purchase. This modest informational requirement is an important advantage
but it also means that the model cannot tell us anything about the consumer’s overall welfare when
the prices for the L goods change. On the other hand our model recognizes that expenditure levels
are endogenous (i.e., chosen by the consumer at the observed prices) and exploits this to compare
the consumer’s welfare at different prices for the L goods; in fact, as we have pointed out, the
model is characterized by this feature.

In the theoretical literature in public economics and industrial organization, it is common to
assume individuals have quasilinear utility functions. In addition to tractability, this assump-
tion ensures that the difference in consumer surplus due to price changes is an exact measure of
the change in welfare (as it coincides with the compensating and equivalent variations) because
quasilinearity ensures that there are no income effects.3 This is a special case of our model, with
U(x, e) = H(x)− e for some real-valued and increasing function H. Our approach allows greater
flexibility in the form of the utility function U and, in particular, does not require a constant mar-
ginal disutility of expenditure, which imposes strong and sometimes implausible restrictions on
demand.

In the empirical literature, welfare changes are often calculated by explicitly introducing a nu-
meraire good over and above the L goods being examined and then imputing demand for this
numeraire good by using data on (for example) annual income; one could then calculate the im-
pact on welfare following prices changes on these L goods at a given income and a given price for
the numeraire good.4 Obviously, compared with this approach, ours is useful when information
on income is not available (which is a feature of many commonly used data sets). But even when
this information is available, by not using it, we are avoiding taking a stand on the precise budget
from which the consumer draws her expenditure on these L goods; for example, the consumer
could mentally set aside some expenditure for a group of commodities containing these L goods
and this ‘mental budget’ may differ from the annual income (see Thaler (1999)). That said, our
approach does rely on the assumption that consumer’s utility function U is stable over the period

3See, for instance, Varian (1985), Schwartz (1990) and the papers that follow.
4For recent work using this approach, see Blundell, Horowitz, and Parey (2012) and Hausman and Newey (2016). In
both these papers, the empirical application involves the case where L = 1 (specifically, the good examined is gasoline,
so it is a two-good demand system when the numeraire is included); when L = 1, our approach imposes no meaningful
restrictions on data so it does not readily provide a viable alternative way to study the specific empirical issues in those
papers.
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where her demand is observed; presumably large changes to the consumer’s wealth (both her
current resources and her future prospects) will have an impact on U, so in effect we are assuming
that these fluctuations are modest.

1.2. Testing the expenditure-augmented utility model

After formulating the expenditure-augmented utility model and exploring its theoretical fea-
tures, the second part of our paper is devoted to testing it empirically. We could in principle test
this model on panel data sets of household or individual demand, for example, from information
on purchasing behavior collected from scanner data. Tests and applications of the standard model
using Afriat’s Theorem or its extensions are very common,5 and our model could be tested on
this data in the same fashion; GAPP is just as straightforward to test as GARP on a panel data
set.6 Rather than doing this, we develop a random utility version of our model and implement an
econometric test of this version instead. There are at least three reasons why it is useful to develop
such a model. (i) The random utility model is more general in that it allows for individual prefer-
ences in the population to change over time, provided the population distribution of preferences
stays the same; this weaker assumption may be appropriate for data sets that span longer time
horizons. (ii) The random utility version can be applied to repeated cross sectional data and does
not require panel data sets. (iii) Perhaps most importantly, nonparametric statistical procedures
could be naturally introduced to test the random utility model and so we can go beyond the binary
pass-fail tests of the nonstochastic expenditure augmented-utility model.

McFadden and Richter (1991) have formulated a random utility version of the standard model
that could be used to test data collected from repeated cross sections. They assume that the econo-
metrician observes the distribution of demand choices on each of a finite number of budget sets
and characterize the observable content of this model, under the assumption that the distribution
of preferences is stable across observations. Their key observation is that, notwithstanding the
potentially infinite number of possible preference types generating the observed demand distri-
butions, it is possible to partition this infinite set to a finite number of equivalence classes with
the members of each class generating demand conforming to a particular pattern.7 This in turn
guarantees that the observations are rationalizable by a random version of the standard model if
and only if there is a solution to a linear program constructed from the data.

Unfortunately, the process of actually applying the test devised by McFadden and Richter is in
fact rather complicated, simply because observational data does not typically come in the form
they have assumed. Indeed a population of consumers will have different expenditure levels at
the same prices and, what is worse, these expenditure levels are chosen by the consumers them-
selves, so one simply does not directly observe the distribution of demand when all consumers
are subjected to the same budget set. Recently, Kitamura and Stoye (2013) have implemented a
test based on the McFadden-Richter model but they could only do so by first estimating, at each

5For a recent survey, see Crawford and De Rock (2014).
6It is also common to test the standard model in experimental settings. Note that, our test is not appropriate on typical
experimental data where the budget is provided exogenously (and is not endogenous as in our model) as part of the
experiment.
7The number of classes is bounded above by a formula that depends on the number of distinct budget sets.
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observed price vector, the distribution of demand at a common expenditure level (distinct from
those expenditure levels actually observed). Nonparametric estimation of this type is not impos-
sible, but it does require the use of instrumental variables with all its attendant assumptions.

We devise a test of the random utility version of our model and show that it is both easier to
implement and requires no additional data (such as an instrumental variable) in contrast to the
test of the McFadden-Richter model. We assume that the econometrician observes the distribution
of demand at a finite set of price vectors. At each price vector, expenditure levels need not be
common across consumers but can vary across consumers and across different price vectors, so
this corresponds almost exactly to the characteristics of observational data on demand. We show
that such a data set can be generated by a stable distribution of expenditure-augmented utility
functions if and only if there is a solution to a family of linear inequalities constructed from the
data. When a solution exists, its solution gives the proportion of consumers belonging to each of a
finite number of utility classes. Through these solutions, we also obtain upper and lower bounds
on the proportion of consumers who are revealed better off, or worse off, at one price vector
compared to another. In short, not only can we test the stochastic version of the expenditure-
augmented utility model, the test also furnishes useful information on the welfare impact of price
changes on the population of consumers.

1.3. Organization of the paper

The remainder of this paper is structured as follows. Section 2 lays our the deterministic model
and its revealed preference characterization, and Section 3 generalizes it to our analog of a Ran-
dom Utility Model. Section 4 lays out the novel econometric theory needed to test this, Section 5
illustrates with an empirical application, and Section 6 concludes.

2. THE DETERMINISTIC MODEL

The primitive in the analysis in this section is a data set of a single consumer’s purchasing
behavior collected by an econometrician. The econometrician observes the consumer’s purchasing
behavior over L goods and the prices at which those goods were chosen. In formal terms, the
bundle is in RL

+ and the prices are in RL
++ and so an observation t can be represented as (pt, xt) ∈

RL
++ ×RL

+. The data set collected by the econometrician is D := {(pt, xt)}T
t=1. We will slightly

abuse notation and use T both to refer to the number of observations, which we assume is finite,
and the set {1, . . . , T}; the meaning will be clear from the context. Similarly, L could denote both
the number, and the set, of commodities.

We shall begin with a short description of Afriat’s Theorem. This provides the background to
our model (especially for readers unfamiliar with that result) and, additionally, we employ it to
prove some of our results.
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2.1. Afriat’s Theorem

Given a data set D := {(pt, xt)}T
t=1, a locally nonsatiated8 utility function Ũ : RL

+ → R is said
to rationalize D if

xt ∈ argmax
{x∈RL

+ : ptx≤ptxt}
Ũ(x) for all t ∈ T. (1)

This is the standard notion of rationalization and the one addressed by Afriat’s Theorem. It re-
quires that there exists a utility function such that each observed bundle xt maximizes utility in
the budget set given by the observed prices pt and expenditure ptxt.

A basic concept used in Afriat’s Theorem is that of revealed preference. This is captured by two
binary relations, �x and �x, defined on the chosen bundles observed in D, that is, the set X :=
{xt}t∈T. These revealed preference relations are defined as follows:

xt′ �x (�x)xt if xt′ pt′ ≥ (>)xt pt′ .

We say that the bundle xt′ is directly revealed preferred to xt if xt′ �x xt, that is, whenever the bundle
xt is cheaper at prices pt′ than the bundle xt. If xt is strictly cheaper, so xt′ �x xt, we say that xt′ is
directly revealed strictly preferred to xt. This terminology is, of course, very intuitive. If the agent is
maximizing some locally nonsatiated utility function Ũ, then if xt′ �x xt (xt′ �x xt), it must imply
that Ũ(xt′) ≥ (>)Ũ(xt).

We denote the transitive closure of �x by �∗x, that is, for xt′ and xt in X , we have xt′ �∗x xt if
there are t1, t2,...,tN in T such that xt′ �x xt1 , xt1 �x xt2 , . . . , xtN−1 �x xtN , and xtN �x xt′ ; in this
case, we say that xt′ is revealed preferred to xt. If anywhere along this sequence, it is possible to
replace �x with �x then we say that xt′ is revealed strictly preferred to xt and denote that relation by
xt′ �∗x xt. Once again, this terminology is completely natural since if D is rationalizable by some
locally nonsatiated utility function Ũ, then xt′ �∗x (�∗x)xt implies that Ũ(xt′) ≥ (>)Ũ(xt).

Definition 2.1. A data set D = {(pt, xt)}T
t=1 satisfies the Generalized Axiom of Revealed Prefer-

ence or GARP if there do not exist two observations t, t′ ∈ T such that xt′ �∗x xt and xt �∗x xt′ .

Afriat showed that this condition is necessary and sufficient for rationalization.

Afriat’s Theorem (Afriat (1967)). Given a data set D = {(pt, xt)}T
t=1, the following are equivalent:

(1) D can be rationalized by a locally nonsatiated utility function
(2) D satisfies GARP.
(3) D can be rationalized by a strictly increasing, continuous, and concave utility function.

REMARK 1. The proof that the rationalizability of D implies GARP is straightforward to show (it
essentially follows from the discussion preceding the statement of the theorem), so the heart of the
theorem lies in showing that GARP implies that D can be rationalized. The standard proof (for
instance, see Fostel, Scarf, and Todd (2004)) works by showing that a consequence of GARP is that
there exist numbers φt and λt > 0 (for all t ∈ T) that solve the inequalities

φt′ ≤ φt + λt pt · (xt′ − xt) for all t′ 6= t. (2)

8This means that at any bundle x and open neighborhood of x, there is a bundle y in the neighborhood with strictly
higher utility.
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It is then straightforward to show that

Ũ(x) = min
t∈T

{
φt + λt pt · (x− xt)

}
(3)

rationalizes D, with the utility of the observed consumption bundles satisfying Ũ(xt) = φt. The
function Ũ is the lower envelope of a finite number of strictly increasing affine functions, and so it
is strictly increasing, continuous, and concave. A remarkable feature of this theorem is that while
GARP follows simply from local nonsatiation of the utility function, it is sufficient to guarantee
that D is rationalized by a utility function with significantly stronger properties.

REMARK 2. To be precise, GARP guarantees that there is preference% (in other words, a complete,
reflexive, and transitive binary relation) on X that extends the (potentially incomplete) revealed
preference relations �∗x and �∗x in the following sense: if xt′ �∗x xt, then xt′ % xt and if xt′ �∗x
xt then xt′ � xt. One could then proceed to show (and this is less obvious) that, for any such
preference%, the inequalities (2) admit a solution with the property that φt′ ≥ (>)φt if xt′ % (�)xt

(see Quah (2014)). Hence, for any preference % that extends the revealed preference relations,
there is in turn a utility function Ũ that rationalizes D and extends % (from X to RL

+) in the
sense that Ũ(xt′) ≥ (>)Ũ(xt) if xt′ % (�)xt. This has implications on the inferences one could
draw from the data. If xt′ 6%∗x xt then it is always possible to find a preference extending the
revealed preference relations such that xt � xt′ . Similarly, if xt′ �∗x xt but xt′ 6�∗x xt then one
could find a preference extending the revealed preference relations such that xt′ ∼ xt.9 Therefore,
xt′ �∗x (�∗x)xt if and only if every locally nonsatiated utility function rationalizing D has the
property that Ũ(xt′) ≥ (>)Ũ(xt).

REMARK 3. A feature of Afriat’s Theorem that is less often remarked upon is that in fact Ũ, as
given by (3), is well-defined, strictly increasing, continuous, and concave on the domain RL, rather
than just the positive orthant RL

+. Furthermore,

xt ∈ argmax
{x∈RL : ptx≤ptxt}

Ũ(x) for all t ∈ T. (4)

In other words, xt is optimal even if Ũ is extended beyond the positive orthant and x can be chosen
from the larger domain. (Compare (4) with (1).) This curiosity will turn out to be rather convenient
when we apply Afriat’s Theorem in our proofs.

2.2. Consistent welfare comparisons across prices

Typically, the L goods whose demand is being monitored by the econometrician constitutes no
more than a part of the purchasing decisions made by the consumer. The consumer’s true budget
(especially when one takes into account the possibility of borrowing and saving) is never observed
and the expenditure which she devotes to the L goods is a decision made by the consumer and
dependent on prices (of the L goods and possibly on the prices of other goods as well). The con-
sumer’s choice over the L goods inevitably affects what she could afford on, and therefore her
consumption of, other goods not observed by the econometrician; given this, the rationalization
criterion (1) used in Afriat’s Theorem will only make sense under an additional assumption of

9We use xt′ ∼ xt to mean that xt′ % xt and xt % xt′ .
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weak separability: the consumer has a sub-utility function U defined over the L goods and the
utility function of the consumer, defined over all goods, takes the form H(U(x), y), where x is
the bundle of L goods observed by the econometrician and y is the bundle of unobserved goods.
Assuming that the consumer chooses (x, y) to maximize G(x, y) = H(U(x), y), subject to a bud-
get constraint px + qy ≤ M (where M is her wealth and p and q are the prices of the observed
and unobserved goods respectively), then, at the prices pt, the consumer’s choice xt will obey (1)
provided H is strictly increasing in either the first or second argument. This provides the theo-
retical motivation to test for the existence of a sub-utility function Ũ that rationalizes a data set
D = {(pt, xt)}T

t=1. Notice that once the weak separability assumption is in place, the background
requirements of Afriat’s test are very modest in the sense that it is possible for prices of the unob-
served goods and the unobserved total wealth to change arbitrarily across observations, without
affecting the validity of the test. This is a major advantage in applications but the downside is that
the conclusions of this model are correspondingly limited to ranking different bundles among the
observed goods via the sub-utility function.

Now suppose that instead of checking for rationalizability in the sense of (1), the econometrician
would like to ask a different question: given a data set D = {(pt, xt)}T

t=1, can he sign the welfare
impact of a price change from pt to pt′? Stated differently, this question asks whether he can
compare the consumer’s overall utility after a change in the prices of the L goods from pt and pt′ ,
holding fixed other aspects of the economic environment that may affect the consumer’s welfare,
such as the prices of unobserved goods and her overall wealth. Perhaps the most basic welfare
comparison in this setting can be made as follows: if at prices pt′ , the econometrician finds that
pt′xt < ptxt then he can conclude that the agent is better off at the price vector pt′ compared to pt.
This is because, at the price pt′ the consumer can, if she wishes, buy the bundle bought at pt and
she would still have money left over to buy other things, so she must be strictly better off at pt′ .
This ranking is eminently sensible, but can it lead to inconsistencies?

Example 1. Consider a two observation data set

pt = (2, 1) , xt = (4, 0) and pt′ = (1, 2) , xt′ = (0, 1).

which is depicted in Figure 1. Given that the budget sets do not even cross, we know that GARP
holds. Since pt′xt < ptxt, it seems that we may conclude that the consumer is better off at prices
pt′ than at pt; however, it is also true that pt′xt′ > ptxt′ , which gives the opposite conclusion.

This example shows that for an econometrician to be able to consistently compare the con-
sumer’s welfare at different prices, some restriction (different from GARP) has to be imposed on
the data set. To be precise, define the binary relations �p and �p on P := {pt}t∈T, that is, the set
of price vectors observed in D, in the following manner:

pt′ �p (�p)pt if pt′xt ≤ (<)ptxt.

We say that price pt′ is directly revealed preferred to pt if pt′ �p pt, that is, whenever the bundle xt is
cheaper at prices pt′ than at prices pt. If it is strictly cheaper, so pt′ �p pt, we say that pt′ is directly
revealed strictly preferred to pt. We denote the transitive closure of�p by�∗p, that is, for pt′ and pt in
P , we have pt′ �∗p pt if there are t1, t2,...,tN in T such that pt′ �p pt1 , pt1 �p pt2 ,..., ptN−1 �p ptN , and
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This for a data set

pt = (2, 1) , xt = (4, 0) and pt′ = (1, 2) , xt′ = (0, 1).

that violates GAPP.

x1

x2

b
xt

b
xt′

3

FIGURE 1. Choices that do not allow for consistent welfare predictions.

ptN �p pt′ ; in this case we say that pt′ is revealed preferred to pt. If anywhere along this sequence, it
is possible to replace �p with �p then we say that pt′ is revealed strictly preferred to pt and denote
that relation by pt′ �∗p pt. Then the following restriction is the bare minimum required to exclude
the possibility of circularity in the econometrician’s assessment of the consumer’s wellbeing at
different prices.

Definition 2.2. The data set D = {(pt, xt)}T
t=1 satisfies the Generalized Axiom of Price Preference

or GAPP if there do not exist two observations t, t′ ∈ T such that pt′ �∗p pt and pt �∗p pt′ .

This in turn leads naturally to the following question: if a consumer’s observed demand behav-
ior obeys GAPP, what could we say about her decision making procedure?

2.3. The Expenditure-Augmented Utility Model

An expenditure-augmented utility function (or simply, an augmented utility function) is a utility
function that has, as its arguments, both the bundle consumed by the consumer x and the total ex-
pense e incurred in acquiring the bundle. Formally, the augmented utility function U has domain
RL

+×R−, where U(x,−e) is assumed to be strictly increasing in the last argument; in other words,
utility is strictly decreasing in expenditure. This second argument captures the opportunity cost
of money and is a simple, reduced form way of modeling the tradeoff with all other financial de-
cisions made by the consumer. At a given price p, the consumer chooses a bundle x to maximize
U(x,−p · x). We denote the indirect utility at price p (corresponding to U) by

V(p) := sup
x∈RL

+

U(x,−p · x). (5)

If the consumer’s augmented utility maximization problem has a solution at every price vector p ∈
RL

++, then V is also defined at those prices and this induces a reflexive, transitive, and complete
preference over prices in RL

++.
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A data set D = {(pt, xt)}T
t=1 is rationalized by an augmented utility function if there exists such a

function U : RL
+ ×R− → R with

xt ∈ argmax
x∈RL

+

U(x,−pt · x) for all t ∈ T.

Notice that unlike the notion of rationalization in Afriat’s Theorem, we do not require the bundle
x to be chosen from the budget set {x ∈ RL

+ : ptx ≤ ptxt}. The consumer can instead choose from
the entire consumption space RL

+, though expenditure is taken into account since more costly
bundles will depress the consumer’s utility.

It is straightforward to see that GAPP is necessary for a data set to be rationalizable by an
augmented utility function. Suppose GAPP were not satisfied but the data could be rationalized
nonetheless by some augmented utility function U. Then, for some t, t′, t1, . . . , tN ∈ T, its indirect
utility V would satisfy

V(pt′) ≥ V(pt1) ≥ · · · ≥ V(ptN ) ≥ V(pt) > V(pt′)

which is impossible.
Our main theoretical result, which we state next, also establishes the sufficiency of GAPP for

rationalization. Moreover, the result states that whenever D can be rationalized, it can be ratio-
nalized by an augmented utility function U with a list of properties that make it convenient for
analysis. In particular, we can guarantee that there is always a solution to maxx∈RL

+
U(x,−p · x)

for any p ∈ RL
++. This property guarantees that U will generate preferences over all the price

vectors in RL
++. Clearly, it is also necessary for making out-of-sample predictions and, indeed, it

is important for the internal consistency of the model.10

Theorem 1. Given a data set D = {(pt, xt)}T
t=1, the following are equivalent:

(1) D can be rationalized by an augmented utility function.
(2) D satisfies GAPP.
(3) D can be rationalized by an augmented utility function U that is strictly increasing, continuous,

and concave. Moreover, U is such that maxx∈RL
+

U(x,−p · x) has a solution for all p ∈ RL
++.

Proof. We will show that (2) =⇒ (3). We have already argued that (1) =⇒ (2) and (3) =⇒ (1)
by definition.

Choose a number M > maxt ptxt and define the augmented data set D̃ = {(pt, 1), (xt, M −
ptxt)}T

t=1. This data set augments D since we have introduced an L + 1th good, which we have
priced at 1 across all observations, with the demand for this good equal to M− ptxt.

The crucial observation to make here is that

(pt, 1)(xt, M− ptxt) ≥ (pt, 1)(xt′ , M− pt′xt′) if and only if pt′xt′ ≥ ptxt′ ,

which means that

(xt, M− ptxt) �x (xt′ , M− pt′xt′) if and only if pt �p pt′ .

10Suppose the data set is rationalized but only by an augmented utility function for which the existence of an optimum
is not generally guaranteed, then it undermines the hypothesis tested since it is not clear why the sample collected
should then have the property that an optimum exists.
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Similarly,

(pt, 1)(xt, M− ptxt) > (pt, 1)(xt′ , M− pt′xt′) if and only if pt′xt′ > ptxt′ ,

and so
(xt, M− ptxt) �x (xt′ , M− pt′xt′) if and only if pt �p pt′ .

Consequently,D satisfies GAPP if and only if D̃ satisfies GARP. Applying Afriat’s Theorem, when
D̃ satisfies GARP, there is Ũ : RL+1 → R such that

(xt, M− ptxt) ∈ argmax
{x∈RL

+ :ptx+m≤M}
Ũ(x, m) for all t ∈ T.

The function Ũ can be chosen to be strictly increasing, continuous, and concave, and the lower en-
velope of a finite set of affine functions. Note that augmented utility function U : RL

+ ×R− → R

defined by U(x,−e) := Ũ(x, M− e) rationalizesD as xt solves maxx∈RL
+

U(x,−pt · x) by construc-
tion. Furthermore, U is strictly increasing in (x,−e), continuous, and concave.

It remains to be shown that U can be maximized at all p ∈ RL
++. Let h : R+ → R be a differen-

tiable function with h(0) = 0, h′(r) > 0 and h′′(r) > 0. Note that these properties guarantee that
limr→∞ h(r) = ∞. Define U : RL

+ ×R− → R by

U(x,−e) := U(x,−e)− h(max{0, e−M}). (6)

It is clear that this function is strictly increasing in (x,−e), continuous, and concave. Further-
more, xt solves maxx∈RL

+
U(x,−pt · x). This is because U(x,−e) ≤ U(x,−e) for all (x,−e), and

U(xt,−ptxt) = U(xt,−ptxt). Lastly, we claim that at every p ∈ RL
++, argmaxx∈RL

+
U(x,−p · x) is

nonempty. Given that U is continuous, this will fail to hold at some price vector p only if there
is a sequence xn ∈ RL

+ such that p · xn → ∞, with U(xn+1,−pxn+1) > U(xn,−pxn). But this is
impossible because the piecewise linearity of U(x,−e) in x and the strict convexity of h implies
that U(xn,−pxn)→ −∞. �

From this point onwards, when we refer to ‘rationalization’ without additional qualifiers, we
shall mean rationalization with an expenditure-augmented utility function, i.e., in the sense estab-
lished by Theorem 1 rather than in the sense established by Afriat’s Theorem. It is clear that the
inclusion of expenditure in the augmented utility function captures the opportunity cost incurred
by the consumer when she chooses some bundle of L goods. Theorem 1 says that this is precisely
the form the utility function should take if we require the data set to obey GAPP, but note that
the theorem does not require us to subscribe to a specific — or indeed, any — ‘more fundamental’
model from which the augmented utility function could be derived. We could, for example, in-
terpret the augmented utility function as a representation of a preference over bundles of L goods
and their associated expenditure that the consumer has developed as a habit and which guides
her purchasing decisions.

That said, the proof of Theorem 1 itself provides a particular interpretation for the augmented
utility function. We could suppose that the consumer is maximizing an overall utility function
that depends both on the observed bundle x and on other goods y, subject to an overall wealth of
M, that is, the consumer is maximizing the overall utility G(x, y) subject to px + qy ≤ M, where
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q are the prices of other goods. Keeping q and M fixed, we can interpret U(x,−e) as the greatest
overall utility the consumer can achieve by choosing y optimally conditional on consuming x, that
is,

U(x,−e) = max
{y≥0 : qy≤M−e}

G(x, y). (7)

It is worth repeating that a strength of our framework is that we do not have to take a stand on
what goods y the consumer trades off with x or the amount M that she allocates to them. This
allows us to account for potentially unobserved ‘mental budgeting’ (see Thaler (1999)) that the
consumer may be engaged in.

The augmented utility function could be thought of as a generalization of the quasilinear model
which is commonly employed in partial equilibrium analysis, both to model demand and also to
carry out a welfare analysis of price changes. In this case, the consumer maximizes utility net of
expenditure, that is, she chooses a bundle x that maximizes

U(x,−e) := U(x)− e, (8)

where U(x) is the utility of the bundle x, and e ≥ 0 is the expense incurred when acquiring
the bundle. This formulation can be motivated by assuming that the consumer has an overall
utility function that is quasilinear, that is, G(x, y) = U(x) + y, where there is one unobserved
representative good consumed at level y ∈ R+. If we normalize the price of the outside good at 1
and assume that M is sufficiently large, then the consumer maximizes G(x, y) subject to px + y ≤
M if and only if he chooses x to maximize U(x,−px) = U(x)− px.

The quasilinear utility model imposes a strong restriction on the consumer’s demand behav-
ior that is not necessarily desirable.11 For example, suppose L = 2 and the consumer at prices
(p1, p2) � (0, 0) prefers the bundle (2, 1) to another bundle (1, 2); then it is straightforward to
check that this preference is maintained at the prices (p1 + k, p2 + k) � (0, 0) for any k. In con-
trast, for the general augmented utility function, the agent’s marginal rate of substitution between
any two goods (among the L observed goods) can depend on the expenditure incurred in acquir-
ing the L-good bundle.12 So we allow for the possibility that the consumer’s willingness to trade,
say, food for alcohol depends on the overall expenditure incurred in acquiring the bundle; if food
and alcohol prices increase and the expenditure incurred in acquiring a given bundle goes up, the
consumer will have less to spend on other things such as leisure, which could well have an impact
on her marginal rate of substitution between those two goods.

2.4. Local robustness of the GAPP test

The augmented utility function captures the idea that a consumer’s choice is guided by the sat-
isfaction she derives from the bundle as well as the opportunity cost of acquiring that bundle, as

11A consumer with a quasilinear utility function will generate a data set obeying both GAPP and GARP. The precise
conditions on a data set that characterize rationalization with a quasilinear utility function can be found in Brown and
Calsamiglia (2007).
12If the augmented utility function is differentiable, then the marginal rate of substitution between goods 1 and 2 is
given by (∂U/∂x1)/(∂U/∂x2) evaluated at (x,−e). This will in general depend on e, though not in the quasilinear
case.
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measured by its expense. This opportunity cost depends on the prices of the alternative (unob-
served) goods, so in empirical applications of the GAPP test (especially on data that spans long
time horizons), it would make sense to deflate the prices of the observed goods by an appropriate
price index (to account for price changes of the unobserved goods). Given that these indices are
imperfect, the deflated prices of the observed goods pt used for testing may well differ from their
true values qt, which introduces an observational error into the data set. Put differently, at time
t, the consumer actually maximizes U(x,−qtx) instead of U(x,−ptx) which is the hypothesis we
are testing.

Another potential source of error is that the agent’s unobserved wealth may change from one
observation to the next and this could manifest itself as a change in the consumer’s stock of the
representative outside good. If this happens, then at observation t, the consumer would be max-
imizing U(x,−ptx + δt), where δt is the perturbation in wealth at time t, instead of maximizing
U(x,−ptx). Of course, the errors could potentially enter simultaneously in both prices and wealth.

Proposition 1 below shows that inference from a GAPP test is unaffected as long as the size of
the errors are bounded (equation (9) provides the specific bound). Specifically, so long asD obeys a
mild genericity condition (which is satisfied in our empirical application), the GAPP test is locally
robust in the sense that any conclusion obtained through the test remains valid for sufficiently
small perturbations of the original hypothesis. For example, a data set that fails GAPP is not
consistent with the maximization of an augmented utility function, for all prices sufficiently close
to the ones observed and after allowing for small wealth perturbations.

Not surprisingly, if the errors are allowed to be unbounded, then the model ceases to have any
content. Specifically, we can always find wealth perturbations δt (while prices pt are assumed to
be measured without error) such that each xt maximizes U(x,−ptx + δt), with no restrictions on
D. In particular, these perturbations can be chosen to be mean zero.

Proposition 1. Given a data set D = {(pt, xt)}T
t=1, the following hold:

(1) There exists an augmented utility function U and {δt}T
t=1, with ∑T

t=1 δt = 0, such that xt ∈
argmaxx∈RL

+
U(pt,−ptxt + δt) for all t ∈ T.

(2) Suppose, D satisfies ptxt − pt′xt 6= 0 for all t 6= t′ and let {qt}T
t=1 and {δt}T

t=1 satisfy

2 max
t∈T
{|δt|}+ 2B max

t∈T,i∈L
{|εt

i |} < min
t,t′∈T,t 6=t′

|ptxt − pt′xt| (9)

where B = maxt∈T{∑L
i=1 |xt

i |} and εt
i := qt

i − pt
i .

If D obeys GAPP, there is an augmented utility function U such that

xt ∈ argmax
x∈RL

+

U(qt,−qtxt + δt) for all t ∈ T, (10)

and if D violates GAPP, then there is no augmented utility function U such that (10) holds.

Proof. Our proof of part (1) relies on a result of Varian (1988), which says that given any data
set D, there always exist {zt}T

t=1 such that the augemented data set {((pt, 1), (xt, zt))}T
t=1 obeys

GARP. By Afriat’s Theorem, there is a utility function Ũ : RL+1 → R such that (xt, zt) is optimal
in the budget set {(x, z) ∈ RL ×R : ptx + z ≤ Mt}, where Mt = zt + ptxt. Afriat’s Theorem
also guarantees that this utility function has various nice properties and, in particular, Ũ can be
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chosen to be strictly increasing. Let M̄ = ∑T
t=1 Mt/T and define the augmented utility function

U : RL
+ × R− → R by U(x,−e) := Ũ(x, M̄ − e). Then since Ũ is strictly increasing, xt solves

maxx∈RL
+

U(x, δt − ptx) where δt = Mt − M̄.
There are two claims in (2). We first consider the case whereD obeys GAPP. Note that whenever

pt′xt′ − ptxt′ < 0, then for any {qt}T
t=1 and {δt}T

t=1 such that (9) holds, we obtain pt′xt′ − ptxt′ <

δt′ − εt′xt′ − δt + εtxt′ . This inequality can be re-written as

− qtxt′ + δt < −qt′xt′ + δt′ . (11)

Choose a number M > maxt(qtxt− δt) and define the data set D̃ = {(qt, 1), (xt, M+ δt− qtxt)}T
t=1.

Since (11) holds whenever pt′xt′ − ptxt′ < 0,

(qt, 1)(xt, M + δt − qtxt) > (qt, 1)(xt′ , M + δt′ − qt′xt′) only if pt′xt′ > ptxt′ .

This guarantees that D̃ obeys GARP since D obeys GAPP. By Afriat’s Theorem, there is a strictly
increasing utility function Ũ : RL → R such that (xt, M + δt − qtxt) is optimal in the budget set
{(x, z) ∈ RL+1 : qtx + z ≤ M + δt}. Define the augmented utility function U : RL

+ ×R− → R by
U(x,−e) := Ũ(x, M− e). Since Ũ is strictly increasing, xt solves maxx∈RL

+
U(x, δt − qtx).

Now consider the case where D violates GAPP. Observe that whenever pt′xt′ − ptxt′ > 0, then
for any {qt}T

t=1 and {δt}T
t=1 such that (9) holds, we obtain pt′xt′ − ptxt′ > δt′ − εt′xt′ − δt + εtxt′ .

This inequality can be re-written as

− qtxt′ + δt > −qt′xt′ + δt′ . (12)

By way of contradiction, suppose there is an augmented utility function U such that xt maximizes
U(x,−qtx + δt) for all t. For any observation t, we write Vt := maxx∈RL U(x,−qtx + δt). Since
(12) holds, we obtain

Vt ≥ U(xt′ ,−qtxt′ + δt) > U(xt′ ,−qt′xt′ + δt′) = Vt′ .

Thus, we have shown that Vt > Vt′ whenever pt′xt′ − ptxt′ > 0. Since D violates GAPP there is
a finite sequence

{(
pt1 , xt1

)
, . . . ,

(
ptN , xtN

)}
of distinct elements in D, such that pti xti+1 < pti+1 xti+1

for all i ∈ {1, . . . , N − 1} and ptN xt1 < pt1 xt1 . By the observation we have just made, we obtain
Vt1 > Vt2 > ...VtN > Vt1 , which is impossible. �

2.5. Comparing GAPP and GARP

Recall that Example 1 in Section 2.2 is an example of a data set that obeys GARP but fails GAPP.
We now present an example of a data set that obeys GAPP but fails GARP.

Example 2. Consider the data set consisting of the following two choices:

pt = (2, 1) , xt = (2, 1) and pt′ = (1, 4) , xt′ = (0, 2).

These choices are shown in Figure 2. This is a classic GARP violation as pt · xt = 5 > 2 = pt · xt′

(xt �x xt′) and pt′ · xt′ = 8 > 6 = pt′ · xt (xt′ �x xt). In words, each bundle is strictly cheaper than
the other at the budget set corresponding to the latter observation. However, these choices satisfy
GAPP as pt′ · xt′ = 8 > 2 = pt · xt′ (pt �p pt′) but pt · xt = 5 � 6 = pt′ · xt (pt′ �p pt).
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This for a data set

pt = (2, 1) , xt = (2, 1) and pt′ = (1, 4) , xt′ = (0, 2).

that violates GARP.

x1

x2

b
xt′

b xt

1

FIGURE 2. Choices that satisfy GAPP but not GARP

The upshot of this example is that there are data sets that admit rationalization with an aug-
mented utility function that cannot be rationalized in Afriat’s sense (that is, in the sense given by
(1)). If we interpret the augmented utility function in the form G(x, y) (given by (7)), then this
means that while the agent’s behavior is consistent with the maximization of an overall utility
function G, this utility function is not weakly separable in the observed goods x. In particular,
this implies that the agent does not have a quasilinear utility function (with G(x, y) = U(x) + y),
which is weakly separable in the observed goods and will generate data sets obeying both GAPP
and GARP.

While GAPP and GARP are not comparable conditions, there is a way of converting a GAPP test
into a GARP test that will prove to be very convenient for us. Given a data set D = {(pt, xt)}T

t=1,
we define the expenditure-normalized version of D as another data set D̃ :=

{
(pt, x̃t)

}T
t=1, such that

x̃t = xt/ptxt. This new data set has the feature that pt x̃t = 1 for all t ∈ T. Notice that the revealed
price preference relations �p, �p remain unchanged when consumption bundles are scaled. Put
differently, a data set obeys GAPP if and only if its normalized version also obeys GAPP. Therefore,
from the perspective of testing for rationalization (by an augmented utility function) this change
in the data set is immaterial. The next proposition makes a different and less obvious observation
about D̃.

Proposition 2. Let D = {(pt, xt)}T
t=1 be a data set and let D̃ = {(pt, x̃t)}t∈T, where x̃t = xt/(ptxt),

be its expenditure-normalized version. Then the revealed preference relations %∗p and �∗p on P = {pt}T
t=1

and the revealed preference relations %∗x and �∗x on X̃ = {x̃t}T
t=1 are related in the following manner:

(1) pt %∗p pt′ if and only if x̃t %∗x x̃t′ .
(2) pt �∗p pt′ if and only if x̃t �∗x x̃t′ .

As a consequence, D obeys GAPP if and only if D̃ obeys GARP.
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Proof. Notice that

pt xt

ptxt ≥ pt xt′

pt′xt′ ⇐⇒ pt′xt′ ≥ ptxt′ .

The left side of the equivalence says that x̃t %x x̃t′ while the right side says that pt %p pt′ . This
implies (1) since %∗p and %∗x are the transitive closures of %p and %x respectively. Similarly, it
follows from

pt xt

ptxt > pt xt′

pt′xt′ ⇐⇒ pt′xt′ > ptxt′

that x̃t �x x̃t′ if and only if pt �p pt′ , which leads to (2). The claims (1) and (2) together guarantee
that there is a sequence of observations in D that lead to a GAPP violation if and only if the
analogous sequence in D̃ lead to a GARP violation. �

As an illustration of how Proposition 2 ‘works,’ compare the data sets in Figure 1 and Figure
2 to the expenditure-normalized data sets in Figure 3a and Figure 3b. It can be clearly observed
that the expenditure-normalized data in Figure 3a contains a GARP violation (which implies it
does not satisfy GAPP) whereas the data in Figure 3b does not violate GARP (and, hence, satisfies
GAPP).

A consequence of Proposition 2 is that the expenditure-augmented utility model can be tested
in two ways: (i) we can test GAPP directly, or, (ii) we can normalize the data by expenditure and
then test GARP. If we are simply interested in testing GAPP on a data set D then both methods
are computationally straightforward and there is not much to choose between them: they both
require the construction of their (respective) revealed preference relations and testing involves
checking for acyclicity. However, as we shall see in the next section, the indirect procedure sup-
plied by Proposition 2 will prove to be very useful for testing in the random augmented utility
environment.

This for a data set

pt = (2, 1) , xt = (4, 0) and pt′ = (1, 2) , xt′ = (0, 1).

after normalizing the x’s by dividing with the income.

x1

x2

b
xt

b
xt′

4

(a) Example 1

This for a data set

pt = (2, 1) , xt = (2, 1) and pt′ = (1, 4) , xt′ = (0, 2)

after normalizing the x’s by dividing with the income.

x1

x2

b
xt′

b xt

2

(b) Example 2

FIGURE 3. Expenditure-Normalized Choices
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2.6. Preference over Prices

We know from Theorem 1 that if D obeys GAPP then it can be rationalized by an augmented
utility function with an indirect utility that is defined at all price vectors in RL

++. It is straightfor-
ward to check that any indirect utility function V as defined by (5) has the following two proper-
ties:

(a) it is nonincreasing in p, in the sense that if p′ ≥ p (in the product order) then V(p′) ≤ V(p),
and

(b) it is quasiconvex in p, in the sense that if V(p) = V(p′), then V(βp + (1− β)p′) ≤ V(p) for
any β ∈ [0, 1].

Any rationalizable data set D could potentially be rationalized by many augmented utility
functions and each one of them will lead to a different indirect utility function. We denote this
set of indirect utility functions by V(D). We have already observed that if pt �∗p (�∗p)pt′ then
V(pt) ≥ (>)V(pt′) for any V ∈ V(D); in other words, the conclusion that the consumer prefers
the prices pt to pt′ is fully nonparametric in the sense that it is independent of the precise augmented
utility function used to rationalize D. The next result says that, without further information on
the agent’s augmented utility function, this is all the information on the agent’s preference over
prices in P that we could glean from the data. Thus, in our nonparametric setting, the revealed
price preference relation contains the most detailed information for welfare comparisons.

Proposition 3. Suppose D = {(pt, xt)}T
t=1 is rationalizable by an augmented utility function. Then for

any pt, pt′ in P :

(1) pt �∗p pt′ if and only if V(pt) ≥ V(pt′) for all V ∈ V(D).
(2) pt �∗p pt′ if and only if V(pt) > V(pt′) for all V ∈ V(D).

Proof. (1) We have already shown the ‘only if’ part of this claim, so we need to show the ‘if’ part
holds. From the proof of Theorem 1, we know that for a large M, it is the case that pt �p pt′ if
and only if (xt, M− ptxt) �x (xt′ , M− pt′xt′) and hence pt �∗p pt′ if and only if (xt, M− ptxt) �∗x
(xt′ , M − pt′xt′). If pt 6�∗p pt′ , then (xt, M − ptxt) 6�∗x (xt′ , M − pt′xt′) and hence there is a utility
function Ũ : RL+1

+ → R rationalizing the augmented data set D̃ such that Ũ(xt, M − ptxt) <

Ũ(xt′ , M − pt′xt′) (see Remark 2 in Section 2.1). This in turn implies that the augmented utility
function U (as defined by (6)), has the property that U(xt,−ptxt) < U(xt′ ,−pt′xt′) or, equivalently,
V(pt) < V(pt′).

(2) Given part (1), we need only show that if pt �∗p pt′ but pt 6�∗p pt′ , then there is some augmented
utility function U such that U(xt,−ptxt) = U(xt′ ,−pt′xt′). To see that this holds, note that if pt �∗p
pt′ but pt 6�∗p pt′ , then (xt, M− ptxt) �∗x (xt′ , M− pt′xt′) but (xt, M− ptxt) 6�∗x (xt′ , M− pt′xt′). In
this case there is a utility function Ũ : RL+1

+ → R rationalizing the augmented data set D̃ such that
Ũ(xt, M − ptxt) = Ũ(xt′ , M − pt′xt′). This in turn implies that the augmented utility function U
(as defined by (6)) satisfies U(xt,−ptxt) = U(xt′ ,−pt′xt′) and so V(pt) = V(pt′). �



18 DEB, KITAMURA, QUAH, AND STOYE

3. THE STOCHASTIC MODEL

In this section, we develop the stochastic version of expenditure-augmented utility model. Fol-
lowing the treatment we adopted in the deterministic case, we shall begin with an explanation of
the standard version of the random utility model, as found in McFadden and Richter (1991) and
Kitamura and Stoye (2013) (henceforth to be referred to, respectively, as MR and KS).

3.1. Rationalization by Random Utility

Suppose that instead of observing single choices on T budget sets, the econometrician observes
choice probabilities on each budget set. Our preferred interpretation is that each observation corre-
sponds to the distribution of choices made by a population of consumers and the data set consists
of a repeated cross section of such choice probabilities. This interpretation is appropriate for our
empirical application but an alternative interpretation is that the econometrician observes data
from a single individual who makes multiple choices at each budget set.

We denote the budget set corresponding to observation t by Bt := {x ∈ RL
+ : ptx = 1}. In

this model, only relative prices matter, so we can scale prices and normalize income to 1 without
loss of generality. We use π̆t to denote the probability measure of choices on budget set Bt at
observation t. Thus, for any subset Xt ⊂ Bt, π̆t(Xt) denotes the probability that the choices lie in
the subset Xt. Following MR and KS, we assume that the econometrician observes the stochastic
data set D := {(Bt, π̆t)}T

t=1, which consists of a finite collection of budget sets along with the
corresponding choice probabilities.

For ease of exposition, we also impose the following assumption on the data:

for all t, t′ ∈ T with Bt 6= Bt′ , the choice probabilities satisfy π̆t
(
{Bt ∩ Bt′}

)
= 0. (A1)

In other words, the choice probability measure π̆ has no mass where the budget sets intersect.
This is convenient because it simplifies some of the definitions that follow.13

A random utility is denoted by a measure µ̃ over the set of locally nonsatiated utility functions
defined on RL

+, which we denote by Ũ . The data set D is said to be rationalized by a random utility
model if there exists a random utility µ̃ such that for all Xt ⊂ Bt,

π̆t(Xt) = µ̃(Ũ (Xt)) for all t ∈ T, where Ũ (Xt) :=

{
Ũ ∈ Ũ : argmax

x∈Bt
Ũ(x) ∈ Xt

}
.

In other words, to rationalize D we need to find a distribution on the family of utility functions
that generates a demand distribution at each budget set Bt corresponding to what was observed.
The crucial fact that this problem can be solved via a finite procedure was noted by MR. We now
explain the method they proposed.

Let {B1,t, . . . , BIt,t} denote the collection of subsets (called patches in KS) of the budget Bt where
each subset has as its boundaries the intersection of Bt with other budget sets and/or the boundary
hyperplanes of the positive orthant. Formally, for all t ∈ T and it 6= i′t, each set in {B1,t, . . . , BIt,t}
is closed and convex and, in addition, the following hold:

13This simplification is not conceptually necessary for the procedure described here or its adaptation to our setting in
the next subsection. See the explanations given in KS, all of which also apply here.
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(i) ∪1≤it≤It B
it,t = Bt,

(ii) int(Bit,t) ∩ Bt′ = φ for all t′ 6= t that satisfy Bt 6= Bt′ ,
(iii) Bit,t ∩ Bi′t,t 6= φ implies that Bit,t ∩ Bi′t,t ⊂ Bt′ for some t′ 6= t that satisfies Bt 6= Bt′ ,

where int(·) denotes the interior of a set.
We use the vector πt ∈ ∆It belonging to the It dimensional simplex to denote the discretized

choice probabilities over the collection
{

B1,t, . . . , BIt,t
}

. Formally, coordinate it of πt is given by

πit,t = π̆t
(

Bit,t
)

, for all Bit,t ∈
{

B1,t, . . . , BIt,t
}

.

Even though there may be t, it, i′t for which Bit,t ∩ Bi′t,t 6= φ (as these sets may share parts of
their boundaries), Assumption A1 guarantees that πt is still a probability measure since choice
probabilities on the boundaries of Bit,t have measure 0. We denote π := (π1, . . . , πT)′.

We call a deterministic data set D = {(pt, xt)}T
t=1 typical if, for all t, there is it such that xt ∈

int(Bit,t) for all t ∈ T; in other words, xt lies in the interior of some patch at each observation. If a
typical deterministic data set D = {(pt, xt)}T

t=1 satisfies GARP, then for all other x̆t ∈ int(Bit,t), t ∈
T, the data set {(pt, x̆t)}T

t=1 also satisfies GARP. This is because the revealed preference relations
�x,�x are determined only by where a choice lies on the budget set relative to its intersection with
another budget. Thus, as far as testing rationality is concerned, all choices in a given set int(Bit,t)

are interchangeable. Therefore, we may classify all typical deterministic data sets according to
the patch occupied by the bundle xt at each budget set Bt. In formal terms, we associate to each
typical deterministic data set D that satisfies GARP a vector a =

(
a1,1, . . . , aIT ,T) where

ait,t =

{
1 if xt ∈ Bit,t,
0 otherwise.

(13)

Notice that we have now partitioned all typical deterministic data sets obeying GARP (of which
there are infinitely many) into a finite number of distinct classes or types, based on the vector a
associated with each data set. We use A to denote the matrix whose columns consist of all the a
vectors corresponding to these GARP-obeying types (where the columns can be arranged in any
order) and use |A| to denote the number of such columns (which is also the number of types).

The problem of finding a measure µ̃ on the family of utility functons to rationalize D is essen-
tially one of disaggregating D into rationalizable deterministic data sets or, given Afriat’s Theo-
rem, into deterministic data sets obeying GARP. If we ignore non-typical deterministic data sets
(which is justified because of Assumption A1), this is in turn equivalent to finding weights on the
finitely many distinct types represented by the columns of A, so that their aggregation at each
observation coincides with the discretized choice probabilities. The following result summarizes
these observations.

MR Theorem. Suppose that the stochastic data set D = {(Bt, π̆t)}T
t=1 satisfies Assumption A1. Then

D is rationalized by a random utility model if and only if there exists a ν ∈ R
|A|
+ such that the discretized

choice probabilities π satisfy Aν = π.14

14Since any ν that satisfies Aν = π must also satisfy ∑
|A|
j=1 νj = 1, we do not need to explicitly impose the latter

condition.
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Before we turn to the stochastic version of the expenditure-augmented utility model, it is worth
highlighting an important shortcoming of the setting envisaged by MR : data sets of the form
D = {(Bt, π̆t)}T

t=1 are typically unavailable. This is because even consumers that face the same
prices on the L observed goods (as is commonly assumed in applications with repeated cross sec-
tional data, for instance, Blundell, Browning, and Crawford (2008)) will typically spend different
amounts on these goods and, therefore, the observed choices of the population will lie on different
budget sets; furthermore, even if one conditions on that part of the population that chooses the
same expenditure level at some vector of prices, as these prices change, they will go on to choose
different expenditure levels. The procedure set out by MR to test the random utility model relies
heavily on the stylized environment they assume and it is not at all clear how it could be mod-
ified to test the model when expenditure is allowed to be endogenous. Recently, the procedure
they proposed was implemented by KS but, in order to do this, KS first had to (in effect) create
a data set of the MR type: this involves estimating (from the actual data) what the distribution
of demand would be if, hypothetically, all consumers were restricted to the same budget set. In-
evitably, estimating these distributions will require the use of instrumental variables (to get round
the endogeneity of expenditure) and involve a variety of assumptions on the smoothness of Engel
curves, the nature of unobserved heterogeneity across individuals, etc.

3.2. Rationalization by Random Augmented Utility

Once again the starting point of our analysis is a stochastic data set D := {(pt, π̃t)}T
t=1 which

consists of a finite set of distinct prices along with a corresponding distribution over chosen bun-
dles. But there is one important departure from the previous section: we no longer require the sup-
port of π̃t to lie on the budget set Bt; instead the support could be any set in RL

+. In other words,
we no longer require all consumers to incur the same expenditure at each price observation; each
consumer in the population can decide how much she wishes to spend on the L observed goods
and this could differ across consumers and across price observations. As we pointed out at the
end of Section 3.2, this is the form that data typically takes.

A random expenditure-augmented utility is denoted by a measure µ over the set of augmented
utility functions which we denote by U .

Definition 3.1. The data set D is said to be rationalized by the random augmented utility model
if there exists a random augmented utility µ such that for all Xt ⊂ RL

+,

π̃t(Xt) = µ(U (Xt)) for all t ∈ T, where U (Xt) :=

U ∈ U : argmax
x∈RL

+

U(x,−ptx) ∈ Xt

 .

In actual empirical applications, observations are typically made over time. Therefore, we are
effectively asking whether or not D is generated by a distribution of augmented utility functions
that is stable over the period where observations are taken. This assumption is plausible if (i)
there is no change in the prices of the unobserved goods or, more realistically, that these changes
could be adequately accounted for by the use of a deflator, and (ii) there is sufficient stability in
the way consumers in the population view their long term economic prospects, so that there is no
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change in their habitualized willingness to trade off consumption of a bundle of goods in L with
the expenditure it incurs.

The problem of finding a measure µ̃ to rationalize D is essentially one of disaggregating D into
deterministic data sets rationalizable by augmented utility functions or, given Theorem 1, into
deterministic data sets obeying GAPP. Crucially, Proposition 2 tells us that a deterministic data set
obeys GAPP if and only if its expenditure-normalized version obeys GARP. It follows that µ̃ exists
if and only if the normalized version of the stochastic data set D obeys the condition identified by
MR (as stated in Section 3.2).

To set this out more formally, we first define the normalized choice probability π̆ corresponding to
π̃ by scaling observations from the entire orthant onto the budget plane Bt generated by prices pt

and expenditure 1. Formally,

π̆t(Xt) = π̃t
({

x :
x

ptx
∈ Xt

})
, for all Xt ⊂ Bt and all t ∈ T.

We suppose that Assumption A1 holds on the normalized data set {(Bt, π̆t)}T
t=1; abusing the ter-

minology somewhat, we shall say that D obeys Assumption A1.15 We then define the patches on
the budgets set Bt (as in Section 3.2) and denote them by

{
B1,t, . . . , BIt,t

}
. With these patches in

place, we derive the normalized and discretized choice probabilities πt =
{

π1,t, . . . , π It,t
}

from π̆t by
assigning to each πit,t the normalized choice probability π̆t(Bit,t) corresponding to Bit,t. Finally,
we construct the matrix A, whose columns are defined by (13); the columns represent distinct
GARP-obeying types, which by Proposition 2 coincides with the distinct GAPP-obeying types.
The rationalizability of D can then be established by checking if there are weights on these types
that, at each observation, generate the observed normalized choice probabilities. The following
result summarizes these observations.

Theorem 2. Let D = {(pt, π̃t)}T
t=1 be a stochastic data set obeying Assumption A1. Then D is rational-

ized by the random augmented utility model if and only if there exists a ν ∈ R
|A|
+ such that the normalized

and discretized choice probabilities π satisfy Aν = π.

It is worth emphasizing that this theorem provides us with a very clean procedure for test-
ing the random augmented utility model. If we were testing the random utility model, then the
MR test requires a data set where expenditures are common across consumers as a starting point;
since this is not commonly available it would have to be estimated, which in turn requires an ad-
ditional econometric procedure with all its attendant assumptions. By contrast, to test the random
augmented utility model, all we have to do is apply the MR test to the expenditure-normalized
data set {(Bt, πt)}T

t=1, which is obtained (via a simple transformation) from the original data set
D = {(pt, π̃t)}T

t=1. This allows us to determine the rationalizability of D because we know, purely
as a consequence of the theoretical model itself and without any further assumptions, that one
data set is rationalized by a random augmented utility model if and only if the other one is.

15A sufficient condition for A1 is that π̃ assigns 0 probability to sets with a Lebesgue measure of 0. Also, as before,
this is merely for ease of exposition: our test does not depend on this assumption and, importantly, the data in our
empirical application satisfies A1.
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We end this subsection with an example that makes explicit the operationalization of Theorem
2 using data where the normalized and discretized choice probabilities are determined by the
sample frequency of choices.

Example 3. Suppose the econometrician observes the set of ten choices at two price vectors,
pt = (2, 1) and pt′ = (1, 2), given by the black points in Figures 4a and 4b. These figures also

Consider a set of choices when the prices are

pt = (2, 1).

These are for illustration of how stochastic GAPP works.
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(a) Period t

Consider a set of choices when the prices are

pt = (1, 2).

These are for illustration of how stochastic GAPP works.
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(b) Period t′

This for a data set

pt = (2, 1) , xt = (3, 0) and pt′ = (1, 2) , xt′ = (0, 3).

This picture represents the shares π observed in a data set.
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(c) The Normalized and Discretized Empirical Choice
Probabilities π̂

FIGURE 4. Observed and Scaled Choice Data

demonstrate how the choices are scaled (to the red points) on to the normalized budget sets. Fig-
ure 4c then shows that the choice probabilities

π̂ =

(
3
5

,
2
5

,
1
2

,
1
2

)′
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(the hat notation refers to the fact that the choice probabilities are derived from the sample choice
frequencies which is how we estimate choice probabilities) are determined by the proportion of
the normalized choices that lie on each segment of the budget lines. Lastly, Figure 5 illustrates the
various rational types for these two budget sets. Note that GARP (equivalently, GAPP) violations

This for a data set

pt = (2, 1) , xt = (3, 0) and pt′ = (1, 2) , xt′ = (0, 3).

We highlight the sets where choices can be made without violating GARP.
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B2,t

B1,t′

B2,t′
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(a) Proportion of this Rational Type: ν1

This for a data set

pt = (2, 1) , xt = (3, 0) and pt′ = (1, 2) , xt′ = (0, 3).

We highlight the sets where choices can be made without violating GARP.
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(b) Proportion of this Rational Type: ν2

This for a data set

pt = (2, 1) , xt = (3, 0) and pt′ = (1, 2) , xt′ = (0, 3).

We highlight the sets where choices can be made without violating GARP.
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(c) Proportion of this Rational Type: ν3

This for a data set

pt = (2, 1) , xt = (3, 0) and pt′ = (1, 2) , xt′ = (0, 3).

We highlight the sets where choices can be made without violating GARP.
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ν1 + ν3
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(d) Resulting Distribution of Choices

FIGURE 5. Distribution of Rational Types

only occur when the choices lie on B2,t and B1,t′ . The resulting A matrix is given by

A =


1 1 0
0 0 1
0 1 0
1 0 1

 and, additionally, Aν =


ν1 + ν2

ν3

ν2

ν1 + ν3

 .

The first, second and third column of A correspond to the three types of GARP-consistent demand
behavior, which are depicted in Figures 5a, 5b and 5c respectively. If the proportion of the three
types in the population is ν1, ν2 and ν3, the resulting distribution on the segments of the budget sets
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are given by Aν, the expression for which is displayed above and depicted in Figure 5d. Theorem
2 says that rationalization is equivalent to the existence of ν ∈ R3

+ such that Aν = π̂.
The data from this example can be rationalized by the distribution of rational types

ν =

(
1
10

,
1
2

,
2
5

)′
.

Notice also that it is not the case that a solution always exists. Indeed, if π̂1,t′ > π̂1,t, then the
choice probabilities would not be rationalizable as ν2 > ν1 + ν2 is not possibile.

3.3. Welfare Comparisons

Since the test for rationalizability involves finding a distribution ν over different types, it is
possible to use this distribution for welfare comparisons: for any two prices in the data set and
given a distribution ν that rationalizes D , we can determine the proportion of types who are
revealed better off and the proportion who are revealed worse off. However, since there may
be multiple ν that satisfy Aν = π, the welfare rankings extractable from the data will typically be
in terms of bounds.

To be specific, suppose we would like to determine the welfare effect of a price change from
pt′ to pt. Let 1t�∗pt′ denote a vector of length |A| such that the jth element is 1 if pt �∗p pt′ for the
rational type corresponding to column j of A and 0 otherwise. In words, 1t�∗pt′ enumerates the

set of rational types for which pt is revealed preferred to pt′ . For a rationalizable data set D , the
solution to the optimization problem

N t�∗pt′ :=
minν 1t�∗pt′ ν,

subject to Aν = π,
(14)

gives the lower bound on the proportion of consumers who are revealed better off at pt compared
to pt′ , while

N t�∗pt′ :=
maxν 1t�∗pt′ ν,

subject to Aν = π,
(15)

gives the upper bound on the proportion of consumers who are revealed better off at prices pt

compared to pt′ . In a similar way, we can find N t′�∗pt and N t′�∗pt, the lower and upper bounds on

the proportion of consumers who are revealed better off at pt′ compared to pt.
Since (14) and (15) are both linear programming problems (which are guaranteed to have solu-

tions when D is rationalizable), they are easy to implement and computationally efficient. Sup-
pose that the solutions are ν and ν̄ respectively; then for any β ∈ [0, 1], βν̄ + (1− β)ν is also a
solution to Aν = π and, in this case, the proportion of consumers who are revealed better off at pt

compared to pt′ is exactly βN t�∗pt′ + (1− β)N t�∗pt′ . In other words, the proportion of consumers

who are revealed better off can take any value in the interval [N t�∗pt′ , N t�∗pt′ ].
Proposition 3 tells us that the revealed preference relations are tight, in the sense that if, for

some consumer, pt is not revealed preferred to pt′ then there exists an augmented utility function
which rationalizes her consumption choices and for which she strictly prefers pt′ to pt. Given this,
we know that, amongst all rationalizations of D , N t�∗pt′ is also the infimum on the proportion of
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consumers who are better off at pt compared to pt′ . At the other extreme, we know that there is a
rationalization for which the proportion of consumers who are revealed better off at pt′ compared
to pt is as low as N t′�∗pt.

16 Applying Proposition 3 again, a rationalization could be chosen such

that all other consumers prefer pt to pt′ . Therefore, across all rationalizations of D , 1−N t′�∗pt is

the supremum on the proportion of consumers who prefer pt and pt′ .
The following proposition summarizes these observations.

Proposition 4. Let D = {(pt, π̃t)}T
t=1 be a stochastic data set that satisfies Assumption A1 and is ratio-

nalized by the augmented utility model.

(i) Then for every η ∈ [N t�∗pt′ , N t�∗pt′ ], there is rationalization of D for which η is the proportion of

consumers who are revealed better off at pt compared to pt′ .
(ii) For any rationalization of D , there is a proportion of consumers who are better off at pt compared to

pt′ ; let M be the set containing these proportions. Then inf M = N t�∗pt′ and sup M = 1−N t′�∗pt.

It may be helpful to consider how Proposition 4 applies to Example 3. In that case, there is
a unique solution to Aν = π and the proportion of consumers who are revealed better off at pt

compared to pt′ is ν2 = 1/2, while the proportion who are revealed better off at pt′ to pt is ν3 = 2/5.
Those consumers who belong to neither of these two types could be either better or worse at pt

compared to pt′ . Therefore, across all rationalizations of that data set, the proportion of consumers
who are better off at pt compared to pt′ can be as low as 1/2 and as high as 1− 2/5 = 3/5.

4. THE ECONOMETRIC METHODOLOGY

We now turn to our econometric methodology. This will work through Theorem 2 and Proposi-
tion 4, which exhibit a tight link between the stochastic extension of our model and conventional
random utility models. We answer two questions: First, how to statistically test GAPP from re-
peated cross-section data; second, how to conduct inference about the GAPP-constrained welfare
bounds derived in Section 3.3. Our answer to the first question closely builds on the nonparamet-
ric test of Random Utility Models devised by KS. As we shall see, their approach naturally extends
to GAPP; in fact, the present application will in some sense turn out simpler and maybe more nat-
ural than the original one. The second question calls for a novel approach, and we address it by
proposing a method that is easy to implement in practice. The method potentially applies to in-
ference about bounds for other parameters of interest as well, including in other settings that use
the KS statistical test.

4.1. Testing the Random Augmented Utility Model

We test the Random Augmented Utility Model as outlined in Section 3.2 by invoking Theorem
2 and then drawing on KS. Since it wil be needed in the next section, we very briefly recapitu-
late their approach; additional relevant details (and limitations) are explained in Section 5. An
equivalent and convenient way to state the hypothesis is

min
ν∈RH

+

[π − Aν]′Ω[π − Aν] = 0, (16)

16Because of Assumption A1, we could assume that this is a strict revealed preference.
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where Ω is a positive definite matrix and H = |A|. The solution of the above minimization
problem is the projection of π onto the cone

{
Aν : ν ∈ RH

+

}
under the weighted norm ‖x‖Ω =√

x′Ωx. The corresponding value of the objective function is the squared length of the projection
residual vector. Of course, choice probabilities π can be rationalized by a random augmented
utility model if and only if the length of the residual vector is zero.

KS construct the following test statistic given by the natural sample counterpart of the objective
function (16):

JN := N min
ν∈RH

+

[π̂ − Aν]′Ω[π̂ − Aν], (17)

where π̂ estimates the normalized and discretized choice probabilities π by the sample choice
frequencies (as in Figure 4c)17 and N denotes the total number of observations (the sum of the
number of households across years). The normalization by N is done in order to obtain an appro-
priate asymptotic distribution.

As we mentioned in the previous section, the minimizing value ν̂ may not be unique but the
resulting choice probabilities Aν̂ are unique at the optimum. This latter term can be interpreted as
a rationality-constrained estimator of choice probabilities. Note that Aν̂ = π̂ and JN = 0, iff the
sample choice frequencies can be rationalized by a random augmented utility model. In this case,
the null hypothesis is trivially accepted. KS devise a procedure to estimate the distribution of JN

in order to determine the appropriate critical value for the test statistic.

4.2. Estimating Welfare Bounds

We can test whether a particular number Nt�∗pt′ is in the welfare bounds from Proposition 4 by
adding a linear constraint to the hypothesis (16). Formally, we test

min
ν∈RH

+ , 1t�∗pt′ ν=Nt�∗pt′
[π − Aν]′Ω[π − Aν] = 0 (18)

or equivalently, whether π is contained in the set

S(Nt�∗pt′) = {π̄ = Aν|1′t�∗pt′ν = Nt�∗pt′ , ν ∈ ∆H−1},

where ∆H−1 is the H− 1-unit simplex; thus, the set collects all rationalizable vectors π̄ compatible
with the proportion Nt�∗pt′ .

A confidence interval is generated by inverting the hypothesis test. The challenge is to compute
an appropriate critical value for this test statistic even though its limiting distribution discontinu-
ously depends on nuisance parameters in a very complex manner.

Once again, the hypothesis being tested here takes the form

π ∈ S(Nt�∗pt′). (19)

Later in this section, we prove that this is equivalent to

D̃(Nt�∗pt′)π ≤ 0, (20)

17In the data we employ for our empirical application, there are no observations that lie on the intersection of any two
normalized budget sets so π̂t determines a probability measure on {B1,t, . . . , BIt ,t}.
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where D̃ is a matrix that depends on Nt�∗pt′ : in other words the matrix D̃, up to its equivalence
class, is completely determined once Nt�∗pt′ and prices {pt}T

t=1 are given. Notice that such a ma-
trix D(Nt�∗pt′) is guaranteed to exist theoretically, but calculating it for a problem of an empirically
relevant scale is practically impossible. If it could be computed, then testing (20) for each value
of Nt�∗pt′ , and obtaining a confidence interval for it reduces to the canonical moment inequality
testing problem considered in Andrews and Soares (2010), since (20) is a system of moment in-
equalities indexed only by the value of Nt�∗pt′ (which plays the role of the parameter “θ” that
indexes the moment function in Andrews and Soares (2010)). Unfortunately, when D̃(Nt�∗pt′) can-
not be computed, the (now standard) Generalized Moment Selection approach of Andrews and
Soares (2010) is difficult to implement since it requires numerical evaluation of the moment func-
tion, which cannot be done without knowing D(Nt�∗pt′).18

Instead, we propose a practical method for testing and confidence interval calculation forNt�∗pt′

which sidesteps the calculation of D(Nt�∗pt′) entirely. Our methodology builds upon the “tighten-
ing” approach in KS though our problem has features that are absent in the stochastic rationality
hypothesis they consider. In particular, the correctness of the tightening method depends on the
geometric properties of the set S(Nt�∗pt′) which is more complicated in our setting than what is
tested in KS. Moreover, the hypothesis considered in KS is not indexed by a parameter, whereas
our hypothesis (19) depends on Nt�∗pt′ . Therefore the tightening approach needs to be tailored
for this feature so that, in particular, it applies to cases where Nt�∗pt′ is close to the boundary of
its parameter space. This section address these problems, first verifying that S(Nt�∗pt′) has the
necessary geometric properties, then solving the second problem by proposing a method we call
“restriction-dependent tightening” and demonstrating that it provides asymptotically valid tests
and confidence intervals.

Define
δ(Nt�∗pt′) = min

η∈S(Nt�∗pt′ )
[π − η]′Ω[π − η].

Our test statistic replaces the unknown population value of π with the sample choice frequency π̂

and scales the object:

δN(Nt�∗pt′) = min
η∈S(Nt�∗pt′ )

N[π̂ − η]′Ω[π̂ − η]

Recalling that 1t�∗pt′ is binary, it is without further loss of generality to suppose that its first H
elements of are ones and the remaining H − H elements are zeros. Then, writing ν = [ν1, ..., νH ]

′,

18An alternative method would be subsampling. While asymptotically valid, there is a concern about its power, as
forcefully argued in Andrews and Soares (2010), page 137. The method we propose is theoretically much closer to
Andrews and Soares (2010).
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and A = [A
...A], A = [a1, ..., aH ], A = [aH+1, ..., aH ]

S(Nt�∗pt′) = {π = Aν|
H

∑
j=1

νj = Nt�∗pt′ ,
H

∑
j=H+1

νj = 1−Nt�∗pt′ , ν ∈ RH
+}

= {π = Nt�∗pt′π + (1−Nt�∗pt′)π|π =
H

∑
j=1

νjaj, νj ≥ 0,

H

∑
j=1

νj = 1, π =
H−H

∑
j′=1

νjaj′+H, νj′ ≥ 0,
H

∑
j′=1

νj′ = 1}

= Nt�∗pt′convA⊕ (1−Nt�∗pt′)convA

where the ⊕ sign in the last line signifies Minkowski addition. By a basic property of Minkowski
addition (e.g. Lemma 2 of Arrow and Hahn, 1971, p.387)

S(Nt�∗pt′) = conv
(
{Nt�∗pt′a1, ...,Nt�∗pt′aH} ⊕ {(1−Nt�∗pt′))aH+1, ..., (1−Nt�∗pt′))aH}

)
.

Let {e1, ..., eK}, K ≤ H(H − H), be the collection of elements in {Nt�∗pt′a1, ...,Nt�∗pt′aH} ⊕ {(1−
Nt�∗pt′))aH+1, ..., (1−Nt�∗pt′))aH} and E = [e1, ..., eK], then

S(Nt�∗pt′) = conv(E),

or,
S(Nt�∗pt′) = cone(E) ∩ H,

where

H = {π : 1′|π|π = T}, I := |π| =
T

∑
t=1

It.

The following result provides an alternative representation that is useful for theoretical devel-
opments of our statistical testing procedure.

Theorem 3. (Weyl-Minkowski Theorem for Cones) A subset C of RI is a finitely generated cone

C = {ν1e1 + ... + νKeK : νh ≥ 0} for some E = [e1, ..., eK] ∈ RI×K (21)

if and only if it is a finite intersection of closed half spaces

C = {t ∈ RI |Dt ≤ 0} for some D ∈ Rm×I . (22)

The expressions in (21) and (22) are called a V-representation (as in “vertices”) and aH-representation (as
in “half spaces”) of C, respectively.

See, for example, Theorem 1.3 in Ziegler (1995).19

In what follows we use an H representation of cone(E) represented by a m × |π| matrix D
as implied by Theorem 3. The following assumptions are used for our asymptotic theory. Let
di,t

n(t) = 1 if the n(t)-th consumer in the t-th crosssection chooses patch Bi,t, and di,t
n(t) = 0 if she

does not. Define dt
n(t) = [d1,t

n(t), ..., dIt,t
n(t)].

19See Gruber (2007), Grünbaum, Kaibel, Klee, and Ziegler (2003) and Ziegler (1995) for these results and other materials
concerning convex polytopes used in this paper.
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Assumption 1. For all t = 1, ..., T, Nt
N → ρt as N → ∞, where ρt > 0, 1 ≤ t ≤ T.

Let dk,i, k = 1, ..., m, i = 1, ..., I denote the (k, i) element of D, then define

dk(t) = [dk,N1+···Nt−1+1, dk,N1+···Nt−1+2, ..., dk,N1+···Nt ]
′

for 1 ≤ t ≤ T and 1 ≤ k ≤ m.

Assumption 2. T repeated cross-sections of random samples
{
{di,t

n(t)}
It
i=1

}Nt

n(t)=1
, t = 1, ..., T, are

observed.

The econometrician also observes the price vector pt for each 1 ≤ t ≤ T.
Next, we impose a mild condition that guarantees stable behavior of the statistic δN(Nt�∗pt′). To

this end, we further specify the nature of each row of D. Recall that w.l.o.g. the first m̄ rows of D
correspond to inequality constraints, whereas the rest of the rows represent equalities. Note that
the m̄ inequalities include nonnegativity constraints πi|t ≥ 0, 1 ≤ i ≤ It, 1 ≤ t ≤ T, represented by
the row of D consisting of a negative constant for the corresponding element and zeros otherwise.
Likewise, the identities that ∑It

i=1 πi|t is constant across 1 ≤ t ≤ T are included in the set of equality
constraints. We show in the proof that the presence of these “definitional” equalities/inequalities,
which always hold by construction of π̂, do not affect the asymptotic theory even when they
are (close to) be binding. Define K = {1, ..., m}, and let Kdef be the set of indices for the rows
of D = [d1, ..., dm]′ corresponding to the above nonnegativity constraints and the constant-sum
constraints. Let KR = K \ Kdef, so that d′kπ ≤ 0 represents an economic restriction if k ∈ KR.

Condition 1. For each k ∈ KR, var(dk(t(k))′d
t(k)
n(t)) ≥ ε holds for at least one t(k), 1 ≤ t(k) ≤ T,

where ε is a positive constant.

We now describe our bootstrap procedure, which relies on a tuning parameter τN chosen s.t.
τN ↓ 0 and

√
NτN ↑ ∞ as in KS. Let

SτN (Nt�∗pt′) := {π = Aν, ν ∈ VτN}

where

VτN := {ν ∈ RH |
H

∑
j=1

νj = Nt�∗pt′ ,
H

∑
j′=H+1

νj′ = 1−Nt�∗pt′ ,

νj ≥
Nt�∗pt′τN

H
, 1 ≤ j ≤ H, νj′ ≥

(1−Nt�∗pt′)τN

H
, H + 1 ≤ j′ ≤ H}.

This set can be interpreted as a tightened version of the original restriction set S(Nt�∗pt′). Unlike
the tightening procedure proposed in KS, notice that the degree of tightening depends on the
value of the hypothesized value Nt�∗pt′ . This “restriction-dependent tightening” is important for
the validity of our procedure, which is as follows:

(i) Obtain the τN-tightened restricted estimator η̂τN , which solves

δN,τN (Nt�∗pt′) = min
η∈SτN (Nt�∗pt′ )

N[π̂ − η]′Ω[π̂ − η]
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(ii) Define the τN-tightened recentered bootstrap estimators

π̂
∗(r)
τN := π̂∗(r) − π̂ + η̂τN , r = 1, ..., R.

(iii) The bootstrap test statistic is

δ
∗(r)
N,τN

(Nt�∗pt′) = min
η∈SτNNt�∗pt′

N[π̂
∗(r)
τN − η]′Ω[π̂

∗(r)
τN − η]

for r = 1, ..., R.
(iv) Use the empirical distribution of δ

∗(r)
N,τN

(Nt�∗pt′), r = 1, ..., R to obtain the critical value for
JN .

Note that the distribution of observations is uniquely characterized by the vector π. Let P
denote the set of all π’s that satisfy Condition 1 for some (common) value of ε.

Theorem 4. Choose τN so that τN ↓ 0 and
√

NτN ↑ ∞. Also, let Ω be diagonal, where all the diagonal
elements are positive. Then under Assumptions 1 and 2

lim inf
N→∞

inf
π∈P∩C

Pr{δN(Nt�∗pt′) ≤ ĉ1−α} = 1− α

where ĉ1−α is the 1− α quantile of δ∗N,τN
, 0 ≤ α ≤ 1

2 .

Proof. Note

SτN (Nt�∗pt′) = {π = Aν :
H

∑
j=1

νj = Nt�∗pt′ ,
H

∑
j′=H+1

νj′ = 1−Nt�∗pt′ ,

νj ≥
Nt�∗pt′τN

H
, 1 ≤ j ≤ H, νj′ ≥

(1−Nt�∗pt′)τN

H
, H + 1 ≤ j′ ≤ H}.

Define

ν̃j :=


νj

Nt�∗pt′
− τN

H

1−τn
1 ≤ j ≤ H

νj
Nt�∗pt′

− τN
H

1−τn
H + 1 ≤ j ≤ H,

then

SτN (Nt�∗pt′) = {π = Nt�∗pt′

[
(1− τN)

H

∑
j=1

ν̃jaj +
τN

H
A1H

]
+ (1−Nt�∗pt′)

(1− τN)
H

∑
j=H

ν̃jaj +
τN

H
A1H


:

H

∑
j=1

ν̃j =
H

∑
j′=H+1

ν̃j′ = 1, ν̃j ≥ 0, 1 ≤ j ≤ H, νj′ ≥ 0, H + 1 ≤ j′ ≤ H}

= Nt�∗pt′
[
(1− τN)convA⊕ τN

H
A1H

]
+ (1−Nt�∗pt′)

[
(1− τN)convA⊕ τN

H
A1H

]
= (1− τN)conv

(
{Nt�∗pt′a1, ...,Nt�∗pt′aH} ⊕ {(1−Nt�∗pt′))aH+1, ..., (1−Nt�∗pt′))aH}

)
⊕τN

H

[
Nt�∗pt′A1H + (1−Nt�∗pt′)A1H

]
= (1− τN)conv(E)⊕ τN

H

[
Nt�∗pt′A1H + (1−Nt�∗pt′)A1H

]
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For cone(E) let
{π : Dπ ≤ 0}

be its H-representation with D ∈ Rm×|π| such that, as Lemma 4.1 in KS , D =

[
D≤

D=

]
, where

the submatrices D≤ ∈ Rm̄×|π| and D= ∈ R(m−m̄)×|π| correspond to inequality and equality con-
straints, respectively.

SτN (Nt�∗pt′) =
(

cone(E)⊕ τN

H

[
Nt�∗pt′A1H + (1−Nt�∗pt′)A1H

])
∩ ∆H−1

= {π ∈ R|π| : π − τN

H

[
Nt�∗pt′A1H + (1−Nt�∗pt′)A1H

]
∈ cone(E)} ∩ ∆H−1

= {p ∈ ∆T−1 : D
[

p− τN

H

[
Nt�∗pt′A1H + (1−Nt�∗pt′)A1H

]]
≤ 0}

= {p ∈ ∆T−1 : Dp ≤ −τNφ},

where
φ = − 1

H
D
[
Nt�∗pt′A1H + (1−Nt�∗pt′)A1H

]
.

for some φ = (φ1, ..., φm)′ satisifies (i) φ̄ := [φ1, ..., φm̄]′ ∈ Rm̄
++, and (ii) φk = 0 for k > m̄. Using the

above notation for theH-representation of cone(E),

δN(Nt�∗pt′) = min
π∈∆T−1:Dπ≤0

N[π̂ − π]′Ω[π̂ − π].

As in KS , define ` = rank(D), and let `×m matrix K such that KD is a matrix whose rows consist
of a basis of the row space row(D). Also let M be an (|π| − `)× |π| matrix whose rows form an
orthonormal basis of kerD = ker(KD), and define P = (KD

M ). Finally, let ĝ = Dπ̂.
Unlike KS , we need to augment D with a row vector of ones to properly account for the con-

straint π ∈ ∆T−1:

D∗ :=
(

D
[1, ..., 1]

)
.

Define

T(x, y) =
(

x
y

)′
P−1′ΩP−1

(
x
y

)
, x ∈ R`, y ∈ R|π|−`,

and
t(x) := min

y∈R|π|−`
T(x, y), s(g) := min

γ=[γ≤′,γ= ′]′,γ≤≤0,γ==0,[γ′,1]′∈col(D∗)
t(K[g− γ]).

It is easy to see that t : R` → R+ is a positive definite quadratic form. We can write

δN(Nt�∗pt′) = N min
γ=[γ≤′,γ= ′]′,γ≤≤0,γ==0,[γ′,1]′∈col(D∗)

t(K[ĝ− γ])

= Ns(ĝ)

= s(
√

Nĝ).
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Likewise, for the bootsgtrapped version of δ we have

δ∗N,τN
(Nt�∗pt′) = N min

γ=[γ≤′,γ= ′]′,γ≤≤0,γ==0,[γ′,1]′∈col(D∗)
t(K[ĝ− γ])

= Ns(ĝ)

= s(ϕτN (ξ̂) +
√

N[π∗ − π̂]).

where ξ̂ = Dπ̂/τN . The function ϕN(ξ) = [ϕ1
N(ξ), ..., ϕm

N(ξ)] for ξ = (ξ1, ..., ξm)′ ∈ col(D), then
noting that each elements ej, 1 ≤ j ≤ K that defines cone(E) takes the form Nt�∗pt′ah + (1 −
Nt�∗pt′))ao, 1 ≤ h ≤ H, H + 1 ≤ o ≤ H, by the proof of Theorem 4.2 of KS , it follows that its
k-th element ϕk

N for k ≤ m̄ satisfies
ϕk

N(ξ) = 0

if |ξk| ≤ δ and ξ j ≤ δ, 1 ≤ j ≤ m, δ > 0, for large enough N and ϕk
N(ξ) = 0 for k > m̄. The

conclusion follows by Theorem 1 of Andrews and Soares (2010).
�

Theorem 4 is concerned with the validity of our bootstrap procedure concerning the restriction
of the form 1t�∗pt′ν = Nt�∗pt′ . While our specific structure is useful and instructive (e.g. it allows
us to provide a concrete characterization of the matrix E, which provides S(Nt�∗pt′) = conv(E), as
discussed above) the above procedure generalizes to a general restriction of the formRν = c,R ∈
Rr×H, c ∈ Rr, once the tightening procedure is tailored appropriately to accommodate the general
form. This extension is to be discussed in a subsequent version of the paper.

The crucial step in our procedure is that tightening turns non-binding inequalities in the H-
representation with small slack into binding ones but not vice versa. This feature is not universal,
but it is guaranteed to work when the restriction polytope for π (S(Nt�∗pt′) in the current appli-
cation) satisfies a certain condition (loosely speaking, when corners of the polytope are acute),
provided that the econometrician chooses Ω to be diagonal.

5. EMPIRICAL APPLICATION (PRELIMINARY!)

We implement a test of stochastic GAPP on the 1975-1999 waves of the U.K. Family Expenditure
Survey, a repeated cross-section of consumption data with reasonably high resolution. These data
are a staple of the nonparametric demand literature: Blundell, Browning, and Crawford (2008), KS
and Adams (2016) use the exact same data selection and in that sense are exact comparables to our
implementation; Hoderlein and Stoye (2014), Kawaguchi (2017), and others also draw on the same
data set. To reduce covariate variability, we restrict attention to households with cars and kids.
We do not smooth data in any form: All data points are projected onto a fictitious expenditure of 1
as in Figure 5d, and choice probabilities are then estimated by corresponding sample frequencies.
Computation of critical values and p-values for the test uses the ”cone tightening” procedure
proposed by KS and thereby is valid uniformly asymptotically over a large range of underlying
parameter values.20

20In particular, since we literally use sample frequencies as estimators of probabilities, the somewhat simpler assump-
tions of Section 4 in KS suffice.
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We implement tests for 3, 4, and 5 composite goods. The coarsest partition consisting of 3
goods precisely follows Blundell, Browning, and Crawford (2008) by considering food, services,
and nondurables. Following KS, we increase the dimension of commodity space by first sepa-
rating out clothing and then alcoholic beverages from the nondurables. From a purely technical
point of view, this illustrates that the method is practically feasible in a 5-dimensional commod-
ity space. With realistic sample sizes, this is not true of methods that are subject to a statistical
curse of dimensionality, and nonparametric analysis in 5 dimensions is correspondingly rare in
the literature.

Results are displayed in Table 1 and Table 2. Rows in these tables correspond to intervals of 6
and 7 years respectively. In principle, a single test can be conducted on the entire data from 1975
to 1999. Practically, however, we cannot conduct such a test as it is computationally infeasible.
That said, there is a compelling reason to split the data and conduct the test over subsets of years
as we do. Since we test the hypothesis that there is a constant distribution of preferences over
time, it is sensible to consider shorter horizons as the hypothesis is unlikely to hold over the entire
duration of our data. In particular, the hypothesis may fail due to large changes in the population
distribution of the amount of money allocated by households towards the goods we consider (as
shown in Proposition 1, small changes will not affect our test). This change may be driven by large
changes in the income distribution, a fact that is true for the UK over the complete time horizon
we study (Jenkins, 2016).

The closest comparison to our results are those of KS. Stochastic rationalizability is not rejected
in either case. P-values are hard to compare because KS incur two additional layers of statistical
noise by smoothing over expenditure (by series estimation) and by adjusting for endogeneity.
Ceteris paribus, this means that the GAPP test should have higher power.

We next illustrate estimation of the proportion of consumers preferring one price vector to an-
other one. The comparisons presented in Table 3 use data for the years 1975-1981 and 3 goods, i.e.
the same data used to compute of the first row of Table 2. As estimators of bounds, we display
the bounds implied by η̂, i.e. the projection of empirical choice frequencies. Confidence intervals
are computed by inverting the test from Section 4.2. The two year-pairs chosen, i.e. 1976-77 and
1979-80, exhibit two qualitatively different cases. For 1979-80, the fraction of the population that
reveals prefers one to the other is point identified. This happens when for a particular pair of
prices, the transitivity (”SARP-like”) implication of GAPP does not add to its empirical content in
pairwise comparison (”WARP-like”) and is a somewhat frequent occurrence in the data at hand.
In contrast, there is genuine partial identification for 1976-77. Our econometric methodology is
robust to both scenarios, including if one does not know which obtains. To gauge the impact of
tuning parameters, Confidence Intervals are presented both for τ = 0 and the numerical value
implied by our rule of thumb, which here is τ = .076. The former intervals are not uniformly
valid but give a hint as to how much distortion is caused by ensuring validity of our inference
under nonstandard asymptotics. We would argue that the cost is modest in the example.
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3 goods 4 goods 5 goods
I H JN p I H JN p I H JN p

75-80 25 760 .337 .04 34 2571 .400 .25 34 2571 .400 .30
76-81 31 1763 .917 .34 31 1763 .698 .58 31 1763 .687 .66
77-82 26 947 .899 .55 42 7770 .651 .63 45 10772 .705 .68
78-83 29 1581 .522 .59 56 25492 .236 .91 56 25492 .329 .88
79-84 32 1862 .018 .99 106 428561 .056 .96 106 428561 .003 .999
80-85 24 625 .082 .67 106 342898 .036 .99 109 369851 .082 .96
81-86 32 1576 .088 .81 97 215891 .037 .96 101 266643 .088 .79
82-87 45 4613 .095 .91 94 229988 .043 .95 94 229988 .104 .85
83-88 31 853 .481 .61 58 30737 .043 .99 58 30737 .103 .90
84-99 18 131 .556 .48 37 3417 .232 .68 40 5019 .144 .83
85-90 10 9 .027 .69 21 138 .227 .48 21 138 .031 .85
86-91 16 53 1.42 .30 20 175 .025 .96 26 467 .019 .98
87-92 16 68 2.94 .18 29 1215 .157 .80 32 1823 .018 .97
88-93 14 37 1.51 .24 39 4928 .154 .73 42 7732 .019 .91
89-94 8 3 1.72 .21 49 16291 .004 .97 52 24538 .023 .83
90-95 8 3 0 1 66 48611 1.01 .21 87 150462 .734 .22
91-96 14 25 .313 .59 63 25946 .802 .31 69 31620 .612 .40
92-97 22 259 .700 .48 57 18616 .872 .57 60 22553 .643 .72
93-98 31 1719 .676 .60 56 25644 .904 .65 74 69780 .634 .78
94-99 40 5434 .260 .83 62 41871 .604 .74 77 90927 .488 .79

TABLE 1. Empirical results for sequences of 6 budgets. I is number of patches; H
is number of rational types; JN is value of test statistic; p is p-value.

3 goods
I H JN p

75-81 47 30132 .965 .18
76-82 46 21363 1.58 .56
77-83 40 12826 .973 .69
78-84 44 17054 .628 .66
79-85 46 24716 .075 .96
80-86 41 11563 .096 .87
81-87 50 16259 .100 .85
82-88 50 13268 .643 .73
83-89 34 2135 .580 .66
84-90 19 131 .633 .48
85-91 21 229 1.86 .36
86-92 26 538 2.63 .28
87-93 21 250 3.27 .16
88-94 15 37 1.75 .25
89-95 11 9 1.99 .28
90-96 15 25 .367 .60
91-97 23 259 .821 .51
92-98 32 1719 .808 .61
93-99 47 22406 .755 .62

TABLE 2. Empirical results for sequences of 7 budgets. I is number of patches; H
is number of rational types; JN is value of test statistic; p is p-value.
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comparison estimated bounds CI, τ = 0 CI, τ = .076
p1977 � p1976 [.119, .137] [.102, .149] [.094, .168]
p1976 � p1977 [.843, .883] [.827, .897] [.821, .904]
p1980 � p1979 {.498} [.471, .524] [.469, .526]
p1979 � p1980 {.464} [.436, .491] [.432, .495]

TABLE 3. Estimated bounds and Confidence Intervals for proportion of consumers
preferring one price to another one. Data used are for 1975 − 1981. Confidence
intervals for τ = 0 are not expected to be valid but are reported to gauge the con-
servative distortion due to uniform inference.

6. CONCLUSION

We developed a revealed preference analysis of a model of consumption in which the consumer
maximizes utility over an observed set of purchases, taking into account a disutility of expendi-
ture, but is not subjected to a hard budget constraint (in particular, the model generalizes quasi-
linear utility). As our analysis shows, this model has bite in consumer choice settings where total
expenditure is unobserved (as the data only contains information on a subset of the goods).

A useful aspect of the model is that it easily generalizes to a random utility context that arises
naturally in demand analysis using repeated cross-section data but avoiding restrictions on unob-
served heterogeneity. For such a setting, we show how to statistically test the model and also how
to do (partially identified) welfare analysis, e.g. inference on the proportion of a population that
benefit from a price change. This is illustrated with U.K. Family Expenditure Survey data. The
model is not rejected, and bounds are informative. Further empirical applications are in progress.
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