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Abstract

Misreporting is a problem that plagues researchers that use survey data.
In this paper, we develop a parametric model that corrects for misclassified
binary responses using information on the misreporting patterns obtained
from auxiliary data sources. The model is implemented within the Bayesian
framework via Markov Chain Monte Carlo (MCMC) methods, and can be
easily extended to address other problems exhibited by survey data, such as
missing response and/or covariate values. While the model is fully general,
we illustrate its application in the context of estimating models of turnout
using data from the American National Elections Studies.

Much of the empirical work in the social sciences is based on the analysis of sur-
vey data. However, as has been widely documented (Battistin 2003; Bound, Brown and
Mathiowetz 2001; Poterba and Summers 1986), these data are often plagued by mea-
surement errors. There are many possible sources for such errors. Interviewers may
erroneously record answers to survey items, and respondents may provide inaccurate re-
sponses due to an honest mistake, misunderstanding or imperfect recall (Gems, Ghaosh
and Hitlin 1982; Hausman, Abrevaya and Scott-Morton 1998; Molinari 2003). Also, as
underscored by the social psychology literature, survey respondents tend to overreport
socially desirable behaviors and underreport socially undesirable ones (Cahalan 1968;
Loftus 1975). In the case of discrete or categorical variables, mismeasurement problems
have been traditionally referred to as “misclassification” errors (Aigner 1973; Bollinger
1996; Bross 1954).

In the political science literature, concerns about misclassification have been particu-
larly prevalent in the analysis of voting behavior. Empirical studies of the determinants of
voter turnout focus on how the probability of an individual voting varies according to rel-
evant observable factors, such as citizen’s level of political information, registration laws,
or demographic characteristics. That is, these studies are interested in estimating the



conditional distribution of the turnout decision given certain characteristics of interest.!
The decision to vote, however, is typically not observed due to the use of secret ballot
in the U.S. Furthermore, even if we could observe turnout from the official ballots we
would not, in general, be able to observe all the characteristics — e.g., the voter’s policy
preferences or information about the candidates — that presumably affect the decision.
Hence, political scientist rely on the use of survey instruments, such as the American
National Election Study (ANES) or the Current Population Survey (CPS), that include
both measures of respondents’ relevant characteristics and their self-reported voting be-
havior. This almost always leads to estimation of the common logit or probit models,
since the turnout decision is dichotomous, although there are alternatives such as scobit
(Nagler 1994) or non-parametric models (Hérdle 1990) for discrete choice models.

However, it has been long established that some survey respondents misreport voting,
i.e., they report that they have voted when in fact they did not do so (Burden 2000;
Clausen 1968; Katosh and Traugott 1981; Miller 1952; Parry and Crossley 1950; Sigelman
1982). The evidence that misreporting is a problem can be found in a series of validation
studies that the ANES conducted in 1964, 1976, 1978, 1980, 1984, 1988 and 1990. These
validation studies were possible, but expensive, because voting is a matter of public
record, although for whom a voter voted is not. After administering a post-election
survey to a respondent, an official from the ANES was sent to the respondent’s local
registrar of elections to see if in fact they were recorded as having voted in the election.
This is not an easy task, since respondents often do not know where they voted, election
officials differ in their ability to produce the records in a usable form, and there might
be differences between the survey data and the public records due to errors in spelling
or recording. This means that the validated data may also be mismeasured, but for this
paper we will assume it is correct. That said, the ANES for these years included both
the respondent’s self-reported vote and the validated vote. The differences between the
two measures are fairly shocking. Depending on the election year, between 13.6% and
24.6% percent of the respondents claiming to have voted did in fact not according to the
public records.? In contrast, only between 0.6% and 4.0% of the respondents in the 1964
— 1990 validated surveys who reported not having voted did vote according to the official
records. Since there is no reason to believe that measurement errors should mainly be of
false positives — i.e., reporting voting when the official record contradicts this claim —
this lends some credence to the social pressures argument for misreporting (Bernstein,
Chadha and Montjoy 2001) and should help mitigate some of our concerns about other
potential sources of classification errors, such as inaccurate records.® The large differences
between reported and validated turnout led to a cottage industry analyzing the causes of
misreporting (Abramson and Claggett 1984, 1986a,b, 1991; Ansolabehere and Hersh 2008;

!The literature is far too vast to even begin to fully cite here. See Aldrich (1993) for a review of the
theoretical literature and Wolfinger and Rosenstone (1980) for an influential empirical study.

2The Current Population Survey (CPS) also exhibits considerable turnout overreporting, although the
magnitude is substantially lower than for the ANES (Highton 2004). As shown by Hausman, Abrevaya
and Scott-Morton (1998) and Neuhaus (1999), however, even modest amounts of misreporting can affect
parameter estimates.

3Clearly, other reasons besides social desirability may also contribute to explain differences between
self-reported and validated turnout (Abelson, Loftus and Greenwald 1992).



Cassel 2003; Hill and Hurley 1984; Katosh and Traugott 1981; Sigelman 1982) and to a
debate about how to best measure misreporting (Anderson and Silver 1986). All of these
studies find that misreporting varies systematically with some characteristics of interest,
but none of them provides an estimation solution to correct for possible misreporting.

The open question then is what to do about the problem of respondents misreporting.
One possibility would be to use only validated data. At some level this is an appealing
option. If we are sure that the validated data is correct, then estimation and inference is
straightforward. Unfortunately, collecting the validated turnout data is difficult and ex-
pensive, and ANES has stopped doing validation studies for these reasons. Furthermore,
even if validation studies were free, some states, such as Indiana, make it impossible to
validate votes. Hence, if we are going to limit ourselves to use only fully validated data,
our samples will be much smaller. Moreover, would also be throwing away the useful
information included in the already collected but non-validated studies.* On the other
hand, simply ignoring misreporting and using self-reported turnout to estimate standard
probit or logit models can result in biased and inconsistent parameter estimates and inac-
curate standard errors, potentially distorting the relative impact of the characteristics of
interest on the response variable and leading to erroneous conclusions (Davidov, Faraggi
and Reiser 2003; Hausman, Abrevaya and Scott-Morton 1998; Neuhaus 1999).

In this paper we develop a simple Bayesian approach to correct for misreporting, al-
lowing researchers to continue to use the self-reported data while improving the accuracy
of the estimates and inferences drawn in the presence of misclassified binary responses.’
Our model draws on Hausman, Abrevaya and Scott-Morton (1998), but incorporates
information on the misreporting process from auxiliary data sources, aiding in identifica-
tion (Gu 2006; Molinari 2003) and making it easier to avoid the problems that limit the
use of Hausman, Abrevaya and Scott-Morton (1998)’s modified maximum likelihood esti-
mator in small samples such as those typically used in political science (Christin and Hug
2004; Gu 2006). While incorporating this information into the analysis of the sample of
interest using frequentist methods is far from straightforward (Prescott and Garthwaite
2005), this can be easily accomplished within the Bayesian framework via Markov Chain
Monte Carlo (MCMC) simulations.

Although other Bayesian approaches have been proposed to adjust for misclassifica-
tion using prior information to overcome fragile or poor identifiability, they either rely
exclusively on elicitation of experts’ opinions (McInturff et al. 2004; Paulino, Soares and

4In the case of the ANES, turnout is one of the few survey items included since the late 1940s, covering
a larger period than any other continuing survey (Burden 2000). Validation studies, on the other hand,
only comprise a handful of elections.

5A third strand of research focuses on procedures for reducing the frequency of overreporting, such
as altering question wording or reformulating survey questions (Belli, Traugott and Rosenstone 1994;
Belli et al. 1999; Bound, Brown and Mathiowetz 2001). Nonetheless, while this can improve the quality
of future datasets, we would still be wasting large amounts of data collected in previous surveys.

6We focus on the case of misclassified responses and error-free covariates. Several methods have been
proposed to adjust for measurement error in the covariates. See Carroll, Ruppert and Stefanski (1995)
for a review.



Neuhaus 2003) or assume that information on both the true and the fallible response is
available for all subjects in a random subsample of the data (Viana 1994; Prescott and
Garthwaite 2002, 2005). In contrast, the information on the misreport patterns incorpo-
rated into our model need not come from the sample of interest, and can be combined
with elicitation of experts’ beliefs if needed. In the empirical application presented in
this paper we will use earlier and small-sample validation studies to correct for misre-
porting. However, matched official records, administrative registers and possibly even
aggregate data might be used to gain this information. Given the potential difficulties
of eliciting probabilities from experts’ opinions and the scarcity of internal validation
designs relative to administrative data sets, external validation studies and other sources
of ancillary information (Bound, Brown and Mathiowetz 2001; Garthwaite, Kadane and
OHagan 2004), the correction developed in this paper provides a more flexible way of in-
corporating prior information and can be more widely applied than existing approaches.”
In addition, these alternative approaches focus only on the case in which the misclas-
sification rates are independent of all covariates. As mentioned above, this assumption
seems to be inappropriate in the case of the determinants of voter turnout, as well as
in many other potential applications. The magnitude and direction of the biases when
misreporting is covariate-dependent can be quite different than in the case of constant
misclassification rates (Davidov, Faraggi and Reiser 2003; Neuhaus 1999) and, in the
context of analyzing voting behavior, Bernstein, Chadha and Montjoy (2001) show that
ignoring the correlation between the covariates of interest and the misreport probabili-
ties may seriously distort multivariate explanations of the turnout decision. Finally, our
approach enables us to simultaneously address another important problem with survey
data, namely missing outcome and/or covariate values, using fully Bayesian model-based
imputation (Ibrahim et al. 2005).

Although our model is developed in the context of estimating the conditional prob-
ability of turning out to vote, the method is general and will be applicable whenever
misclassification of a binary outcome in a survey is anticipated and there is auxiliary
information on the misreporting patterns. For instance, our approach could be used to
analyze survey data on participation in social welfare programs (Hernanz, Malherbet and
Pellizzari 2004), pension plans (Molinari 2003), energy consumption (Gu 2006), employ-
ment status (Hausman, Abrevaya and Scott-Morton 1998) and many other areas where
we expect to see substantial rates of misreporting and potential correlation between some
of the covariates affecting the response and the misreport probabilities. The model can
also be implemented when misreporting depends on covariates other than those influenc-
ing the outcome. For example, for a substantial proportion of the CPS sample, turnout
is measured by proxy, rather than self-reported (Highton 2004). In this case, the mis-
classification probabilities would be modeled using information on misreporting patterns
among household members reporting other members’ turnout decision, which could be
obtained from validated CPS studies.® Extensions of our method to discrete choice mod-

"In internal validation studies, the true response is available for a subset of the main study and can
be compared to the imperfect or observed response. In the case of the external validation designs, the
misreport pattern is estimated using data outside the main study.

8We thank an anonymous referee for pointing us to this potential application of our model.



els with more than two categories along the lines of Abrevaya and Hausman (1999) and
Dustmant and van Soest (2004) are possible as well.

The paper proceeds as follows. The next section formally lays out the estimation
problem in the presence of misreporting and develops our proposed solution. Section 2
presents results from a Monte Carlo experiment evaluating the robustness of our approach
to misspecification of the misreport model. In Section 3, we provide three applications
of our methodology using data on voter turnout from the ANES. Finally, Section 4
concludes.

1. CORRECTING FOR MISREPORTING IN BINARY CHOICE MODELS
1.1. Defining the Problem

Let y; be a dichotomous (dummy) variable, and denote by x; a vector of individual
characteristics of interest. We want to estimate the conditional distribution of y; given
x;, Pr[y;|x;]. However, instead of observing the “true” dependent variable y;, assume we
observe the self-reported indicator y;. Most studies use the observed y; as the dependent
variable, typically running either a probit or logit model to estimate Pr[y; = 1|x;].

In order to know whether this substitution can lead to incorrect inferences, we need
to know the relationship between Pr[g; = 1|x;] and Pr[y; = 1|x;]. We can always write

Pr[g; = 1]x;,y; = 0] - Prly; = 0[xi],
by the law of total probability. All that we have done is to rewrite the probability Pr[g; =
1]x;] into two components: when the self-reported or observed variable g; coincides with
the true response y;, and when it does not. Also, noting that Pr[g; = 0|x;,y; = 1] =
1 — Pr[g; = 1|x;,y; = 1] we can re-write the relationship as

Pr[j; = 1jxi] = (1 — 7, ° — 7% Prfy; = 1|x;] + ;" (2)
where 7rl-1 0 — Pr[g; = 1|ly; = 0,x;] is the probability that the respondent falsely claims
y; = 1 when in fact y; = 0, and 77? = Pr[g; = 0|y; = 1,x;] is the probability the observed
response takes the value 0 when the true response is y; = 1. It is important to note that
the probability of each type of misreporting is conditional on x;.

Standard methods for estimating binary choice models generally assume that the
conditional distribution of the dependent variable given x; is known up to a parameter
vector (3. However, unless 7r;-J = 7T7;1 =9 Vi, estimating the conditional probability
Pr[g; = 1|x;] rather than Pr[y; = 1|x;] will generally lead to biased estimates of [

and inaccurate standard errors, with even small probabilities of misreporting potentially



leading to significant amounts of bias (Davidov, Faraggi and Reiser 2003; Hausman,
Abrevaya and Scott-Morton 1998; Neuhaus 1999). In addition, the marginal effect of
covariate x on the observed response y; and on the true response y; will differ by

aPI' ij =1 X aPI' Yi = 1 X 87‘(’1-1‘0 aﬂ'?u
[ax | ]_ [&’L' | ]:—<W—|— B Prly; = 1]x]
OPrly = 1jx] | om;"
Ox ox

(3)

— (7r<1|0 + 7r(-m)

As a result, inferences drawn on the relationship between the covariates of interest
and the response variable may change substantially when estimated based on the like-
lihood function defined by Pr[g; = 1|x;] rather than on the true model Prly; = 1|x;],
depending on the distribution of 3'x; and the covariate vector x;, on the prevalence of
misclassification and on the relationship between the probabilities of misreporting and
the covariates in x; (Bernstein, Chadha and Montjoy 2001; Hausman, Abrevaya and
Scott-Morton 1998; Neuhaus 1999).

Different parametric models have been proposed to correct for misclassification of the
dependent variable in binary choice models (Carroll, Ruppert and Stefanski 1995; Haus-
man, Abrevaya and Scott-Morton 1998; Marshall 1990; McInturff et al. 2004; Morrissey
and Spiegelman 1999; Paulino, Soares and Neuhaus 2003; Prescott and Garthwaite 2002,
2005).% In particular, Hausman, Abrevaya and Scott-Morton (1998) proposed a modified
maximum likelihood estimator that requires the “monotonicity” condition 7TZ~1 0 —}—7‘(? T <1
to achieve identification. Using Monte Carlo simulations, they showed that their model
consistently estimates the extent of misclassification and the parameter vector [, at least
in large samples. More recently, however, Christin and Hug (2004) replicated the work of
Hausman, Abrevaya and Scott-Morton (1998) for different sample sizes, and found that
the modified maximum likelihood estimator performed consistently better than simple
probit models ignoring misclassification only in samples of 5,000 or more observations. In
smaller samples, standard probit estimators outperformed it in many cases, and Christin
and Hug (2004) concluded that the modified maximum likelihood estimator is only ad-
visable for large samples. As noted by Gu (2006), the failure of Hausman, Abrevaya
and Scott-Morton (1998)’s estimator in small samples is likely due to the insufficiency
of the monotonicity condition to ensure model identification. For such sample sizes typ-
ically available in political science, even moderate rates of misclassification may hinder
model identification, so different assumptions may be required to put bounds on the
misclassification rates and the regression coefficients. In addition, Hausman, Abrevaya
and Scott-Morton (1998) and, in fact, most empirical applications of models proposed
to correct for misreporting, assume constant misclassification rates, failing to account
for the potential influence of the covariates of interest on 7' and 7%*.1% Relevant prior

9A comprehensive review of different methods developed to deal with misclassification and measure-
ment errors in nonlinear models can be found in Carroll, Ruppert and Stefanski (1995).

10 Abrevaya and Hausman (1999); Hausman, Abrevaya and Scott-Morton (1998) and Paulino, Soares
and Neuhaus (2003), among others, discuss extensions to deal with covariate-dependent misclassification,
but they do not analyze this case in practice.



information on the misreport patterns is often available from auxiliary data sources, such
as internal or external validation studies, small sample pilots or administrative registers,
which can be used to impose restrictions on the misreport probabilities and regression
coefficients to aid in identification and improve inferences on the relationship between x
and y (Chen 1979; Molinari 2003).

In order to incorporate the information on the misreporting structure from auxiliary
data sources, we propose a Bayesian approach based on Markov Chain Monte Carlo
(MCMC) methods. This approach has three basic advantages in this setting. First, re-
sults from previous statistical studies can be easily incorporated into the model for the
sample of interest within the Bayesian framework (Dunson and Tindall 2000; Ibrahim and
Chen 2000; Ibrahim, Ryan and Chen 1998). Second, MCMC methods directly account
for the extra uncertainty in the variances caused by using estimates of the misreport
probabilities obtained from the auxiliary data instead of their true values. In contrast,
in the context of frequentist estimation, this would require additional “post-estimation”
steps, such as bootstrapping (Haukka 1995), applying the results of Murphy and Topel
(1985) for two-step estimators, or using numerical techniques (Kuha 1994).'" In addi-
tion, our approach does not rely on large sample assumptions and avoids the need for
complicated numerical approximations (Viana 1994) when the posterior distributions are
analytically intractable. The model can be easily implemented by practitioners and ap-
plied researchers using flexible and freely available software for Bayesian analysis such as

WinBUGS or JAGS (Plummer 2009; Spiegelhalter, Thomas and Best 2003).
1.2. A Bayesian Model to Correct for Misreporting using Auziliary Data

We are interested in accurately estimating the effect of the individual characteristics
of interest on the conditional distribution of the true response. Hence, the focus of
our analysis lies in the marginal posterior distribution of 3, while the the model of the
conditional probabilities 7, 9 and 7rio ! can be regarded as “instrumental”.

Since the observed response variable is dichotomous, we can start by assuming that,
conditional on some set of relevant individual characteristics, the observations are in-
dependently and identically distributed according to a Bernoulli distribution — as in
Hausman, Abrevaya and Scott-Morton (1998). The probability of the sample can there-
fore be written as

N

L0y, x) = Hpr[ﬂz‘|xz’, 0% (1 — Pr(gi|x;, 0])' %, (4)

=1

1 Another possible approach is to assume that misclassification rates are known and equal to those
prevalent in the auxiliary data (Poterba and Summers 1995). Nonetheless, as noted by Hausman,
Abrevaya and Scott-Morton (1998), not only will this lead to inconsistent parameter estimates if the
assumed misclassification probabilities are not consistent estimates of the true probabilities, but the
standard errors of the coefficient estimates will be understated.



with 6 = {7@1 ‘0,7'('? ll, B'}. We will further assume that the conditional probability of
the true response variable is given by Pr[y; = 1|x;] = F(0'x;), where F(-) is some
cumulative density function. For ease of exposition, we use the probit link, so that F(+)
is the standard normal distribution denoted by ®(-). This will lead to a probit model
with a correction for misreport; the use of the logit link function would result in a logit
model with a correction for misreporting. We also assume that Prly; = 1|x;] is a priori
independent of 7Tl-1 0 and 7'('? It 12 Substituting for Pr[g;|x;, 8] in Equation 2 and denoting
by S the sample data, we arrive at:

N

£(8,m", =" 8) =] [[ﬂ —m = @B + ]

)
< (1= =M1 - o) + ]

which represents the probability of observing the sample under misreporting. The joint

posterior density of § = {7r21 |0, 7r0|1, ('} is therefore given by:

i

p(B,m; " "[S) oc L8, w1 S) x p(B,m " ). (6)

Without prior substantive information, a common choice for p(m; |0) and p(m) |1) would

be vague Beta distributions, while independent normal priors with zero means and (pos-
sible common) large variances could be assigned for the components of 5 (McInturff et al.
2004; Prescott and Garthwaite 2005). However, as mentioned above, using flat priors for
the misclassification errors will likely lead to poor identifiability (Gu 2006). In addition,
specifying diffuse priors for 3 can also hinder convergence in some circumstances (Gu
2006; McInturff et al. 2004; Prescott and Garthwaite 2002). Incorporating prior infor-
mation on 7TZ.1 |O, W? " and [ from auxiliary data sources can help overcome these problems
and improve the accuracy of the parameter estimates (Gu 2006; McInturff et al. 2004;

Prescott and Garthwaite 2002, 2005).

Suppose that both the true and the self-reported dependent variables are recorded for
all respondents in a validation study of size M. Comparing y; to g; forevery j =1,..., M,
we can estimate the misreport probabilities for the validated sample. Let zjl- and z? denote
sets of regressors that are useful in predicting the conditional probabilities 7T]1-‘0 and W?ll,
where the notation allows for the fact we may use different regressors to predict the
two types of misreporting. z} and z? may include some or all of the variables in x, as
well as other variables not affecting the true response. Again, for ease of exposition, we
assume probit link functions and specify the conditional probabilities of misreporting as
7TJ1»‘0 = (71 'zj) and 71';-)'1 = ®(72 'z3). Since our interest lies primarily on the distribution
of B, v = {’y;, ’y;} could in principle be viewed as “nuisance” parameters in our setting
(Ibrahim, Ryan and Chen 1998), although they help provide meaningful interpretations

12This assumption simplifies the analysis considerably without entailing any obvious drawback from
a practical perspective (Paulino, Soares and Neuhaus 2003).



for the underlying misreporting process (Chen 1979).!3 Letting V denote the data from
the validation study, the likelihood from V is:

L(B,7,72|V) = H(@(ﬁ/xj>)yj (1 _ (I)(ﬁxxj))(l—yj)
H P /Z;)gj x (1—®(n /Z;))l_gj X (7)
H (s /Z?)lfgj % (1 — B(y /Z?))ﬁj.

The posterior distributions p(3,y1, v2|V) or p(71,72|V) could then be used to specify
the priors for 3, v, and 75 in the model fit to the sample of interest by repeated application
of Bayes’ theorem. However, since these posteriors cannot be expressed as tractable
distributions, there is no straightforward way of transferring the relevant information
from the validation study to the analysis of the main sample (Prescott and Garthwaite
2005). In addition, unless the validation study is a random sub-sample of the main study,
heterogeneity between the two samples might in some circumstances lead to misleading
conclusions if inference on (3 is based on the pooled datasets (Duan 2005). Hence, we
consider both samples simultaneously, combining the likelihoods in Equations 5 and 7
with vague independent priors p(3),p(y1) and p(7s) and weighting the likelihood from
the validated sample by a “tunning” parameter ¢ that controls how much influence the
validated data has relative to the main sample (Chen, Ibrahim and Shao 2000; Ibrahim
and Chen 2000). The joint posterior density of the unknown parameters is therefore
given by:

p(3, 70 7MS) o £(8, 710, 7MMS) X L(8,71,72|V)? x p(B) X p(1) X p(12)  (8)

with 0 < § < 1, where § = 0 corresponds to the case in which no auxiliary information
is incorporated into the analysis for the main sample, while 6 = 1 gives equal weights
to L(J, 7TZ-1|0, 7T?H|S) and L(3,71,72|V). d can be assigned either a fixed value or a prior
distribution — e.g., a~Beta(c,d) — (Chen, Ibrahim and Shao 2000; Ibrahim and Chen
2000).' Although Equation 8 is intractable analytically, inference can be performed us-
ing Gibbs sampling along with Metropolis steps to sample the full conditionals for 3, v,
and v (Gelfland and Smith 1990; Casella and George 1992; Chib and Greenberg 1995).
Under mild regularity conditions (Gilks, Richardson and Spiegelhalter 1996; Robert and
Casella 2004), for a sufficiently large number of iterations, samples from these condi-
tional distributions approach samples from the joint posterior. The posterior marginals
obtained from these convergent samples can then summarized and used to estimate the
effect of the relevant individual characteristics on the true response and the misreport

131t is worth mentioning, however, that 7'/°(z') and 7°I*(z?) are not necessarily identified. See Lewbel
(2000).

141n the latter case, the prior p(§) would be added to Equation 8. See the discussions in Chen, Ibrahim
and Shao (2000) and Ibrahim and Chen (2000) for additional details.



probabilities. In addition, Bayes factors can be easily implemented within our modeling
framework to compare alternative link functions (Paulino, Soares and Neuhaus 2003).

Thus, we only need to have validated data from a previous sample or for a sub-sample
of the respondents in order to correct for misreporting in the model for the main study.
In case several validation studies are available, they can be easily integrated into our
analysis by adapting the method proposed in Ibrahim and Chen (2000) to incorporate
historical data in binary choice models, substituting £(3,71,72|V) in Equation 8 by:

D

H£<Bv 71 72|Vd>6d (9)

d=1

where V = {V,...,Vp} denotes the data from D validation samples and 6 = {d;,...,0p},
0 < d4 < 1 can be assigned 1.I.D. Beta priors (Ibrahim and Chen 2000; Ibrahim, Ryan
and Chen 1998). Note that, while we must assume that the same error structure appears
in the validated and non-validated samples and that the process generating misreporting
is similar in both datasets, the covariates included in x and z = {z', 22} do not have to be
necessarily identical for both datasets. For instance, when estimating the determinants
of the turnout decision, we could allow for election-specific factors affecting the turnout
and the misreport probabilities, combining information from validation studies with ex-
perts’ opinions, theoretical restrictions or even specifying diffuse priors for some of the
predictors. Covariates that were not measured in previous studies can be incorporated
into the analysis of the sample of interest by specifying the priors for these new covariates
through the “initial” prior p(3,71,72) in Equation 8 (Ibrahim et al. 2005).

Even if we did not have access to a validation sample, several other sources of infor-
mation, such as administrative records or even aggregate data could be used to impose
informative constraints on the misclassification rates and improve the parameter esti-
mates. For example, in the analysis of voter turnout, we could observe turnout rates in
small geographic areas, such as counties or congressional districts, that could be used to
specify the misreport probabilities for all individuals in the sample belonging to a given
area. While it will not be generally possible to specify a generalized linear model of misre-
porting in such circumstances, hierarchical beta priors can be used to summarize auxiliary
information available on misreporting patterns by location or relevant socio-demographic
characteristics (Dunson and Tindall 2000). Finally, if no relevant information to predict
misreporting exists either in validation studies or other auxiliary data, constraints on
the misreport probabilities could be imposed wia elicitation of experts’ opinions. Our
model would then be virtually identical to McInturff et al. (2004) and Paulino, Soares
and Neuhaus (2003).

Despite the advantages of our approach, it is worth mentioning that, like all para-
metric estimators, our model might be quite sensitive to distributional and modeling as-
sumptions. Although semi-parametric methods have been used to estimate discrete choice
models with misclassified dependent variables (Abrevaya and Hausman 1999; Hausman,
Abrevaya and Scott-Morton 1998; Dustmant and van Soest 2004), they are also subject to

10



potential misspecification (Molinari 2003). Moreover, in the case of covariate-dependent
misclassification, available semi-parametric techniques require either sacrificing identifi-
cation of some of the parameters in 3 (Abrevaya and Hausman 1999) or complex com-
putations that are not likely to be attractive for practitioners and empirical researchers
(Lewbel 2000).

A different approach would be to adapt and implement non-parametric methods based
on Manski (1985), Horowitz and Manski (1995) and Molinari (2003).'® In particular,
the “direct misclassification approach” proposed by the latter allows incorporating prior
information on the misreporting pattern to obtain interval identification of parameters
of interest, and can be easily applied to the case in which misclassification depends on
perfectly observed covariates with relatively little computational cost. However, as is
well known, non-parametric methods are subject to the curse of dimensionality, which
can pose a problem in applications where the misreporting probabilities might depend
on a relatively large set of covariates, and is uncertain whether point identification can
be achieved in this setting (Hu 2008). To the best of our knowledge, there is very little
research comparing the performance of parametric versus non-parametric methods to
correct for covariate-dependent misclassification and evaluating the relative weaknesses
and advantages of both approaches in applied work.

1.3. Extending the model to account for missing data

Besides measurement errors, survey data is often plagued with large proportions of
missing outcome and covariate values due to non-response or loss of data. As is well
known, unless the data are missing completely at random (MCAR), using list-wise dele-
tion and restricting the analysis only to those respondents who are completely observed
can lead to biased estimates (Little and Rubin 2002; Chen et al. 2008).'°® Furthermore,
even if the data are MCAR, complete-case analyses may lead to discard a large proportion
of observations and can be therefore quite inefficient (Ibrahim et al. 2005). Ad-hoc ap-
proaches to dealing with missing data, such as excluding covariates subject to missingness
from the analysis or using mean imputation, are easy to implement but exhibit several
potential problems such as biased estimates, inefficiency and misspecification (Chen et al.
2008; Ibrahim et al. 2005; Gelman and Hill 2007).!7 On the other hand, Bayesian meth-
ods such as the one presented in this paper can easily accommodate missing data. There
is no distinction between missing data and parameters within the Bayesian framework,
and thus inference in this setting essentially requires defining a prior for the missing

15This was the approached taken by Jackman (1999) to handle both misclassification and non-response
in surveys about political participation.

16Tt is worth mentioning, however, that there are situations in which inference based on a complete-
case analysis might yield unbiased estimates and outperform imputation methods even when the data
are not missing completely at random (Little and Wang 1996).

ITA detailed review of different methods commonly used to handle missing data is beyond the scope
of this paper. See Horton and Kleinman (2007), Ibrahim et al. (2005), Little and Rubin (2002) and
Schafer and Graham (2002), among others, for a detailed discussion.
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values and sampling from the joint posterior distribution of the parameters and missing
values, incorporating just an “extra-layer” in the Gibbs sampling algorithm compared
to the complete-case analysis (Gelman et al. 2004; Ibrahim et al. 2005). In particular,
our model can be immediately extended to deal with missing response and covariate
values, including cases with missing responses alone, with missing covariates alone, and
with missing covariates and responses. This allows us to accommodate item and unit
nonresponse in both the main and the validation studies.'®

Let w; = (wi1,...,wi,),i=1,..., N, denote a p x 1 vector of covariates included in
x;,z; and z7, and denote the marginal density of w; by p(w;|a), where a parametrizes
the joint distribution of the covariates. Adopting the notation in Chen et al. (2008), we
write W; = (Wi obs, Wi mis), Where wW; ;s is the ¢; x 1 vector of missing components of w;,
0 < ¢ < p, and w; o is the observed portion of w;. Similarly, we use ¥; ;s if the self-
reported outcome ¢; is missing, and y; s otherwise. We assume that the missing data
mechanism is ignorable (Rubin 1976; Little and Rubin 2002). That is, we assume that the
missing data mechanism does not depend on the missing values, but may depend on the
observed outcome and covariate data included in the model — i.e., the data are missing
at random (MAR) — and that the parameters governing the missing data mechanism are
distinct from the parameters of the sampling model. The observed-data likelihood for the
main study can then be written as:

5(67 V1772704|Sobs) = H p(@i|W¢7ﬁ771772)p(Wz'|Oé) X

Yi,obs Wi=Wji obs

H /p@ﬂwz',@ V1, Y2) P(Wiobss Wi mis|) AW; mis X

Yi,obs Wi =(W; ,obs Wi ,mis)

H /p(gl,mls|wlu ﬁa 1, 72)p(w’t‘a)dgl,mls X

Yi,mis;Wi=Wi obs

H //p(gi,mislwi7ﬁv ’71,72)P(Wi,obs,Wz‘,mz‘s|06)dﬂi,mz‘sdwz,mis X

Yi,mis 7Wi:(wi ,obs Wi ,mis)

H / /p(gz,mzs ’Wz’,misa ﬁ; 1, 72)p(wi,mis ’a)dgi,misdwi,miw
gi,misywi:Wi,mis

(10)

8However, as seen in Equation 10 below, respondents with completely missing outcomes and covariates
do not contribute to the likelihood function.
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which, as noted by Chen et al. (2008), reduces to:

LB, 71,72, | Sobs) = H p(Gilwi, B,7,72) p(wila)  x

Yi,obs;Wi=Wj obs

H /p(g2|wl767 71772) p(wi,obmwi,mis’a) dwi,mis X

Yi,obs ’Wi:(wi ,obs ;Wi ,mis)

[T »wile) x

Ui mis s Wi=Wi obs
H /p<wi,obsy Wi,mis|a) dwi,mis~

Ti,mis Wi=(Wi obs,Wi,mis)

As suggested by Ibrahim, Chen and Lipsitz (2002), it is often convenient to model
the joint distribution p(w;|a) is as a series of one-dimensional conditional distributions:

p(wz,h S 7wi,p|a> = p(wi,plwi,lv - Wi p—1, Oép) (11)

X p(Wip-1|Wi, ... Wip_2,ap_1) X -+ X p(wi1]on)
where oy, | = 1,...,p, is a vector of parameters for the Ith conditional distribution,
the y’s are distinct, and o = (a,...,q,). As noted by these authors, specification 11

has the advantages of easing the prior elicitation for o and reducing the computational
burden of the Gibbs algorithm required for sampling from the observed data posterior,
and is particularly well-suited for cases in which w includes categorical and continuous
covariates. While the modeling of the covariate distributions depends on the order of
the conditioning, Ibrahim, Chen and Lipsitz (2002) show that posterior inferences are
generally quite robust to changes in the order of the conditioning. Obviously, 11 needs to
be specified only for those covariates that have missing values. If some of the covariates
in w are completely observed for all respondents in a survey, they can be conditioned on
when constructing the distribution of the missing covariates.

The joint posterior density of the unknown parameters based on the observed data is
then given by:

(B, 71572, | Sobs) X LB, 71,72, | Sobs) X p(B, 71,72, @)

Information on the misreport patterns and on all the parameters of interest can be
incorporated from the validation study in essentially identical way as in the case with no
missing data. A joint prior for (3, 71,72, ) could be specified as:

P(B, 71,72, @) o< LB, 71,72, & Vors)® X p(B) X p(71) X p(72) X p(ev),

where L£(3, 71,72, @|Vaps) is obtained from the complete-data likelihood of the validation
study:

£(5771772705|Vobs) - //p(5’7Y|W767717’72705> dgmisdwmisa
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and, as mentioned in Section 1.2, § is a scalar prior parameter that weights the validated
data relative to the data from the main study.!” Note that our specification allows
for missing responses y; and covariate values in the validated sample as well, and can
accommodate cases in which the missing self-reported variable depends on the true y;.
As in the case of no missing data, it is also possible to incorporate only the information
from the observed probability of misreporting in the validation study to specify the priors
for 71,2 and a subset «, of the components of a for the main study, while using diffuse
prior distributions for the remaining parameters. However, the additional information
obtained from L£(3, 71, 72, a|Veps) can increase efficiency in many missing data problems in
which certain parameters in the likelihood function are not identifiable and/or very little
information is available for inference, particularly when the “gold-standard” measure y;
is observed for a large proportion of the respondents in the validation study (Ibrahim,
Chen and Lipsitz 2002; Robins, Rotnitzky and Zhao 1994).

In principle, it is possible to extend this approach to the case of non-ignorably miss-
ing values following Huang, Chen and Ibrahim (2005), Ibrahim and Lipsitz (1996) and
Ibrahim, Lipsitz and Chen (1999). However, there is usually little information on the
missing data mechanism, and the parameters of the missing data model are often quite
difficult to estimate (Ibrahim, Lipsitz and Horton 2001). The plausibility of the MAR
assumption can be enhanced by including additional individual and contextual variables
in the model specification (Gelman et al. 2004; Gelman, King and Liu 1998).

2. ASSESSING ROBUSTNESS TO THE SPECIFICATION OF THE MISREPORT
MODEL: A MONTE CARLO EXPERIMENT

In this section, we conduct a series of simulation analyses aimed at assessing the
sensitivity of our method to misspecification of the model of misreporting. This is a
particularly relevant issue, since misspecification of the misreport model may lead to
inconsistent estimates 5 and affect inferences on the covariate of interest (Abrevaya and
Hausman 1999; Hausman, Abrevaya and Scott-Morton 1998). Drawing on research an-
alyzing a somewhat similar problem, namely, the sensitivity of the estimated treatment
effects to the specifications of the propensity score model (Drake 1993; Zhao 2008), we
examine the influence on the estimated covariate effects of misspecifying the disturbance
distribution and the linear predictor of the misreport model. For reasons of space, we
only present a brief overview of the results from the Monte Carlo simulations. A more
detailed analysis is presented in Katz and Katz (2009).%°

Based on the Monte Carlo design in Neuhaus (1999), we simulated 2,000 observations
for two covariates: xy is drawn from a standard normal distribution, and x5 is a dummy

19See Section 4 in Ibrahim, Chen and Lipsitz (2002) for details.

20In Katz and Katz (2009), we conduct a comprehensive simulation study comparing the performance
of our approach vis a vis alternative models proposed in the literature to account for misreporting in the
presence of both misclassification and missing data, and assessing the sensitivity of the estimates from
our model to the specification of the misreport model.
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variable equal to one with probability 1/2. The true response y; was generated as:

yi = 1(Bo + Brxig + Pazio + € > 0)

where I(FE) is the indicator function equal to one if E is true and zero otherwise,
(Bo, 1, P2) = (—1,1,1) and ¢; drawn from a N(0, 1) distribution. We also generate a
dichotomous variable d; as:

4 — (v 4+ yamin +Yipzio + 1 > 0);  ify; =0
’ —7(72,0 + YVe1Tin + V22T + 1 2 0); ify, =1

where 7 is an error term, and 71 = {V10, 712,713}, Y2 = {720,722, 723}, are chosen to
obtain different levels of misclassification and different degrees of correlation between the
simulated covariates and the misreport probabilities 7ri1 % and 7T? " The observed response
is in then generated as:

YTV —I(d =1); ity =1

In order to analyze the sensitivity of our method to misspecification of the error
disturbance in the model of misreporting, we follow Horowitz (1993); Drake (1993); Zhao
(2008) and consider 4 distributions for 7: a standard normal distribution, a logistic
distribution, a bimodal distribution (n = 0.5N(3,1) + 0.5N (=3, 1), and heteroskedastic
error terms n~N (1,1 + 0.12%). We also implement 4 alternative specifications for the
linear predictor of the misreport model:

Specification 1 : Qo + Qp1T;52;

Specification 2 : Q1% + Qp2Xio + Oék,SiU?,ﬁ
Specification 3 : Qo + 1Tin + Qatio + ara(Tin X Tip);
Specification 4 : Qo+ QR 1T + Q2T + Qg 3T 3;

with £ = 1,2 and x3 drawn from a log-normal distribution. We examine the effect of
both forms of misspecification separately - i.e., we correctly specify the linear predictor
of the misreport model when analyzing the role of misspecified error distributions and
use standard normal errors when examining the influence of the functional form of the
index term. In all cases, we randomly selected half of the observations in the sample and
assigned them to be the validation study, while we ignored the true response and the
information on the misreport probabilities for the remaining 1,000 observations, using
the information from the validated sub-sample to fit the model in Equation 8.2!

Figure 1 reports the estimates of the marginal covariate effects when x; is omitted
from the linear predictor of the misreport model (Specification 1) for different values of

21Since the validation study is a random sub-sample of the main study, a point mass prior § = 1 with
probability 1 was used, equally weighting the validated and main samples. We also let the covariates in
z' and z? differ across specifications and consider several values of 71, v2, with little change in the main
substantive results presented in this section. Additional details are available in Katz and Katz (2009).
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V11,72, and average symmetric misreport rates of 5%, 10% and 20%.%? The estimates of
the marginal effect of x1 worsen as the average misclassification rates increase and as the
the correlations between the covariate and the misreport probabilities increase. However,
for all values of v1,1,72,1, the estimates from our model are closer to the true marginal
effects obtained using the true data than the estimates from a model ignoring misreport-
ing. The estimates for x5, on the other hand, are virtually unaffected by the omission
of z; from the model of misreporting, and are again between 6 and 23 percentage points
closer to the true effects than those from a standard probit model. Table 1 complements
the information from the figure, illustrating the influence of the other forms of misspecifi-
cation considered for different values of 7!, 7% 4, and ~,. Adding irrelevant covariates
and unnecessary nonlinear terms to the linear predictor of the misreport model has rela-
tively little influence on the estimated marginal effects, and the same holds for the case
of misspecified disturbance distributions. In all cases, the true average covariate effects
lie within the central 95% credible intervals from our model, and the point estimates
are betwen 4 and 18 percentage points closer to the true values than the those obtained
ignoring misreporting. Note that, as illustrated in Katz and Katz (2009), the estimates
of 71 and 7, can be far away from the true coefficients when the model of misreporting is
misspecified, particularly when the error terms are bimodal or heteroskedastic (Horowitz
1993; Zhao 2008). Nonetheless, the estimated covariate effects seem to be quite robust
to the specification of the misreport model and much more accurate than those from
standard parametric models when misclassificaton is non-negligible.

We also conducted additional simulations assuming a slightly different misreport pro-
cesses for the validated and the main samples. Specifically, the values of 7, and 5 in the
main sample were obtained by adding uniformly distributed errors to the corresponding
parameters from the validation study, preserving the amount of misclassification and the
direction of the relationship between the covariates and the misreport probabilities but
changing the magnitude of the effect of x; and x5 on 7T7;1 0 and ’/T? I Again, as illustrated
at the bottom of Table 1, the marginal effects estimated from our model are quite close to
the true covariate effects. In contrast, the model ignoring misclassification systematically
underestimates OPr(y = 1|x)/Jz; and overestimates 0Pr(y = 1|x)/0xy. We must note,
though, that these results are based on limited simulation analyses and may not be true

in general.

3. AN EMPIRICAL APPLICATION: CORRECTING FOR MISREPORTING IN
THE ANALYSIS OF VOTER TURNOUT

Next, we illustrate the potential consequences of misreporting in the context of es-
timating the determinants of voter turnout and provide three different applications of
our methodology using data from all the validated ANES surveys between the 1978 and

21n all cases, we set 12 = 1.25, 720 = —1.25, and adjust the value of the intercept to achieve the
desired average misclassification rates.
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Figure 1: Marginal covariate effects when x, is omitted from the misreport
model. The graph plots the marginal effects x1 and xo estimated under our method when
x1 18 omitted from the linear predictor of the misreport model, for different values of
v1 and 5. The center dots correspond to the the posterior means, the vertical lines to
the central 95% credible intervals, and the horizontal lines represent the average effects
(dashed) and 95% intervals (dotted) estimated using y; as the response.

1990.% This dataset comprises three Midterm (1978, 1986, 1990) and three Presidential
elections (1980, 1984, 1988), and has the obvious advantage of allowing us to directly com-
pare the estimates from our model to a known benchmark, i.e., the same model estimated
directly on the validated vote. We assume the validated vote to be the “gold-standard”
measure of turnout, although there is considerable disagreement on this point (Burden
2000; Mcdonald 2007). The concern is that the validation studies are far from perfect. As
stated at the outset, vote validation is expensive and difficult. The ANES is conducted
in two parts, a pre- and post- election survey. In the studies from 1978, 1980, 1984, 1986,
1988 and 1990 there were in total 11,632 completed post election surveys. Unfortunately
of these completed surveys, the ANES was unable to validate 2,189 respondents, about
19.8 percent of the usable sample.?* The majority of these failures were caused either
because no registration records were found or because the local election office refused

2We use data from the 1978-1990 validated studies in order to preserve the comparability of the
survey questions regarding the conditions of the interview; we will use this information to model the
conditional probability of misreporting. While we illustrate the application of our method analyzing
ANES data in view of the fact that it is the most widely used survey for studying U.S. turnout (Burden
2000), the main substantive results reported in this Section hold for the Current Population Survey as
well, and are available from the authors upon request.

24The rate of non-validation varies considerably across Election Studies, from around 2% of sample in
1978 to more than 31% in 1990.
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Table 1: Marginal covariate effects under alternative specifications of the misreport model

Estimator OPr(y = 1|x)/0x, OPr(y = 1[x)/0x2
0.25 0.25
True Model
rue Mode (0.24, 0.27) (021, 0.30)
Linear predictor®
0.29 0.26
ification 2

Specification (0.24, 0.33) (0.13, 0.38)

0.29 0.27
Specification 3 (0.24, 0.32) (0.15, 0.38)

0.29 0.26

feation 4
Specification (0.24, 0.33) (0.15, 0.38)
Error disturbance
0.27 0.23
Losistic distribution®

ogistic distribution (0.21, 0.32) (0.09, 0.38)

0.24 0.21
Bimodal distribution (0.20, 0.28) (0.10, 0.29)

0.24 0.28

Heteroskedastic?

eteroskedastic (0.17, 0.29) (0.17, 0.39)

0.24 0.30
Different misreport models in both sub-samples (0.21, 0.28) (0.21, 0.38)

@y = 15711 =0.0572=125%0= 02921 = 0.05,722 = —1.25, 719 701 =~ 0.2.
b 10 =—1.75,711 = 0.65, 719 = 13,790 = —0.75,721 = 0.20, 790 = —1.3, 710, 7 ~ 0.2.
©y10=—1.6,711=0572=13,90=—1,71 = 0.5,722 = —1.30, 710, 7% ~ 0.1.
4o =—2.05~1=09572=01,70= 1571 = —2.579 = —0.70,71° ~ 0.1, 7% ~ 0.2.
e 710 7001 ~ 0.1
Validation sample: 10 = —1.8,71,1 = 0.52,712 = 1.3,720 = —1.1,721 = 0.5,722 = —1.3.
Main sample: 710 = —2.14,71,1 = 0.89,712 = 1.74,720 = —1.22,721 = 0.76, 7220 = —1.32.

to cooperate with the ANES. If we are willing to maintain the assumption that these
errors are essentially random (in the sense of being independent of the characteristics
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of interest), then there is no real harm done. The measurement error will merely result
in less efficient estimates of the misreporting model and a corresponding reduction in
efficiency of the corrected turnout model. However, if there is systematic error, then we
are just substituting one form of measurement error for another.

In Subsection 3.1, we estimate a simple model of the determinants of the turnout
decision using both self-reported and validated turnout as the dependent variable in order
to assess the consequences of ignoring misreporting. In Subsection 3.2, we re-estimate
the turnout model with self-reported vote but applying our proposed solution to correct
for misreporting, using a random sample of each survey as a validation sub-study. In
Subsection 3.3, we apply our correction for misreporting under an external validation
design, using information from previous ANES studies to correct for misreporting in the
main sample under analysis. Both applications are based on a complete-case analysis.
We deal with the problem of incomplete data in subsection 3.4, where we account for
item and unit non-response using the model-based, fully Bayesian imputation approach
described in Section 1.3.

3.1. Turnout misreporting in the 1978-1990 ANES

As mentioned in the introduction, it has long been established in the political science
literature that survey respondents often report to have voted when they did not actually
do so (Ansolabehere and Hersh 2008; Bernstein, Chadha and Montjoy 2001; Clausen
1968; Katosh and Traugott 1981; Miller 1952; Parry and Crossley 1950; Sigelman 1982).
Figure 2 illustrates the differences between turnout rates computed from self-reported and
validated vote in the six ANES studies under analysis. Validated turnout is systematically
lower than reported turnout, and while both rates tend to follow similar trends, differences
vary considerably across years, ranging from 7 percentage points in 1990 to more than
15 percentage points in 1980. The percentage of survey respondents who claimed to have
voted but did not do so according to the validated data was 17.3 percent, and more than
28% of those who did not vote according to the official records responded affirmatively
to the turnout question. In contrast, only 84 respondents in the 1978-1990 ANES studies
reported not voting when the official record suggested they did, representing 0.7% of
the sample respondents. Additional descriptive statistics on vote misreporting in the
1978-1990 validated ANES can be found in Table 2 in Appendix A.

In order to examine whether such high rates of overreporting affect inferences on the
determinants of the turnout decision, we fit two hierarchical probit models allowing for
election year and regional effects with both self-reported and wvalidated turnout as the
response variable:

Pr(g; = y ") ~ Bernoulli(p;);

7

pi =P\ + 1+ 0'%;)

19



o _
[¢¢)
1984
1980 o
R - "o
_ 1988
S
5
o o _|
c ©
=]
= 1978
2 o
= o
2 3 A 1986
oL 0
3 1990
o _|
<
o _|
™
I I I I I I
30 40 50 60 70 80

Validated turnout (%)

Figure 2: FEstimated Turnout from Self-reported vs. Validated Responses,
1978-1990. The graph shows the self-reported and validated turnout from the 1978-
1990 ANES only in years for which there were vote validation studies. Reported turnout
rates are systematically larger than the validates ones.

and
Prly; = yY “e°d] Bernoulli(p;);
pi = (N + 1 + '%5);
where the k=1,... K elements of § are assigned diffuse prior distributions:

Be~N (g, 05,)
and \; and 7, are election- and region- random effects distributed

A~ N (1, 02), = 1978, 1980, 1984, 1986, 1988, 1990;
N~ N (fhy, 0727), r = Northeast, North Central, South, West
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The regressors included in x; are indicators for demographic and socio-economic condi-
tions and political attitudes: Age, Church Attendance, FEducation, Female, Home owner,
Income, Nonwhite, Party Identification and Partisan Strength. A description of the cod-
ing used for each of the variables may be found in Appendix A.1. We should note that,
while this specification includes some of the variables most commonly used in models of
voter turnout found in the literature (Ansolabehere and Hersh 2008; Bernstein, Chadha
and Montjoy 2001; Highton 2004; Leighley and Nagler 1984; Wolfinger and Rosenstone
1980), it does not examine the effect of other factors we might plausibly believe could
alter turnout, such as political information (Alvarez 1997) or differences in state-level
ballot laws (Wolfinger and Rosenstone 1980). The sample used in the analysis consists
of 6,411 observations for the 6 elections under study and were constructed so that they
are identical for both models. Only the respondents with no missing response or covari-
ate values are included in the analysis; the remaining observations were dropped using
list-wise deletion.

Figure 3 presents the main results from both models.?® The left panel summarizes the
posterior distribution of the model’s coefficients using self-reported vote as the dependent
variable, and the right panel re-does the analysis with the ANES validated vote. Most
of the parameter estimates are quite similar in both models, and inferences on the role
of these predictors on the probability of voting agree with common expectations. For
example, for both sets of estimates, older, wealthier and more educated respondents are
more likely to turn out to vote. Also, strong partisans are on average 15 percentage points
more likely to vote than independents, while respondents who attend church every week
are on average 12 percentage points more likely to turn out to vote than those who never
attend. Likewise, respondents are much more likely to turn out to vote in Presidential
than in Midterm elections, and are less likely to vote if they live in the South. These
results are similar using either reported or validated vote as the dependent variable.
However, there are some interesting differences between the two sets of results regarding
the role of some socio-demographic variables such as gender and race. In particular,
the mean posterior of the coefficient for the race indicator is more than twice as large
(in absolute value) using validated vote than using self-reported vote as the dependent
variable.

These differences in the parameter estimates can affect inferences drawn from both
models regarding the impact of the covariates on the turnout decision. In order to
illustrate this fact, Figure 4 plots the marginal effect of race on the probability of voting
using reported and validated vote for each election under analysis. As seen in the figure,
the negative effect of being Non-white on turnout is higher when validated vote is used
as the response variable for each of the surveys considered: the average marginal effects
(posterior means) are more than 6 percentage points higher than if we look only at the
reported vote, with differences ranging from about 3 percentage points in the 1984 and
1986 elections to almost 11 points in the 1978 and 1988 elections. While a researcher using

Z5Three parallel chains with dispersed initial values reached approximate convergence after 50,000
iterations, with a burn-in period of 5,000 iterations. In order to ensure that inferences are data dependent,
several alternative values for the hyperparameters were tried, yielding essentially similar results.

21



Self-reported turnout

Validated turnout

Age 3 - Age 3 -
Church Attend. .- Church Attend. .-
Female — Female —r
Education — ' —~ Education — S
Income lf Income - ~
Non-white — 3 Non-white — 3
Home owner bo— Home owner ' —
Party Id. i~ Party Id. e
Partisan Strength — - Partisan Strength — -
Northeast e Northeast | e

North central

North central

South — South —
West | West —
1978 — 1978 ——
1980 - — 1980 - —
1984 — 1984 —
1986 — 1986 —
1988 — 1988 —
1990 - — | 1990 - —
T T T I T T I T T T I T T I
-0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75
Figure 3: Coefficients of the probit models for Self-reported vs. Validated

Turnout. The graph summarizes the posterior distribution of the coefficients of the
turnout model, using self-reported and validated vote as the response variable. The center
dots correspond to the posterior means, the thicker lines to the 50% credible intervals,
and the thinner lines to the 95% credible intervals.

reported turnout would conclude that race had no significant effect on the probability of
voting in the 1978 and 1988 elections at the usual confidence levels, the results obtained
using validated data indicate otherwise.?® Fitting a model of turnout using reported vote
as the dependent variable will therefore tend to overpredict the probability of voting
among non-white respondents and might in some cases affect substantive conclusions
about the effect of race on turnout.

Finally, we examine whether over-reporting varies systematically with respondents’
characteristics, fitting a probit model for Pr[g; = 1|y; = 0]. As with the turnout model,
the misreport model is fairly simple. The predictors include four variables that have been
shown to be strongly correlated with overreporting in previous studies: Age, Church At-
tendance, Education, Non-white, and Partisan Strength (Ansolabehere and Hersh 2008;
Belli, Traugott and Beckman 2001; Bernstein, Chadha and Montjoy 2001; Cassel 2003).
In addition, we also include three additional covariates aimed at capturing some of the
conditions of the interview. The first is an indicator of whether the interview was con-
ducted while the respondent was alone. According to the “social pressures” argument
(Cahalan 1968; Loftus 1975), a respondent should be more likely to lie about voting if
others will learn of the statement. The other two variables are the interviewers’ assess-
ments of the respondents’ cooperation and sincerity during the interview.?” Point and

26In the case of the 1988 election, the marginal effect of Non-white estimated from the self-reported
vote is not significant even at the 0.1 level
27 All interviewers in the 1978 — 1990 ANES were asked to rate the level of cooperation and sincerity
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Figure 4: Marginal effect of race on turnout. The graph shows the marginal effect of
the race indicator on the likelihood of voting for each election year under study, using both
reported and validated vote. The center dots correspond to the point estimates (posterior
means), the thicker lines to the 50% credible intervals, and the thinner lines to the 95%
credible intervals.

interval summaries of the posterior distribution of the model’s parameters are presented
in Figure 5.

In line with previous analyses, we find that overreporters tend to be more educated,
older, more partisan, and are more likely to be regular church attendees. Also, consistent
with the results reported in Figures 3 and 4, being nonwhite has a positive effect on the
probability of misreporting vote status: non-whites are on average 0.05 more likely to
misreport than their white counterparts, and this effect is significant at the 0.1 level.
Several scholars have argued that African Americans and Latinos feel pressured to ap-

of the respondent after the completion of the survey.

23



pear to have voted due to the struggles and sacrifices needed to gain voting rights for
their racial or ethnic group (Abramson and Claggett 1984; Belli, Traugott and Beckman
2001; Hill and Hurley 1984), although recent research has suggested that the relation-
ship between race and overreporting is much more complex than previously thought and
depends on the demographic and geographical context (Ansolabehere and Hersh 2008;
Bernstein, Chadha and Montjoy 2001; Fullerton, Dixon and Borch 2007).2® None of the
other variables has a statistically significant effect on misreporting at the usual confi-
dence levels. In particular, the interviewers seem unable to pick up a “feeling” that is
not otherwise captured by the characteristics observable from the survey. This is proba-
bly caused by the fact that very few of the interviewers were willing to rank a respondent
as uncooperative and/or insincere.?”

Hence, the results from these simple models indicate that the probability of misre-
porting varies systematically with characteristics we might be interested in, and that
failing to account for misreporting may affect parameter estimates and inferences about
the determinants of voter turnout drawn from non-validated survey data. Unfortunately,
as previously mentioned, the ANES has stopped conducting validation studies due to
the cost and difficulty in collecting the data as well as to the fact that few researchers
used the validated data. The next three sections allow us to evaluate the performance
of our proposed method to correct for misreporting and improve estimates and inference
obtained from self-reported turnout. Although our model accounts for the possibility
of two types of misreporting, we saw before that virtually no one reports not voting

when they did, and thus 77? " would be poorly estimated (Prescott and Garthwaite 2005).
0|1

Therefore, in the applications below we will assume that m;” = 0, and we therefore only

1/0

need to account for 7,
3.2. Correcting for misreporting using a validation sub-sample

We first apply our method assuming an internal validation design. As in the simu-
lation exercise in Section 2, we randomly assign half of the respondents in each of the
1978-1990 surveys to be the validation sub-study and ignore the validated data for the
remaining respondents. We then used the information from the validated sub-sample
to correct for over-reporting in the main sample, equally weighting both datasets. For
illustrative purposes, we fit the same turnout and misreport models described in 3.1 for

281t is worth mentioning that this relationship between race and vote over-reporting could also be
associated to the socio-economic status of the non-white population. If it is the case that nonwhites,
who are more concentrated in poorer areas, are more likely to be incorrectly validated or excluded
from the validation studies because no records can be found (e.g., due to poorly staffed and maintained
election offices), then this result - as well as those reported in Figures 3 and 4 - could very well be an
artifact. While it is difficult to rule this claim out, addressing this concern is beyond the focus of this
paper. Hence, as noted above, we proceed as if the validated data provides “gold-standard” information
on turnout, or is at least not subject to systematic bias.

290nly 1.3% of all the respondents in the sample were ranked as uncooperative by the ANES inter-
viewers and only 0.7% were deemed to be “often insincere”.
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Figure 5: Determinants of misreporting. The graph shows the parameter estimates
for the model of over-reporting. The center dots correspond to the point estimates (pos-
terior means), the thicker lines to the 50% credible intervals, and the thinner lines to the
95% credible intervals.

all the ANES studies considered. Nonetheless, as indicated above, the probability of
voting is considerably higher in Presidential than in Midterm elections, and it is likely
that different factors affect turnout in different election years. More importantly, the
patterns of overreporting have also been shown to differ substantially across types of
races and election years (Cassel 2003). As a result, the misreport model does not pre-
dict over-reporting very well: the mean error rate of the misreport model across election
studies is 36%, while a null model that simply predicts that no respondent overreports
has an error rate of 31%. The model correctly classifies 64% of the survey respondents in
cases, and the mean predicted probability of misreporting averaged across simulations is
0.45; ideally this would be near zero or one for the entire sample (Gelman and Hill 2007).
Therefore, while the simulation results from Section 2 suggest that our approach is quite

25



robust to misspecification of the model of misreporting, we note that the performance of
our proposed method would benefit from better modeling of the misreport process.

Figure 6 summarizes the posterior distribution of the coefficients of selected regressors
estimated using validated, self-reported vote, and corrected self-reports for the two ANES
studies with lowest (1978) and largest (1984) percentage of overreporters (See Table 2
in Appendix A). Assuming that the parameters estimated using validated vote are the
“correct” estimates, the point estimates (posterior means) from our model for the two
elections are between 32% and 92% closer to the “true” values of each of the parameters
than the estimates ignoring overreporting. In addition, like the “true” estimate, the
estimate of Byon_white Under our approach is significantly negative at the 0.05 level for
the 1978 ANES. Figure 7, in turn, plots the marginal effect of race on the probability
of voting estimated using our approach to correct for misreporting. A comparison of
the results in the left panel of the figure with those presented in Figure 4 above shows
that, after correcting for misreporting, the impact of race in the 1978 and 1988 elections
is now statistically significant at the usual confidence levels. Moreover, as seen in the
right panel, the point estimates from our model are closer to the “true” effects than
those estimated from the model using self-reported vote for all the ANES studies, with
differences ranging between 1 and 9 percentage points. Therefore, the evidence presented
in this Section indicates that, even with the very simple model of misreporting estimated
here, the improvements in the accuracy of the parameter estimates obtained using our
method are important, and can eventually change the substantive conclusions drawn
regarding the effect of relevant covariates on the turnout decision.

3.3. Correcting for misreporting under an external validation design

We also apply our correction for misreporting assuming an external validation design,
ignoring the validated vote for the sample under analysis and incorporating information
on the misreport probabilities and regression parameters from other ANES studies. Fig-
ure 8 illustrates the results of this exercise, plotting the marginal posterior distribution
of selected coefficients for the 1988 and 1992 Presidential elections obtained by updating
the corresponding posteriors from previous validated ANES surveys.

The upper panel compares the posterior distributions of Bgqucations Brncomes BNon—white
and Bpartisan Strengtn, for the 1988 ANES, the last Presidential election for which vote
validation is available, using validated, self-reported and corrected vote. In order to
implement our correction for misreporting, we used auxiliary data from the two previous
Presidential elections for which validated turnout data was collected (1980 and 1984). As
seen in the figure, the marginal posterior means and modes from the model accounting
for overreporting are in all cases closer to “true” values than those obtained from the
unadjusted self-reports. Again, as the “correct” estimate, the estimate of Gnon—_white
under our model is significantly negative at the 0.05 level. In the case of the 1992 ANES,
for which there is no validated data, we implemented our correction for misreporting
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Figure 6: Posterior summaries for selected parameters under an internal
validation design The figure plots point and interval summaries of the posterior distri-
butions of selected coefficients for the 1978 and 1984 ANES Presidential elections, using
corrected, self-reported, and validated vote. The center dots correspond to the posterior
means, the thick horizontal lines to the central 50% credible intervals, and the thin lines
to the central 95% credible intervals from the three different models.

using information from the previous presidential elections for which vote validation was
conducted (1980, 1984 and 1988) and compared the estimates from our model with
those from a model using self-reported vote. As seen in the lower panel of Figure 8,
the posterior distribution of some of the parameters — Braucation a0d Bpartisan Strength —
remain essentially unchanged when applying the correction for misreporting. However,
using auxiliary information does affect the posterior distribution of the coefficients of
Income and Non-white. In particular, accounting for misreporting substantially affects
the marginal posterior distribution of Byon_white: the mean posterior is more than twice
as large (in absolute value) when using the corrected self-reports, and the effect of Non-
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Figure 7. Marginal effect of race on turnout estimated under our proposed
method. The left panel of the graph plots the point and interval (50% and 95%) estimates
of the marginal effect of race on the probability of voting estimated from our model to
correct for misreporting. The right panel compares the point estimates from our model
and the model ignoring misreporting with the estimates obtained using the validated data.

white on the probability of turning out to vote is significantly negative at the 0.05 level,
while it is not significant even at the 0.2 level when estimated using self-reported vote.
Similar results hold when applying our model to correct for misreporting in the 1994
ANES - for which, again, vote validation was not conducted - using validated turnout
data from previous Midterm elections.

We also conducted a series of sensitivity analyses aimed at assessing the robustness
of the parameter estimates to changes in the composition of the auxiliary data used to
correct for misreporting and in the weight assigned to the validated vis a vis the main
sample. Figure 9 summarizes some of the results for the 1988 and 1992 ANES. The
left panel plots point and interval summaries for Syon_white from our model for the 1988
ANES using two different sets of values for the weighting parameters é4 in Equation 9:
a point mass prior d; = 1 with probability 1 Vd, and uniform Beta(1, 1) priors Vd, where
d = 1980, 1984. In the first case, the validated and main samples are pooled together and
the estimates of 3 for the main sample are obtained by updating the posteriors from the
previous ANES surveys via Bayes’ theorem. In the second case, we allow for different a
posteriori weights for each of the validated samples, thus accommodating heterogeneity
between the previous ANES studies. The right panel, in turn, compares the estimates
from our model for the 1992 for the cases in which only validated data from the immediate
previous (1988) or from all the previous (1980, 1984, 1988) Presidential elections is used
to adjust for misreporting.®® For both election years, the estimates from our model are

30For the 1992 ANES, we fixed the value of § at 1 for this sensitivity analysis.
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Figure 8: Posterior densities of § under an external validation design. The
figure compares the posterior densities of selected coefficients for the 1988 and 1992 Pres-
idential elections. The solid lines plot the posterior distributions of the parameters es-
timated from the validated vote, the dotted lines represent the estimates obtained using
self-reported vote, and the dashed lines the ones obtained adjusting for misreporting.

compared to those from the unadjusted self-reports.

As illustrated in the figure, the posterior standard deviations of  tend to decrease
with the amount of auxiliary data used to correct for misreporting in the main sample,
but the point estimates (posterior means) and the main substantive conclusions about /3
seem to be quite robust to changes in the values of § and in the size and heterogeneity
of the auxiliary data. In particular, correcting for overreporting using information from
previous validated studies leads to stronger negative effects of being Non-white on the
probability of voting than using self-reported vote, with differences of approximately 4
and 9 and percentage points for the 1988 and 1992 ANES, respectively.
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Figure 9: Sensitivity analysis for the external validation design. The graph
summarizes the posterior distribution of Bnon—white Jrom our model for the 1988 and 1992
elections, using alternative strategies to incorporate information from previous validated
ANES studies. The estimates are compared to those obtained using self-reported vote.
The center dots correspond to the posterior means, the thicker lines to the 50% credible
intervals, and the thinner lines to the 95% credible intervals.

3.4. Accounting for item and unit non-response

Both applications of our methodology in Sections 3.2 and 3.3 have been based on a
complete-case analysis, including in the sample only those respondents for whom both the
response to the turnout question and all the relevant covariates are completely observed.
When respondents with missing covariates differ systematically from those with complete
data with respect to the outcome of interest, this approach may lead to significantly
biased parameters and inference (Little and Rubin 2002). In our sample from the 1978~
1990 ANES studies, 14.5% of whites and 20.9% of non-whites have missing covariate
values (other than race), and the percentage of missingnes for the self-reported vote is
almost 1.8 times larger for the latter. Since the evidence above indicates that voting
patterns vary systematically with race, inferences from a complete-case analysis may
be quite misleading in this setting (Ibrahim et al. 2005). In addition, list-wise deletion
due to missing values in the response variable and/or the predictors leads to discard
almost 45% of the respondents in the 1978-1990 ANES and more than two-thirds of the
respondents in the 1994 ANES, so that complete-case analyses are extremely wasteful
and potentially inefficient. Table 3 in Appendix A reports the rates of item nonresponse
for all the variables included in the turnout models from Sections 3.2 and 3.3.

In order to accommodate item and unit non-response, we implement the approach
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described in Section 1.3, fitting a separate model for each of the ANES studies.®’ Based
on Equation 11, we specified probit regression models for all the dichotomous covari-
ates in the model — Female, Non-white, Own Home, and Alone —, while the remaining
categorical covariates were assigned conditional normal distributions and discrete values
were afterwards imputed for the missing responses (Gelman, King and Liu 1998).3? In all
cases, we assigned vague independent normal priors for the components of a. Figure 10
illustrates the results for the 1978 and 1992 ANES. For the former, 31% of the survey
respondents have at least 1 missing covariate value, and 0.5% of the respondents failed
to answer the turnout question, while the corresponding rates for the latter are 47% and
9%, respectively. A complete-case analysis would keep 77% of our sample for the 1978
ANES, and only 42% for the 1992 ANES. The left panel of the figure summarizes the
marginal posterior distribution of Byon_white for the 1978 ANES using reported, validated
and corrected vote. As in Section 3.2, our correction for misreporting was implemented
based on auxiliary information from a random sub-sample of the ANES survey. The right
panel plots the estimates for the 1992 ANES, for which we use validated turnout data
from the 1988 ANES, as in Section 3.3. In both cases, estimates obtained using Bayesian
imputation are compared to those from the complete-case analyses.

Two interesting facts emerge from the figure. First, for both election-studies, the
marginal posterior distribution for Byon_white €stimated using our the Bayesian imputa-
tion model is not statistically different from the that obtained using list-wise deletion,
at least at the 0.05 level. However, the standard errors tend to be lower when missing
values are imputed than under list-wise deletion. This result holds in fact for most of
the election-years under analysis, suggesting that by omitting the cases with missing
values, much information is lost on the variables that are completely or almost com-
pletely observed, thus leading to less efficient parameter estimates (Ibrahim, Chen and
Lipsitz 2002; Ibrahim et al. 2005). This is likely to be an important concern in the Elec-
tion Studies examined here, given that there is substantial variation in the rates of item
nonresponse, with most of the variables exhibiting relatively low percentage of missing
values while a few others show very high rates of nonresponse (see Appendix A). Sec-
ond, imputing missing values does not change the substantive findings reported above
regarding the performance of our methodology. The results for the 1978 ANES show
that the estimated effects from our model correcting for misreporting are again closer
to the benchmark case — using validated vote— than the effects estimated using recalled
vote, and this result holds for all the ANES with validated vote. For the 1992 election,
the marginal effect of race obtained from the corrected turnout model is also higher than
in the uncorrected model, as was in the complete-case analysis. For both elections, once
again, the main substantive conclusions regarding the effect of being Non-white on the
probability of voting drawn from the model correcting for misreporting differ from those
obtained using recalled vote.

31See Gelman, King and Liu (1998) for an approach to multiple imputation for multiple surveys using
hierarchical modeling.

32The substantive results are essentially unchanged if, instead of the normal distributions, one-
dimensional conditional gamma distributions are specified for these covariates, all of which are strictly
positive.
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Figure 10: Posterior summaries for Onon_white With list-wise deletion versus
Bayesian imputation. The graph plots point and interval summaries for Byon—white
for the 1978 and 1992 ANES, using list-wise deletion and fully Bayesian imputation.
The center dots correspond to the point estimates (posterior means), and the horizontal
bars indicate the 90% and 50% confidence intervals for the models with imputed missing
values.

4. CONCLUDING REMARKS

Survey data are usually subject to measurement errors, generally referred to as classifi-
cation errors when affecting discrete variables. In the political science literature, misclas-
sification of binary dependent variables has received considerable attention in the context
of estimating the determinants of voter turnout. High rates of overreporting have been
documented in survey instruments commonly used to study turnout in the U.S., such
as the American National Election Study (ANES) and the Current Population Survey
(CPS), and most previous research has found that misreporting varies systematically
with some of the relevant characteristics affecting the turnout decision.

In the presence of misreporting, standard binary choice models will generally yield
biased parameter estimates and inaccurate standard errors and may lead to erroneous
substantive conclusions. This paper develops a simple Bayesian method to correct for
misreporting using information on the misreport mechanism from auxiliary data sources.
Our model does not require full validation studies to be conducted every time a researcher
is concerned about potential misreporting. As long as enough data exists to reasonably
estimate the misreporting probabilities, our approach can be applied for drawing inference
from the non-validated samples, improving the accuracy of the parameter estimates and
inferences on the effect of covariates of interest on the true response vis a vis standard
models ignoring misclassification and methods assuming constant misreport rates. This
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is clearly important, since obtaining “gold-standard” data is usually quite expensive and
time consuming, and thus restricting the analysis only to validated studies will generally
lead to discard large amounts of useful information, as in the case of the ANES.

The proposed model is fully general and modular, can be easily implemented using
freely available software, and can be readily applied in the case of missing data in the
response and/or covariates. While we illustrate our technique using turnout data from
the American National Election Study, it could be applied in general to account for po-
tential misclassification of a binary dependent variable in many other situations in which
auxiliary data on the misreport structure is available (Bound, Brown and Mathiowetz
2001; Molinari 2003). Extensions to more general discrete choice models are also straight-
forward. Potential avenues for future research would be to use semi- or non-parametric
methods to estimate both the misreporting and turnout models (Horowitz and Manski
1995; Molinari 2003), simultaneously account for response and covariate measurement
errors within our model (McGlothlin, Stamey and Seaman 2008), and explore the possi-
bility of incorporating semi-parametric approaches for inference with missing data (Chen
and Ibrahim 2006; Robins and Rotnitzky 1995).

While the primary focus of the paper has been on estimation techniques as opposed
to substantive findings, the empirical application of our model to the analysis of the
determinants of voter turnout has clear implications for researchers interested in race.
Our results confirm that race does have a clear negative impact on turnout, and suggest
that the null previous findings have been probably due to problems of misreporting, as
had been argued by Abramson and Claggett (1984, 19864, 1991). With the correction for
misreporting developed in this paper, researchers could now better estimate the effect of
race over the length of the ANES datasets and not just for the few years with validated
turnout data. In addition, researchers might wish to revisit Wolfinger and Rosenstone
(1980) findings of the effect of registration laws to see if properly correct misreporting
re-enforces or diminishes their findings.
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A. DESCRIPTION OF THE DATASET USED FOR THE ANALYSIS OF
TURNOUT MISREPORTING

A.1. Variables used in the turnout model

1. Indicators for demographic, socio-economic and political characteristics

Age: 1 if Age < 30; 2 if 30 < Age < 45; 3 if 45 < Age < 60; 4 if Age > 60.

Church Attendance: Frequency of church attendance. Coding: 1 if never; 2 if a
few times a year; 3 if once or twice a month; 4 if every week or almost every
week.

Education: Highest grade of school or year of college completed. Coding: 1 if 8
grades or less; 2 if 9-12 grades with no diploma or equivalency; 3 if 12 grades,
diploma or equivalency; 4 if some college; 5 if college degree.

Female: 1 if the respondent is female, 0 if male.
Home owner: 1 if the respondent owns his house, 0 otherwise.

Income: Household income. Coding: 1 if 0-16th percentile; 2 if 17h-33d per-
centile; 3 if 34th-67th percentile; 4 if 68th-95th percentile; 5 if 96th—100th
percentile.

Non-white: 0 if white, 1 otherwise.

Party Identification: -1 for Democrats, 0 for Independents, 1 for Republicans.

Partisan Strength: Coded on a four-point scale ranging from 1 for pure indepen-
dents to 4 for strong partisans.

2. Additional covariates to account for misreporting

Alone: 1 if the respondent was interviewed alone, 0 otherwise.

Uncooperative: Respondent’s level of cooperation in the interview, as evaluated
by the interviewer. Coding: 1 if very good; 2 if good; 3 if fair; 4 if poor; 5 if
Very poor.

Sincerity: How sincere did the respondent seem to be in his/her answers, as

evaluated by the interviewer. Coding: 1 if often seemed insincere; 2 if usually
sincere; 3 if completely sincere.

In order to reduce the correlation between the parameters and to accelerate convergence
and mixing of the Gibbs sampling algorithm, all variables where centered at their mean
values (Gu 2006).
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Table 2: Vote misreporting in 1978-1990 ANES®

Election P(g; =1ly; =0) P(y; =0|g; =1) P(y; =0y, =1) P(y; = 1]g; = 0)

1978 23.27 24.55 3.02 2.84
1980 24.48 16.52 0.58 1.37
1984 38.83 13.63 0.22 1.70
1986 31.55 17.70 0.66 1.40
1988 36.30 14.63 1.06 7.10
1990 26.83 16.83 3.67 6.46

¢ In percentage points.

Table 3: Rates of nonresponse for the variables included in the voter turnout models

Variable 1978-1990 validated ANES | 1992 ANES

Age 2.07 0.00
Church Attendance 13.20 33.72
Education 0.80 2.61
Female 4.28 0.00
Income 13.58 10.66
Non-white 4.41 1.41
Home owner 0.70 6.44
Partisan Strength 4.44 0.56
Party Identification 2.60 0.36
Alone 4.55 1.57
Cooperation 4.49 0.16
Sincerity 0.47 0.24
Reported turnout 6.12 9.30

Total sample 11,632 2,485
Complete-case sample 6,411 1,206
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