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I. QUASI-NEWTON ALGORITHMS FOR CONSTRAINED NONLINEAR PROGRAMMING 

(M. S. Bazaraa) 

I.1 Introduction  

Nonlinear programming has long been of interest to mathematicians, 

engineers, and management scientists. Recent developments in the field 

of nonlinear programming, especially those related to computing a search 

direction and to computing a stepsize, and the advent of the high-speed 

and large-memory computers have made it possible to numerically solve 

nonlinear programming problems of great complexity. This capability has 

not only motivated immense research in the development of nonlinear pro-

gramming methods, but also expanded its applications to problems in 

optimal control, optimal design, nonlinear networks, chemical processing, 

refinery operations and water resources management. 

The study of nonlinear programming methods is an area of prime interest. 

This research concerns itself with the development of nonlinear programming 

methods based on quadratic approximation of the objective function and 

linearization of the constraints. 

A nonlinear programming problem can be stated as follows: 

minimize 	f(x) 

subject to )(ES 

where f is a function defined on En , S is a subset of E n , and x is an 

n-dimensional vector. The function f and the set S are usually called the 

objective function and the feasible region, respectively. A decision 

vector x is called a feasible solution if xcS. The nonlinear program aims 

at finding a feasible solution Z such that f(x) > f(Z) for each feasible 

point x. Such a point Z is called an optimal solution to the problem. 
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The set S can be defined in terms of inequality and equality restric-

tions leading to the following general constrained nonlinear program: 

P: minimize 	f(x) 

subject to g i (x) < 0, i = 1,...,m 

h i (x) = 0, i = 1,...,.2 

Each of the constraints g i (x) < 0 for i = 1,...,m is called an inequality  

constraintandeachoftheconstraintsh.(x) = 0 for i = 1,...,t is called 

an equality constraint. Most practical nonlinear programming problems have 

the above form, and this research concerns itself with quadratic approxima-

tion methods for solving this general constrained problem. 
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1.2 Quadratic Approximation Methods 

In this section, we will briefly discuss the published literature on 

quadratic approximation methods, commonly known as quasi-Newton or Newton-

type methods. The basis of these methods is to successively form a quad-

ratic subprogram by linearizing the original nonlinear constraints around 

a given point and replacing the objective function with a suitable quadratic 

form. The optimal solution to the quadratic subprogram is used to update 

the current solution to the original problem. 

This class of methods was originally proposed by Wilson [1963] and 

further extended by several authors including Garcia and Mangasarian [1976], 

Han [1976, 1977] and Powell [1978]. Perhaps the most important property 

which is shared by these algorithms is the fact that they enjoy a super-

linear rate of convergence in the vacinity of Kuhn-Tucker points that 

satisfy second order optimality conditions. In [1977], Han was able to 

show that the optimal solution to the quadratic problem is indeed a descent 

direction to a suitable penalty function. Through the use of a line search, 

he showed convergence of the sequence of iterates even if the starting solu-

tion is remote from a Kuhn-Tucker point, thus establishing global convergence. 

1.2-1 General Description of the Algorithm  

In this section, we will provide a general description of the quadratic 

approximation algorithm for solving a general constrained nonlinear pro-

gramming problem of the form 

P: minimize 	f(x) 

subject to g i (x) < 0, i = 1,...,m 

h i (x) = 0, i = 1,...,t 
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Each iteration consists of two major steps, namely, a direction finding step 

and a line search step. In the direction finding step, a quadratic programming 

subproblem is first formed. The solution to this quadratic program yields 

a search direction. Once the direction is determined, a line search is 

performed to produce a new point. 

Suppose that at iteration k, the vectors x
k
cE

n
, u kcE

m
, v

k
cE
t 

and an 

nxn matrix B
k are given. The following steps are successively performed. 

Direction finding step  

A quadratic subprogram Q(x
k
,B

k
) is formulated as follows: 

Q(x k ,Bk ): minimize vf(x k ) td 	:12_ d tBkd  

subject to gi(xk) 	
vgi(xk)t. a < 0, i = I,...,m 

h.(x
k
) + Vh i (x k ) td. = 0, i = I,...,t 

Note that the original nonlinear constraints are linearized around the point 

x
k
. Let d

k b
e a solution of Q(x k ,B k ). This vector will be called a search  

direction or simply a direction. The dual vectors p
k 
and q are the Lagranqian 

multipliers associated with the linear inequality and equality constraints 

respectively, and will be used to update the Lagrangian multipliers of the 

original problem P. Note that the construction of the constraints forces 

the direction d
k 
to point towards the feasible region. Particularly, if 

g.(x
k
) > 0, that is, if the ith inequality constraint is violated, then the 

ithconstraintofthequadraticprogramwillguaranteethatVg.(x
k ) tdk 

-9.(xk ) < O. Therefore, moving along d k  will reduce the infeasibility 

of the ith constraint of the original problem. Similar interpretation can 

be given for equality constraints. 
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Line search step  

Using a suitable descent function (1), once the direction d
k is deter-

mined, a line search along it is performed, resulting in a stepsize A k  and 

a new point x
k+1 = x k 

+ X kd
k 

such that (1)(x
k+1

) < 4)(x
k
). In the vicinity 

of a Kuhn-Tucker solution, as will be discussed later, superlinear conver-

gence is attained by simply letting A k  = 1. For the purpose of the next 

iteration, u
k+1 

and v
k+1 

are replaced with p k  and q
k 
respectively. These 

vectors can also be used to form the matrix 
Bk+1' 

as will be discussed 

later. 

The algorithm starts with a point x
1
, which is not required to be 

feasible. Under certain assumptions, the algorithm terminates at a Kuhn-

Tucker point in a finite number of iterations or else generates an infinite 

sequence Ix
k
1, any accumulation point of which is a Kuhn-Tucker point. We 

note that the generated sequence {x k} may not be feasible, thus deviating 

from conventional feasible direction methods as in the works of Zantendijk 

[1960] and Topkis-Veinott [1967]. 

We note that a linearly constrained subprogram can be used in place of 

the quadratic subprogram. The solution to the linearly constrained problem 

is used as the next iterate point x
k+1

. We brirrily discuss below the linear 

constrained programs proposed by Rosen and Kreuser [1972] and Robinson [1972]. 

Rosen and Kreuser's subprogram is as follows: 

m   
minimize 	f(x) + 	u.

k  
g.(x) + 	v.h.(x) 

subject to g i (x k) + 	.(x
k

)
t
(x-x

k
) < 0, i = 1,...,m 

gi(xk) 	vhi(xk)t(x_xk) 	
, i = 

The objective function is the Lagrangian function for problem P, and the con- 
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straints are linear approximations to the original constraints. 

Robinson used a slightly different objective function of the form: 

f(x) 	
ud k_gi( • x) • - gi[ • x) 

k. 	v_ .(xk ) t (x-x k )]  

i=1 

+ 	vi
k  
[h 4 (x) - h i (x

k ) - vh i (x k ) t (x-x
k
)] 

i=1 

The main difference is that linear approximations to the original constraints 

are subtracted from the Lagrangian objective function. When the original 

problem is linearly constrained, the objective function proposed by Robinson 

is equivalent to the original criterion function. This is not the case for 

the method of Rosen and Kreuser unless, of course, u
1 = 0 and v 1  = 0. 

Line search is usually used to control the convergence of the generated 

sequence {x k}. However, if the point x k is sufficiently close to a solution 

point R, the new point x k+1  = x k  + d k  satisfies H x k+1 -x 	< 	xk-R 	, so 

that the distance function from x can itself be used as a descent function. 

Hence the step size rule A k  = 1 is useful in the vicinity of a solution 

point. This rule has been used by Wilson [1963], Rosen and Kreuser [1971], 

Robinson [1972], Garcia and Mangasarian [1976], Han [1976, 1977], and Powell 

[1978], If a starting point is far from a solution, the use of line search 

is necessary to achieve global convergence. 

Han [1977], and Bazaraa and Goode [1979] used line search in the context 

of quadratic approximation methods in order to maintain the monotonic decrease 

of an exact penalty function. 

We note that the algorithm under study can be thought of as an extension 

of a certain class of descent algorithms for unconstrained optimization. 

Particularly in the absence of constraints, and by choosing the descent func-

tion to be the objective function itself, various choices of B k  lead to 
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distinct methods. If B k  = I, the algorithm is the method of the steepest 

descent. When the matrix B
k 

is taken as the Hessian of the objective func-

tion, the algorithm reduces to Newton's method. If updating schemes are 

used to approximate the Hessian of the- objective function, then the algorithm 

turns out to be a quasi-Newton method. 

1.2-2 The Quadratic Programming Subproblem  

In this section, we will discuss various methods proposed for forming 

the quadratic programming direction finding problem. The linearization of 

all constraints is the common property of these methods. However, various 

objective functions for the quadratic program have been proposed by several 

authors. Particularly the quadratic objective function at iteration k is 

given by Vf(x
k

)
t
d +- 

2  d
t
B d, where B k approximates the Hessian of the 

objective function or the Lagrangian function 

L(x,u,v) = f(x) + L  u i g i (x) + 	v; h 4 (x) 
i=1 	 i=1 

In this section, we will discuss some methods for computing and updating 

the matrix B k. These include exact computation, finite difference approx- 

imation, and the use of quasi-Newton updates for the Hessian of the Lagrangian 

function or the original objective function. Other choices of interest are 

identity and diagonal matrices. 

Exact Computation of the Hessian  

The matrix Bk 
is taken as the Hessian of the objective function V

2
f(x

k
) 

or the Hessian of the Lagrangian VxxL(x k ,u k ,v k ) given by: 

VXX L(x
k ,u k ,v k ) = V2f(x k ) 	u.v g. k 2 

v.V h..(x 
i=1 	1 	/ 
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In [1963], Wilson used the Hessian 7xxL of the Lagrangian function and was 

able to show superlinear convergence of the algorithm. One disadvantage 

caused by this choice, however, is the requirement that the Hessian be 

n2 T determined at each iteration k. This involves the evaluation of 	(1+m+e) 

scalar functions even if all gradient vectors are given. For most func- 

tions this operation is very costly. If the Hessian 7 xxL(x,u,v) is relatively . 

 easy to obtain and is positive definite, then this approach may prove attrac-

tive. Keeping in mind the difficulties associated with solving a nonconvex 

quadratic program, several methods have been proposed to maintain positive 

definiteness of B
k 
even if the Hessian V

XX
L(x

k
,u

k
,v

k
) were not. In [1967], 

Greenstadt suggested 

Bk  = 	$b.tk 	ill 
i=1 

where S i  = max Ila i i,81, cS is a positive scalar, a i  is the ith eigenvalue of 

V
XX

L(x
k
,u

k
,v

k
) and b i  is its corresponding eigenvector with Hb. 	= 1. The 

method of Levenberg-Marquardt is to let 

Bk = VxxL(x
k

u
k
,v

k 
+ BI 

where B is a positive scalar large enough to assure that 8 k 
is positive defi-

nite. One particular implementation of this scheme is to attempt to use 

Cholesky's factorization of 7xx 
 L(x

k
,u

k
,v

k
) into the form LDL

t
, where L is a 

lower triangular matrix with ones on the diagonal and D is a diagonal matrix 

with positive diagonal elements. If 7 xxL(x
k
,u

k
,v

k
) is not positive definite, 

the factorization would fail, but as described in Gill and Murray [1972], a 

factorization of a modified matrix B will be at hand. For other methods, 
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see Goldfeld, Quandt, Trotter [1966], Fiacco and McCormick [1968], Gill and 

Murray [1972], Mathews and Davies [1971], Fletcher and Freeman [1977]. 

Finite Difference Approximation of the Hessian  

If obtaining the Hessian VxxL(x,u,v) or V 2f(x) is relatively difficult, 

a finite difference approximation to the Hessian can be used. This is done 

as follows: 

VL(x
k
+hej ,u

k
,v

k
)
i 

- V
x
L(x
kk

,v
k

) 
[B

k
]
ij 

- 	 h 	 ,i,j = 1,...,n 

where h is a suitably chosen scalar, and e j  denotes a unit vector whose jth 

entry is one. 

There is a significant amount of theoretical and computational support 

for this approximation. For example, see Goldstein [1965], Stewart [1967] 

and Goldstein and Price [1967] and Dennis [1972]. The expense of computing 

n
2 

(l+m+Z) scalar functions still remains and positive definiteness of B k  is 

not guaranteed. 

A technique to reduce the overall computational effort is to hold the 

matrix B
k 
fixed for a certain number of iterations. This is practically useful 

when the change of the Hessian is not significant. However, it is difficult 

to decide how long the matrix should be held fixed. For details of this 

technique, see Brent [1973]. 

Quasi-Newton Updates  

To avoid calculating second derivatives, quasi-Newton updates have been 

investigated by several authors. The basic scheme is of the form: 

B k+1 

Here D
k is called a correction matrix and is chosen to assure that B k+1 



1 0 

satisfies the quasi-Newton equation: 

B
k+l s

k 
= y

k 

where s k  = x
k+1 

- x
k 

and yk  = VxL(x
k+1

,u
k+1

,v
k+1

) - VxL(x
k
,u

k+1
,v

k+1
). First, 

we discuss updates for dense and symmetric Hessian matrices. Later, we will 

discuss updates for the sparse case. 

Garcia and Mangasarian [1976]  

Garcia and Mangasarian proposed a suitable update similar to those used 

in quasi-Newton methods for unconstrained optimization. They used an updating 

mechanism for an (n+m+t) x (n+m+t) matrix which approximates the Hessian of 

the Lagrangian. The upper left n x n submatrix is used as the quadratic 

form in the direction finding problem. To be specific, the updating scheme 

is given below: 

.
Y  

H 	= H + 
0 	

e2 
skk  ctr +r vt 

) (4- k - k —ks kJ 6  k+1 	k 	t 	
t
C 

N 	(stcs)2 
C  kskskk 

skC ksk 	 k k k 

where 

s 	= zk+1  

z
k 	

= (x
k 
 ,u ,v 
k k 

= VzL(z k-1-1 ) - vzL(z k ) - H ks k  

if 10-1 E 0 mod (n+m41) 
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s ks kC k 

otherwise 
s
k
C
k
s
k 

Yk  

C
k+1 
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The initial matrices H
1 

and C
1 
are equal to the (n+m+t) x (n+m+t) identity 

matrices. Since B
k 

is the upper left n x n submatrix of H
k' 

the scheme seems 

to be wasteful especially if the number of constraints is very large. Further-

more, it does not guarantee that the matrix B k  is positive semi-definite. 

Han [1976]  

As opposed to updating the overall Hessian of the Lagrangian, Han pro-

posed updating the Hessian cl xxL(x
k
,u

k
,v

k
) only with respect to the vector x. 

The updates are extensions of some well known double rank updates for uncon-

strained optimization problems. The general formula is given below: 

c 	(, 	c  ) 	c t ( , 
(Yk—Bk - 1C — k 	c k`Jk -"k'k

t 
 ' 	'k'Jk- Lik'k )c kc k Bk+l = B

k 
+ 	

ts
k

) 2 (c
k ks k 

, 	 , 
where s k  = x

k+1 
- x

k
, y k  = 7x L(x

k+1 
 ,u

k+1 
 ,v

k+1 
 ) - 7x Lkx

k 
 ,u

k+1 
 ,v

k+1 
 ), and c k  

is any vector with qs k 	0. Even though the above formula updates the 

Hessian of the Lagrangian only with respect to the x vector, it has the 

disadvantage that it does not preserve positive definiteness. 

Powell 11978]  

Powell presented a quasi-Newton update which preserves positive definite-

ness of the matrix B
k 
even if the Hessian

xx
L(x ' u '

v) is itself not positive 

definite. Powell's update can be thought of as an extension of the well 

known BFGS formula given below. 

R 	c tlq 
wk- k- k-k  YkYk  

k+1 s
t
B s 	s

t 
k k k 	k-

v  
k 

where s
k 

= x
10-1 

- x
k 
and y =

k+1
,u

k+1
,v

k+1 ) -
x
L(x k

,u
k+1

,v
k+1

). If 
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the matrix B
k is positive definite, then the matrix 

B k+l is also positive 

definite provided that s kyk  > 0 holds. However, Powell pointed out that 

s
k
y
k 

> 0 may not be satisfied due to the negative curvature of the Lagrangian 

function. Rather than using H k  in the third term of the BEGS formula, 

Powell used the vector E k  which is a convex combination of y k  and B ks k . 

The convex combination is chosen so that s
kE k 

> 0 holds in all cases, thus 

maintaining positive definiteness of B k+l. This update is given below. 

	

B s s tB 	E Et 
B 	B 	k

t
kkk 	kk 

k+1 	k 
 

s B s 	EtE 

	

kkk 	kk 

where Ek  = e y k  + (1-0) B k s k , and 

1 
e= 

0.2 s kB k s k  

s tB s -s ty 
kkk kk 

if s
t
y > 0 2s

tB s 
kk — •kkk 

otherwise 

Sparse and Symmetric Updates  

For sparse problems, the quasi-Newton updates discussed so far have 
2 

several drawbacks. First, because of symmetry, li. memory locations are 

needed, which becomes impractical as n increases. Second, zero elements in 

the Hessian of the Lagrangian will be approximated by generally nonzero 

elements resulting from the updating formula. Finally, the update formulae 

may waste a substantial computational effort in carrying out unnecessary 

matrix and vector multiplications. Here we discuss sparse and symmetric 

updates where the Hessian VxxL(x,u,v) of the Lagrangian function or the 

Hessian of the objective function has a known sparsity pattern. 

Let J be the set of indices denoting the positions of the known zero 

entries of the Hessian and let K be the set of all indicies not in J. 
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In [1977, 1978], Toint proposed the sparse and symmetric update given as 

follows: 

First the vector Ti, i = 1,...,n is defined as follows: 

k if (i,j)cK 

Tij = 

otherwise 

An n x n matrix 0 is formed using the vectors T i 's as follows, where (S ii  is 

the Kronecker delta. 

(1)
ij 

= T
ij

T
ji 	

UT. H- a.., i = 1,...,n, j = 1,...,n 1 	lj 

Note that 	satisfies the sparsity conditions, and is symmetric and positive 

definite provided that none of the vector T i , i = 1,...,k is identically zero. 

Then 

0 	 if (i,j)EJ 

).. = 
ij 

8.
1
s
k 	

a.s
k 	

(Bk ) ij 	
otherwise 

i 

where the vector B is 

B = -1 (y k 
 -B kS

k  

Note that the above update satisfies the Quasi-Newton equation. See Schubert 

[1970] for an update of the Jacobian matrix for nonlinear systems of equations. 

The intereste ,-! reader may refer to Goldfarb [1970] for an update based on 

the Cholesky decomposition, Marwil [1978] and Shanno [1980] for an update 

based on Greenstadt's [1970] variational method. 
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Special Choices of B k  

Here we will consider two special choices of B k . When B k  is chosen to 

be the identity matrix, the subprogram Q(x k ,Bk ) is equivalent to the problem 

of finding the least distance from the point - Vf(x
k
) to the feasible region 

of the direction-finding problem. Several authors have provided efficient 

methods to handle this special problem. For example, see the survey paper 

by Cottle and Djang [1979]. Here we may expect that the direction d k  pro-

duced by Q(xk ,I) would be inferior to the direction produced by O(x k ,Bk ) 

around the solution R. However, the subprogram O(x
k
,I) has some advantages. 

One principal advantage is that this program is usually much easier to solve 

than Q(xk ,B k ). Another factor is the fact the program Q(x k ,Bk ) yields super-

linear convergence only in the vicinity of a solution point 5i, but actually 

has no theoretical advantage, in early stages of the optimization process. 

The use of the program Q(x
k ,I) can be interpreted as an extension of the 

steepest descent method for unconstrained optimization. 

Another choice is that each B
k 

is taken as a diagonal matrix whose 

diagonal entry approximates the Hessian of the Lagrangian function or the 

objective function by finite difference methods. To be specific, let 

V L(x
k+he.,u

k
,v

k
) - Vx L(x

k 
 ,u

k 
 ,v

k 
 ). 

(B k 
 ) . = max 11, 

h 

i = 1,...,m 

where h is a suitably chosen positive number and e i  denotes an n-dimensional 

unit vector whose ith entry is one. We note that the (l+m+t) gradient vectors 

are evaluated to produce the diagonal matrix at each iteration. Note that 

the matrix B k  is positive definite, and !'1301 and 11B k -1 [lare both bounded 

if the gradient vectors are bounded. Other choices for the diagonal matrix 

B will be investigated. 
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1.2-3 Feasible Region for the Quadratic Program  

Here we let•S be the feasible region of problem P. That is, 

S = {xi g i (x) < 0, i = 1,...,m, h i (x) = 0, i = 1,. .,t1 

We assume that S is nonempty and that g i (), i = 1,...,m and h i (•), i = 

 
are continuously differentiable. Let S(x

k 
 ) denote the linearization of the 

set S at the point x k  so that 

	

S(xk ) = {xJ 	gi(xk) 	
vg.(xk)t(x_xk) 

h i (xk ) + vh.(x k ) t (x-x k ) = 0, i = 1,...,.2} 

Note that the feasible region of the quadratic program Q(x k ,B k ) is nonempty 

only if S _(x k ) is nonempty. If the latter is empty, then the quadratic program 

is inconsistent and the quadratic approximation algorithm will stop prematurely. 

This point is illustrated by the following example. 

	

Example 1:  minimize 	xi  + x2  

subject to h l  (x)= x2 + x 2
2 
  - 2 = 0 

xeE
2 

Note that the feasible region of the problem is nonempty and that the optimal 

solution 7( is (-1, -1) t . Let B k  = I and consider the quadratic subprogram 

at the point x
k = (0,0)

t  given below: 

	

minimize 	(di+d2) + 1
2_ (d 2i+d 22)  

subject to - 2 = 0 
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Clearly this problem is inconsistent and would result in premature termina-

tion of the algorithm. 

In the vicinity of a Kuhn-Tucker point satisfying the second order 

sufficiency optimality conditions, the region S(x k ) is nonempty. If the 

point x k  is feasible, the region S(xk ) is indeed nonempty because d = 0 is 

feasible. However, if the point xk  is infeasible and remote from the solu-

tion point, we must provide a resolution to the case where the region S (x k ) 

is empty. Han [1977] provided a sufficient condition to assure that the 

region S(x k ) ) is nonempty. The result is summarized in the following lemma. 

Lemma 1  

Let g i , i = 1,...,m be continuously differentiable and convex, and 

h i , i = 1,...,.2 be affine. 	If the set fxl g i (x) < 0, h i (x) = 0, i = 1,...,m, 

i = 1,...,21 is nonempty, then S(x k ) is nonempty for any x kEE k . 

Clearly, this sufficient condition is very restrictive. Bazaraa and 

Goode [1979] introduced artificial variables to prevent the constraint set from 

being empty. Through the use of a penalty term, these artificial variables 

i will be equal to zero, unless of course the region S(x k ) is itself empty. 

This quadratic program is given below: 

D(x
k
,B 	. 	 4 	-i 	Zi ) Vf(x

k
)
t
d + 

1
- d tB d + r 	v + 	(z-  + 4. ] 

	

k
) 	minimize ' 	 2 	k 	-1=1 	' 	i=1 

subject to g.(x k ) + vg.(x k ) td < y., i = 1,...,m 

h.1 (x
k 
 ) + Vh.(x

k 
)
t 
 d = z.

+ 
 - z. 	i = 

Yi > 0 
	

, i = 1,...,m 

z i > z• >0 
	

i = 
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where r is a sufficiently large positive number. The introduction of the 

artificial variablesy i , z7i  and z4i.  assures that the feasible region of 

D(xk ,B
k
) is maintained nonempty. However, we will show through a simple 

example that quasi-Newton updates of B k  are inadequate in this case unless 

some additional considerations are taken into account. 

Example 2:  We will reconsider Example 1. 

minimize 	x 1  + x2 

 
subject to x

1 
+ x

2
2 
  - 2 = 0 

xa
2 

Let the point x
k 

= (0,0)
t 
and B

k 
= I. Then we get the quadratic program 

D(x
k
B k ) given below: 

minimize 	d1 	d2 	d '2I 	r(Y+ 	Y )  

subject to - 2 = y+  - y 

y
+ 

> 0, y > 0 

The optimal solution to the above problem is 

dk 

=2 

The Lagrangian multiplier q associated with the linear equality constraint is 
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q= r 

Note that the Lagrangian multiplier u = 2 at the optimal solution X = (- 1,-1) t . 

If r is sufficiently large, the estimate Ci of the Lagrangian multiplier 

is unnecessarily large. The Lagrangian function will thus be 

L(x,C1) = x l  + x 2  + r(xl+x 22 -2) 

which means that a big penalty is imposed on the constraint because it was 

inconsistent at the point x
k 

= (0,0) t . The unnecessarily large number CI 

may result in ill-conditioning of the next iterate 6 01  like penalty function 

methods. We note here that the choice of B
k 
in Bazaraa and Goode (1979) does 

not depend on the estimates of the Lagrangian multipliers. When an update 

of Bk is applied,one approach is to keep the values of the Lagrangian multi-

pliers corresponding to the inconsistent constraints fixed rather than 

replacing them with the Lagrangian multipliers produced by the quadratic sub-

program D(x k ,B k ). In this study, we will investigate the subprogram D(x k ,B k ) 

further. 

Another approach is to eliminate some inconsistent constraints. Let 

I(xk) ' 	11V9i(x ic )11 
	

01 and J(x k ) = 	11Vh i (x k )11 # 01. 	Then we have 

the following linear system to represent the feasible region of the quadratic 

subprogram Q(x k ,B k ) 

g i (xk ) + vg i ( xk ) td < 0, iEI(x k ) 

h i (x k ) + Vh i (x k ) 	= 0, icJ(xk) 

We will investigate some sufficient conditions to guarantee that the above 

system is not empty. 
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1.2-4 Updating the Lagrangian Multipliers  

In this section, we will discuss updating the Lagrangian multipliers. 

The estimates u
k+1 

and v
k+1  

of the Lagrangian multipliers may be used to 

determine the matrix B k+l if B
k+1 is chosen to approximate the Hessian of 

the Lagrangian function. Here we will discuss the updating scheme employed 

by most authors and then discuss some variations to be investigated further. -

The most popular updating scheme is given below: 

and 

k+1 	k 
u 	= p 

vk
+1 

= q
k 

where p
k 

a
n
d q

k 
are the Lagrangian multipliers obtained from problem 

Q(x k ,B k ). Note that since p k  > 0, the nonnegativity of u k+1  is automatically 

maintained. This scheme has a certain advantage that if the sequence ix
k

1 

converges to a Kuhn-Tucker point X, the estimates u
k 
and v

k 
converge to the 

vectors u and 	of of the Lagrangian multipliers, respectively. Under this 

method, the dual solution (p
k
,q k

) may affect the numerical stability of the 

matrix Bk+l. If the length of the vector (p
k
,q

k
) is unnecessarily large, 

the next iterate B k+l may suffer from ill-conditioning. This situation may 

arise if Q(x
k
,B

k
) is inconsistent and if the search direction is obtained 

by solving D(x k ,B k ) as explained in Example 2 in Section 1.2-3. 

Han [1977] presented a sufficient condition that the 00-norm of the dual 

solution (p k ,q k ) is bounded by a certain positive number. The result is 

summarized in the following theorem. 

Theorem 1  

Let f and g i , i = 1,...,m be continuously differentiable, g i , i = 1,...,m 

be convex, and h i , i = 1,...,2 be affine. Suppose that the feasible region of 
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the original problem P is nonempty. Further, suppose that the matrix B k 

 satisfies the following condition: 

61 A If Hu !I 	t 

	

B
k
d< d2 
	

H 2 
for any dEE

k
, for all k <d   

Then there exists F > 0 such that if (pk ,q
k
) is a dual solution to 0(x

k
,B ) 

then the 0.-norm of the dual solution (p k ,q k ) is bounded by r for each k. 

The sufficient condition seems restrictive mainly because of convexity 

of the inequality constraints and linearity of the equality constraints. 

Since the number F. is unknown a priori, there still remains the possibility 

of ill-conditioning of the matrix B k  if r is sufficiently large. 

Revising the Updating Scheme  

Let d
k 
be a solution to Q(x

k
,B k ). Then the dual vector (p

k
,q

k
) solves 

the following system: 

m 	k 	t  
vf(x k ) + B kd k  i-Zp.vg.(x ) +1q.vh,(x

k
) = 0 

k 	i=1 	 i=1 	1 	I  

pi ( gi ( x k) 	vgi(xk ) t.k, 

	

a ) = 0, 	i = 1,...,m 

> 0 	 i = 1,...,m 

Note that the system may not have a unique solution. In particular, we are 

interested in finding a solution (p k ,q k ) with minimum co-norm to prevent the 

possibility of ill-conditioning of the matrix B k+l . Furthermore, we will 

investigate other updating rules. One such rule is: 

uil=rm(10,uk-i-cSg.(x
k+1 ) 1 

i 	 1  

101 	k 	, k+1 N  
V. 	= v. + dh.kx 	) 

1 	1 
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where 6 is a suitably chosen positive number. This method can be inter-

preted as a subgradient optimization scheme where a fixed step along the 

subgradient (g(x 1(41 ),h(x kl-1 )) to the Lagrangian function is taken, and 

then forcing any negative components of the Lagrangian multipliers of the 

inequality constraints to be equal to zero. 

1.2-5 Local Convergence  

One of the key advantages of quadratic approximation methods is the 

fact that they enjoy a superlinear rate of convergence in the vicinity of 

a Kuhn-Tucker point satisfying second order sufficiency conditions. In this 

section, we will discuss the major results and assumptions which guarantee 

superlinear convergence. 

First, we review the second order sufficiency condition which was first 

studied by Fiacco and McCormick [1968]. 

Definition  

A Kuhn-Tucker triple (R,5,Ci) of problem P satisfies the second order 

sufficiency conditions if the following conditions are simultaneously satisfied: 

(i)G i 	0 if ieI(X), where I(x) = 	gj (R) = 01. 

(ii) The set N, the collection of the gradient vectors Vog i (R), ieI(R) 

and Vh i (X), i = 1,...,Z, is linearly independent. 

(iii) The Hessian V
XX

L(2) is positive definite on the tangent subspace 

T = fyl ytd = 0, deNl. 

Local convergence can be established through the use of a contraction 

mapping defined on a sufficiently small ball B e (i) = fz! n z-in < el such 

that 



22 

h z k-211  

where z denotes a Kuhn-Tucker triple satisfying the second order s-fficiency 

conditions. The following theorem summarizes the main local convergence 

result of the algorithm. 

• 

Theorem 2  

Let i = (X,171,T) be a Kuhn-Tucker triple of problem P. Suppose that 

satisfies the second order sufficiency condition, and that f, g i ,(i.1, .,m), 

h i ,(i=1,...,t) have a second derivative which is Tipschitz continuous at the 

point x. Then for rE(O,l), there exist positive nu;abers E and 6 such that 

, 
if 11 z k-Z11  < E and 11 Bk-VxxL(II 	

(x k ,u k ,v k
),  < 6 at the point z k  = 	 there 

 — 

exists a closest solution (d
k
,u

k+1
,v

k+1
) of 0.(x

k
,B ) to (O,u k ,v k ) such that 

< 

where z k+1 	k+d k ,u,v k+1 ). 

Proof  

See Han [1976]. 

We note that the theorem holds only when z
k and B k  are sufficiently 

close to z and V
XX

L(i), respectively. Obviously, since 11 z
k+1 	< r11 z

k 	
, 

the convergence is guaranteed. However, as we will discuss later in the 

section, a fast rate of convergence characterized by superlinear convergence, 

is actually realized. 

For the discussion of the superlinear convergence, we present the following 

definitions of linear and superlinear convergence. 



23 

Let {z k } converge to 2. Then the sequence {z k } is said to converge  

linearly if there exists an re(0,1) and k o  > 0 such that 

M 	< 	for all k > k0  

If there exists a sequence NI convergent to zero such that 

H z k-1-1  iH < yk H zk  iH 

then the sequence {z k } is said to converge superlinearly. If {z k } converges 

superlinearly to 2, then 

lim   = 1 
k 	H 

- 
provided that z

k 	
z. However, the converse is not true. For more details 

on superlinear convergence properties, refer to Dennis and More [1974, 1977] 

and Ortega and Reinboldt [1970]. 

To obtain the linear and superlinear rate of convergence, several suffi-

cient conditions have been provided. The conditions are mainly based on the 

absolute and relative error of approximations to the Hessian, measured by some 

fixed matrix norms. A sufficient condition for the linear rate of convergence 

is that H B
k
-V

xx
L(i)11< S. Here H. H denote any fixed matrix norm and 6 is 

a sufficiently small positive number. The interested reader may refer to 

Garcia and Mangasarian [1976], and Han [1976]. A sufficient condition for the 

superlinear rate of convergence is that 

_„ L , 2 „, xkl-1 -xk m , 
'xx 	!ik  - o 
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This condition is credited to Han [19761. For similar conditions, refer to 

Garcia and Mangasarian, and Powell [1978]. We note that if 	Bk-7xxL(i)11 

converges to zero, then the sequence {z k } converges superlinearly to z. 

The reader may easily note that the methods of Wilson [1963], Robinson [19721 

and the finite difference procedure are superlinearly convergent because 

lim 	Bk-7xxL(2)11 = 0. However, the condition lim 11 B k
-7xxL(i)11 = 0 is not 

koci 
necessary for superlinear convergence. 

1.2-6. Global Convergence  

In this section, we will discuss global convergence of quadratic approx-

imation algorithms employing line search. As mentioned before, in the vicinity 

of a Kuhn-Tucker point which satisfies the second order sufficiency condition, the 

distance function from the Kuhn-Tucker point can be used as a descent function, 

thus establishing convergence. If a starting point is remote from the Kuhn-

Tucker point, a line search scheme employing a suitable descent function is 

needed to achieve convergence. The choice of descent functions and their 

convergence results will be discussed in this section. 

An Exact Penalty Function  

A successful descent function is the penalty function cp r (x) of the form 

[Z 
(Pr(x) = f(x) + r 	7 max{0,gi (x)} + 1 1h 4 (x)1 

i=1 	 i=1 	' 

The parameter r will be called an exact penalty parameter. The function was 

first used as a descent function in the context of quadratic approximation 
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methods by Han [1977]. In [1979], Bazaraa and Goode simplified their minimax 

algorithm to directly handle the penalty function problem to minimize (I) r (x). 

The algorithms of Han and Bazaraa and Goode are discussed below. Both algo-

rithms are globally convergent in the sense that each accumulation point of 

the sequence {x k} is a Kuhn-Tucker point. Both algorithms have the form 

x
k+1 

= x
k 
+ X kd

k
, where d k is obtained from solving a quadratic program and 

A k 
is obtained by a suitable line search scheme. Han [1977] showed that the 

direction d
k 
obtained from the quadratic programming problem Q(x

k
,B k ) is 

indeed a descent direction for the exact penalty function. The line search 

along the direction d k  is performed as follows: 

k+1 
(I) r (x. 	) 

< min 	x +Xd ) + c
k 

0<X<5 

where (5 is a prescribed positive number and c k  is an error term allowed for 

the line search such that 

c k k=1 

We note that since the function c r (x) is nondifferentiable, derivative-based 

search methods cannot be applied directly. 

Bazaraa and Goode [1979]  

Their algorithm was originally designed to solve minimax problems. Hence 

the algorithm can be specialized to solve the exact penalty function. The 

corresponding quadratic subprogram D(x
k
,B k ) is of the form 
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D(x k ,B k ): minimize Vf(xk 	+ r 
_ 	

. 

L 	y4  + 	(z4+z] 
1  

d
t 
 B ko 2 

1=1 	' 	1=1 	' 

subject to g i (x
k

) 	+ Vg i (x
k

)
t
d 	< y i , 	i 	= 	1,...,m 

hi   (x
k
) + Vh.(xk )

t 
 d = z.

+ 
 - z., 	i = 1,...,.2 

i 

y. > 0, 	i = 1,...,m 

+ - 
z., z 1  > 0, 	i = 1,...,t 

Note that each subprogram D(x k ,B k) has a nonempty feasible region. They 

specialized Armijo [1964] search rule under the assumption that f, g i , 

i = 1,...,m, and h v i = 1,...,t,are upper uniformly differentiable. Each 

A
k is determined by: 

where m
k 

is the smallest nonnegative integer such that 

mk  k 	1 m k+1 1 
(1) ),(x

k 
 +(y) 	d

k 
 ) < cpr (x ) + (27) 	VI(¢, r (x

k
,d k ) 

where 

"cl'r ( x = vf(x k ) td k + r( y y 4  + y (44,;)) 
1=1 	' 	i=1 - 

 rli

max{0,g i (x k )} + y phi 
1=1 	 i=1 

The two algorithms can be interpreted as an exact penalty function method 

which attempts to solve a single unconstrained penalty function 4 1,,(x), resulting 



27 

in a solution to problem P. This exact penalty function approach was first 

introduced by Fletcher [1970] who transformed the original problem into a 

completely unconstrained program. The basic idea is that if R is a Kuhn-

Tucker point to problem P, there exists a number F such that i is a local 

optimal solution to the problem to minimize cpr (x) for all r > F. The lower 

bound F is estimated by the Lagrangian multipliers. For a review of exact 

penalty functions, the reader may refer to Pietrzykowski [1969], Evans, Gould 

and Tolle [1973], Howe [1973], Conn [1973], Conn and Pietrzykowski [1973], 

and Fletcher [1975]. For the existence of a globally exact penalty function 

in the convex case and in the nonconvex case refer to Bertsekas [1975], and 

Bazaraa and Goode [1979], Han and Mangasarian [1979]. 
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1.4 Summary of Completed Research  

In this section, we briefly summarize the major findings of the 

research completed thus far. A detailed description is given in the 

Appendix which reporduces the following papers: 

1. M. S. Bazaraa and J. J. Goode, "A Globally Exact Penalty Function 

Without Convexity," submitted to Mathematical Programming. 

2. M. S. Bazaraa and J. J. Goode, "An Extension of Armijo's Rule to 

Minimax and Quasi-Newton Methods for Constrained Optimization," 

submitted to Journal of Optimization Theory and Applications. 

3. M. S. Bazaraa and J. J. Goode, "An Algorithm for Linearly Con-

strained Nonlinear Programming,"Journal of Mathematical Analysis  

and Applications, to appear. 

Globally Exact Penalty Functions  

It is well known, under a suitable constraint qualification, that if 

is an isolated local optimal solution to the problem: 

minimize 	f(x) 

subject to g i (x) < 0 for i = 1,...,m 

then there exists a number A
0 
 so that x is a local optimal solution to the 

probleM: 

m 
minimize f(x) + A 	maxfo,g i (x)} 

i=1 

for all A > ;1.0* Unfortunately, however, in the absence of convexity, the 
 

above result does not hold globally. 
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In this paper we show, under mild conditions, that if a compact constraint 

set X is added to the constraints g i (x) < 0 for i = 1,...,m, then the set of 

global optimal solutions to the original problem and the set of global optimal 

solutions to the penalty problem, for a sufficiently large penalty parameter 

X, are equivalent. In order to prove this result, we use the fact that a 

family of relatively open sets that cover X must have a finite subcover. An 

estimate of the size of the penalty parameter is also given. 

Minimax and Quasi-Newton Algorithms  

An algorithm for solving a minimax problem over a closed convex set is 

developed. Using a newly developed continuous pseudo-directional derivative, 

a direction is found by minimizing a positive-semidefinite quadratic program 

over the feasible region. A step size is then computed using an extension of 

Armijo's inexact line search. 

The algorithm is specialized to both unconstrained and constrained non-

linear programs. For the unconstrained case, various steepest descent and 

quasi-Newton methods are produced through different choices of the quadratic 

form. Using an exact penalty function to handle the nonlinear constraints, 

the direction-finding problem reduces to a convex quadratic programming pro-

blem. Unlike other available direction-finding routines that linearize the 

nonlinear constraints, our program is always feasible. A suitable step size 

is then found using Armijo's rule. It is shown that accumulation points of 

the algorithm are indeed Kuhn-Tucker points to the original problem. 

Algorithm for Linearly Constrained Nonlinear Programs  

Here an algorithm for solving a linearly constrained nonlinear program 

is developed. Given a feasible solution, to avoid jamming, binding and near 
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binding constraints are identified. A direction is calculated by solving 

a least distance programming problem which is defined in terms of the 

gradients of these constraints. 

Once a direction is found, an estimate of the step size, using quadratic 

approximation of the objective function, is first computed. This estimate is 

then used in conjunction with Armijo's inexact line search to calculate a new 

point. It is shown that each accumulation point is a Kuhn-Tucker solution 

to a slight perturbation of the original problem. Under suitable second order 

optimality conditions, we show that eventually one functional evaluation is 

needed to compute the step size. 
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II. GENERIC OPTIMALITY CONDITIONS AND NONDIFFERENTIABLE OPTIMIZATION 

(J. Spingarn) 

II.1 Introduction  

Our research during the period covered by this contract has centered 

on two themes, both within the compass of mathematical programming: generic 

optimality conditions and nondifferentiable optimization. 

II.1-1 Generic Optimality Conditions  

Our work on generic conditions continued the investigation that was 

begun in Spingarn and Rockafellar [5]. In that paper, it had been shown 

that for almost all (v,u)ER nil , at every local minimizer for the problem 

Q(v,u) minimize 	f(x) - x.v 	over all xeRn  

	

satisfying g i (x) < u i 	for all i = 1,...,m 

the so called "strong second-order optimality conditions" hold (assuming that 

the functions f and g i  possess derivatives of sufficiently high order). In 

this sense, the strong second-order conditions are "generically" necessary 

for (local) optimality with respect to the class 0(v,u). 

When studying questions of genericity, the precise class of problems 

to which the results apply is crucial. The family Q(v,u) is only one example 

of a family for which the conditions are generic. So the question naturally 

arises: For what other families will the strong second-order conditions, 

or similar conditions, be generically necessary for optimality? This is the 

question addressed by our recent work on generic conditions. Our principal 
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accomplishment in this direction has been to obtain an easily verifiable 

criterion which ensures the genericity of the conditions. 

In some circumstances, we found that it is necessary to modify the 

strong conditions themselves. This situation occurs when the family includes 

both "fixed" and "variable" constraints. "Fixed" constraints are those that 

do not vary with the problem parameters, while "variable" constraints do. 

The exact manner in which the generic conditions depend on the fixed 

constraints is also described by our results. 

11.1-2 Nondifferentiable Optimization  

If f: R'->R is a locally Lipschitz function, the generalized subdifferential  

of f is the set-valued mapping 3f: fel-4R n  defined by taking 3f(x) to be the 

convex hull of the set of all limit points of sequences of the form (Vf(x n )), 

where x
n
-).x and f is differentiable at x

n
. (This definition is due to F. 

Clarke [9]). If f happens to be convex then 3f(x) is just the set of 

"subgradients" of f at x, i.e., the set {: f(z) - f(x) > <E„z-x> VzO n l. 

When the generalized subdifferential was first studied, the motive was 

to provide a tool that would be of use in handling optimization problems in 

which a function which is neither convex nor differentiable is to be minimized. 

Most algorithms for solving constrained or unconstrained minimization problems 

make heavy use of derivatives or, in the nondifferentiable but convex case, 

of subgradients. To generalize such algorithms to a broader class of func-

tions, it is necessary to have a substitute; hence the need for the generalized 

subdifferential. 

Our work in this area has concentrated on the relationship between certain 

properties of nondifferentiable functions and properties of their generalized 

subdifferentials. The basic goal has been to identify subclasses of functions 
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which are both likely to arise in optimization problems and whose subdiffer-

entials posess properties which are likely to facilitate the development 

of algorithms. 

Our principal achievement in this direction has been to characterize 

the class of "lower-C l " functions in terms of their subdifferentials. 

Lower-C
1 

functions are a desirable class of functions to study because of 

the natural way they arise in optimization problems. Anytime a function is 

obtained by maximizing in one argument a second function of two arguments 

(e.g., f(x) - max g(x,$) one obtains a lower-C 1  function, provided the 

second function has a continuous derivative and the maximum is taken over 

a compact set. Such functions arise in decomposition schemes for mini-

mizing a function of two arguments. 

The most remarkable feature of our characterization of lower-C 1  func-

tions is that the corresponding property of the subdifferential mapping is 

so closely related to the "monotone" property that characterizes the sub-

differential of a convex function. Because of this resemblance, we have 

coined the word "submonotone" for the related property. The close resem-

blance is more than a curiosity. There is reason to hope that the simi-

larity will facilitate the transfer to nondifferentiable optimization of 

algorithms originally intended for convex programming. 
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11.2 Research and Publications Summary - Generic Conditions  

The results of our work in this area form the basis for two articles: 

On optimality conditions for structured families of nonlinear programming 

problems" (submitted to Mathematical Programming) and "Second-order opti-

mality conditions that are necessary with probability one" (to appear in 

Proceedings, Symposium on Mathematical Programming with Data Perturbations, 

George Washington University, May 1979). The latter article is a survey 

without proofs of all our research on this subject to date, while the 

former contains the main results and their proofs. 

We investigated problems of the general form indexed by a parameter 

pEP, with PC:We' an open set: 

Q(p) minimize f(x,p) over all xeCC:R n  

satisfying g i (x,p) < 0 for all i=1,...,m, and 

h.(x,p) = 0 for all j=1,...,k 

This class is more general than Q(v,u) in two important respects. First, 

themannerinwhichf,g.and h j  depend on the parameter is given more 

freedom. Rather than requiring perturbation of a special type (e.g., linear 

perturbations of the objective function and right-hand-side perturbations of 

the constraints), we only required that the family Q(p) satisfy a general 

criterion. Second, in addition to the constraints g. < 0 and h = 0, which 

we refer to as the "variable" constraints, we also investigated the effect 

of the "structural" or "fixed" constraint xeC that does not vary with p. 

The distinction between these two types of constraints is important because 

the two types play different roles in both the analysis of the conditions 
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and in the statement of the conditions themselves: the conditions that 

turn out to be generically necessary for optimality depend on the parti-

cular class of problems under consideration. 

Our principal accomplishment here was to give appropriate criteria 

for the family Q(p) which guarantee the genericity of the second-order 

conditions, and also to describe the form of the second-order conditions 

and how they depend on the fixed constraint set C. 

In order to duscuss second-order conditions, we found it necessary to 

make certain second-order regularity assumptions about the set C. The 

conditions that we imposed on the set C were incorporated into our defini-

tion of "cyrtohedron". Cyrtohedra, which we introduced in [4], are piecewise 

smooth sets that can be represented locally be a finite number of nonlinear 

inequality and equality constraints. A cyrtohedron is a union of submani-

folds, called the "faces" of C, and each xeC belongs to a unique such face. 

In a natural way, with each x6C, we can associate the normal cone N c (x) to 

C at x, and the tangent spact at x, Lc (x), to the face containing x. 

The second-order conditions which we showed to be generically necessary 

for optimality are the generalized strong second-order conditions discussed 

previously in Spingarn [4]. A triple (ii,,i,i)eCxRTxR k  is said to satisfy 

these conditions for the problem Q(p) if 

(SSOC) 	(i) R is feasible for Q(p) 

(ii) -VxL(X,;(,i,p) relint N c (X), where L is the usual 

Lagrangian, and "relint" denotes relative interior 

. > 0 iff g.(X,p) = 0, for each i 

(iv) The projections onto L (R) of the gradients of the 

active constraints are linearly independent 

(v) If F is the face of C containing R then s7. (LIF)(,;, ,i,p)(s,$) > 0 

for all sER n  satisfying 0 # scLc (TO, s perpendicular to the 

gradients of the active constraints. 
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The family Q(p) is full provided the function p 1  ,* V 	L(x,y,z,p
1 ) has 

x,y,z 

Jacobian of full rank at all (x,y,z,p)ECxRTAR 4  (where L(x,y,z,p) = 

f(x,p) + ly i g i (x,p) + Izi hi (x,p) is the usual Lagrangian). Our main result 

is the following: 

Theorem 1  

Let CC:R
n 

be a d-dimensional cyrtohedron of class C
s

, 
f 
of class C

2
, 

and g and h of class C s  on RnxP with s > max110-ml. If Q(P) is full, there 

is a subset P0 (.: P with P/Po  having measure zero, such that for all 500 : 

if ReC is a local minimizer for Q(5) there exists (y,i)ERTxR k  satisfying SSOC. 
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11.3 Research and Publications Summary - Nondifferentiable Optimization  

We have published our results from this line of work in "Submonotone 

subdifferentials of Lipschitz functions" (to appear in Trans. Amer. Math. Soc.). 

f: R
n 

-4- R is a lower-C
1 

function if every 5CERn  has a neighborhood U such 

that for all xEU, f(x) = max g(x,$), where S is some compact set and g and 
sES 

V g are continuous jointly in x and s. If f is a locally Lipschitz function 

Rn 	R, we say that of is strictly submonotone  if for all xeR n , 

lim inf 

x l 	x2 
x i 	x 

yi E3f(x i ) 

i = 1,2 

<x l -x 2 , y1-y 2> 	0  

1x 1 -x 2 1 

Our principal result is the following 

Theorem 2  

f is lower-C 1 iff 3f is strictly submonotone. 

Notice the close relationship between strict submonotonicity and monotonicity. 

The latter property clearly implies the former since if of is monotone, the 

numerator in the "lim inf" above is always nonnegative. 

We also investigated the property of "submonotonicity", which is 

stronger than strict submonotonicity, but weaker than monotonicity. 3f is 

submonotone  if for all xERn, 



x -4- x 
1 
x # x 

ycaf(x) 

y l e3f(x l ) 

1 	1 
1 im imf 	

<x -x, y -y> 
 > 0 

1 	 ix
1  
-xl 
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In terms of the function f, we showed that the submonotonicity of of 

corresponds to a certain "regularity" property of the directional deriva-

tive of f. We also proved several results which relate submonotonicity to 

properties that have been studied by other authors, such as semismoothness 

(Mifflin [7]), lower semi-differentiability (Rockafellar [6]), quasi-

differentiability (pshenichnyi [81), and Clarke regularity [10]. For 

instance, we showed that of is submonotone if f is both semismooth and 

Clarke regular. 
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1. Introduction  

A great deal of attention has been given to the subject of exact penalty 

functions where a constrained nonlinear programming problem is transformed 

into a single unconstrained problem or into a finite sequence of uncon-

strained problems. 

Without convexity, the current theory applies only locally. Specifically, 

if x is a strict local minimum to problem P0 
 to minimize f(x) subject to 

g i (x) < 0 for i = 1,...,m, under a suitable constraint qualification, there 

exists a number X
0 
 such that x is a local optimal to the problem to minimize 

e(x,X) for all X > X
0' 
 where e(x,X) is an appropriate penalty function. 
 

For a review of exact penalty functions, the reader may refer to Evans, 

Gould, and Tolle [4], Fletcher [5], Han and Mangasarian [8], Howe [9], 

McCormick [11], and Pietrzykowski [12,13]. For the existence of a globally 

exact penalty function in the convex case, see Bertsekas [3] and Zangwill 

[15]. 

The main result of this paper is to show, under mild assumptions, the 

existence of a globally exact penalty function in the nonconvex case. 

Before proceeding, it is worthwhile to briefly review the cases under which 

an exact penalty does not exist. In this regard, consider problem Po  and 

let gi (x).4. = max {0,g i (x)}. Given the penalty parameter X, the penalty 

problem is to minimize e(x,X) - where e(x,X).= f(x) 	X 	g.(x) . Figure 1 shows, 
i=1 1  

for m=1, the set A = {(gi (x) +,f(x)): xER
n
1. It is clear that if X solves 

problem P0 , then there exists a X 0 
 so that x also solves the penalty pro- 

blem to minimize e(x,X) for all X > X 0' 
 if and only if there is a nonver- 

—  
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tical supporting hyperplane with slope -A 0 , to the set A at the point 

(g(x),f(x)). In Figure la, such a supporting hyperplane exists, whereas 

in Figures lb and lc, a globally exact penalty function does not exist. The 

case illustrated in Figure lb can be easily overcome by the stipulation of a 

suitable constraint qualification of the kind that is needed to validate 

the Kuhn-Tucker conditions. 

If we modify problem P o  so that a compact set X is included in the 

constraints yielding the compact set A' = {(g i (x) +,f(x)): xeX}, as shown 

in Figure ld, a supporting hyperplane can be found. 

In this paper we consider the following problem: 

Problem P: minimize f(x) 

	

subject to gi (x) < 0 	 for i = 1,...,m 

xcX 

We think of the constraints defined by X as easy constraints that must be 

handled explicitly and of the constraints g i (x) < 0 for i = 1,...,m as 

those that are treated by a penalty function. Typically, X contains lower 

and upper bounds on the variables, and possibly linear constraints. As 

discussed above, we prove that if X is compact and under a suitable con-

straint qualification, a globally exact penalty exists. The penalty pro-

blem under consideration is: 

Problem P(A): minimize 	8(x,X) 

subject to xeX 

In this study, we let 0(x,A) = f(x) + A X g (x) + 	All the qualitative 
i=1 

results given in this paper are valid if the expression 	g.(x) is + 
1=1 



f (x) f (x) 
f(x) = x

2 

gl (x)  = x  

gl (x )-1. 
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f(x) = x 2  
g
1
(x) = x 

f(x) = x x 
 g

1
(x) = 1-e 

f (x) 

(a) (b) 

f(x) = x x  

gl(x) = 1-e 
x = [-1,1] 

g
1
(x)

+ 

supporting hyperplane 
with slope -X0  

supporting hyperplane with slope -A0  = 0 

A= (y,z): y > 0 and z = y
2 
or y = 0 and z > 0} 	A = {(y,z): y > 0, z = + 

A nonvertical supporting hyperplane exists in 
	

A nonvertical supporting hyperplane 
the convex case 
	

does not exist in the convex case due 
to the lack of a constraint quali-
fication 

A = {(y,z): y = 0 and z > 0 or 0 < y < 1 	A'= ((y,z) : y = 0 and zc[0,1] or 

and z = Zn (1-y)1 	 0 < y < 1-e-1  and z = tn (1-y)} 

A nonvertical supporting hyperplane does 	A nonvertical supporting hyperplane 
not exist in the nonconvex case because 	exists in the nonconvex case in the 

of noncompactness of A 	 presence of the compact set X 

(c) 
	

(d) 

Illustration of a Globally Exact Penalty Function in the (g +,f) plane Figure 1. 
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replaced by the expression Q( II g(x) + II ), where Q: 11.4. 	satisfies: 

Q(0) = 0, Q(6) > 0 	for 6. > 0, co > lim Q(6)/6 > 0 
6 ►0+  

This assertion follows directly from a Theorem in [8]. 

Throughout the paper, we assume that f and g are continuously differ-

tiable, and that X is closed. Further, we suppose that problem P is con-

sistent. These assumptions will not be repeated in the statements of the 

theorems given in the paper. We also note that equality constraints of 

the form h(x) = 0 for i = 1,...,.2 can be incorporated without any diffi-

culty. In order to keep the notation and development simple, we chose 

to omit their inclusion. 

In Section 2, we give two different sufficient conditions that ensure 

the existence of an exact penalty strict local minimum. Using compactness 

of X and the fact that a relatively open cover has a finite subcover, we 

establish in Section 1, the existence of a globally exact penalty function. 

Finally, in Section 4, we provide some insight into.determining the size 

of the penalty parameter. 



2. Sufficient Conditions for an Exact Penalty  

Strict Local Minimum  

In this section, we show that an exact penalty strict local minimum 

exists under two different conditions. These conditions generalize 

similar conditions which are available in the literature in that they 

handle the presence of the set X.. Particularly, Theorems 2.1 and 2.2 

extend similar results of Howe [9] and Han and Mangasarian [8], respectively. 

They assert that there exists a positive number A 0  such that if x is a 

strict local minimum for Problem P, then x is also a strict local minimum 

for Problem P(A) for all X 	These theorems will be used in the next 

section to prove our main result showing the existence of a globally exact 

penalty function. 

The following notation and definitions will be used throughout the 

manuscript. 	Given xEX, let 

I
+
(x) = gi (x) > 01 

1- (x) = (i: gi (x) < 01 

I(x) = fi: gi (x) = 01 

x is a strict local minimum for Problem P ++ there exists c > 0 such that 

f(x) > f(x) for each x 0 xcX such that ilx-Xil < c and g(x) < 0 for 

i = 1,...,m. 

x is a strict local minimum for Problem P(A) ++ there exists c > 0 such that 

6(x,X) > 0(X,X) for each X 0 xeX such that 	 < E. 
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Next, we need to provide suitable tangential approximations to the 

set X at a point xeX. Following Rockafellar [14), consider the contingent 

cone K(x) and the cone of hypertangents H(x) defined below: 

ycK(x) ++ there exist a sequence {y
k
} converging to y and 

a positive sequence {X k} converging to 0 such 

that x + Xkyka  for each k. 

ycH(x) ++ for each sequence {xk }  in X converging to X, there 

exists a positive sequence {X k} converging to 0 

such that x
k 

+ XycX for all Xe(0,X k
) 

Note that H(x) is a convex cone which is not necessarily closed and that 

K(x) is a closed cone, but not necessarily convex. Further, H(x) C K(x). 

Theorem 2.1 below gives a sufficient condition for the existence of an 

exact penalty strict local minimum, where the closed convex cone C(x) is 

defined by: 

ycC(x) 	Vgi (x) ty < 0 	 for each icI(x) 

Theorem 2.1  

t 
Let x be feasible for Problem P and suppose that Of (x) y > 0 for each 

0 4 yeC(X) n K(x). Then: 

1. x is a strict local minimum for Problem P. 

2. there is a number X 0 
 > 0 so that for all X > X0'  x is  

a strict local minimum for Problem P(X). 

Proof 

Suppose by contradiction to part (1) that there exists a sequence {xk } 

converging to x such that xk  # X, xka, gi (xk) < 0 for i = 1,...,m, and 

f(xk) < f(X). Let yk  = (xk-x)/Nxk-XII. Then, Mykil = 1 and there exist a 

subsequence fyit 1K  and a vector y as that HO = 1 and y 	y as k =0 in K. 
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Then, yeK(x

- 

). Since gi (xk) < 0 = g i (x

- 

) for icl(x), then 

114 (x,x,-x) 
(1) Vgi (X) tyk  + 	  0 

where Ri (X,h)/Hhil + 0 as OH + 0. By taking the limit of (1) as k + co in K, 

it follows that Vgi (X) ty < 0- for ieT(X). Therefore, yeC(x) n K(x). Since 

IIYII = 1, then by assumption, Vf(X) ty > 0. But 

f(xk) 	f() - t 	
R(x,xk-x) 

- Vf(x) y_ + 	 
k 	Oxk-Tch 

(2) 

where R(X,h)/11hH + 0 as HhH + 0. Since f(xk) < f(X), the left hand side of 

(2) is nonpositive while the right hand side converges to a positive number 

as k + co in K. This contradiction implies that x is a strict local minimum 

for Problem P. 

To prove part (2), suppose by contradiction that there is a sequence 

{Xk
} such that X k 

+ co and x is not a strict local minimum for Problem P(X k
). 

Thus, there is a sequence ixkl converging to x so that x xkcX and 

' ( xk , Ak)  < ' (x , Ak)  = f (x ) 
	

(3) 

Again, let yk  = (xk-X)/Hxk-TcH. As in the proof of part (1), there is a 

vector yeK(X) with Hyll = 1 and a set K so that y k 
y as k + co in K. Now 

supposebYcontr"iction thatforsonle i a(20  gj  

continuously differentiable, for k in K large enough, g i (xk) > gj (X) = 0. 

Hence, by (3) 

f (xk) 	Akgi(xk) < 0(xk ,Ak) < f(x) 

so that 



f(xk) 	f(;) 	gj (xk) 	gj (i) 	0  
Hxk-AH 	Ak 	Hxk- RH 	

< 
— 

(4) 

for large k in K. As keK goes to cc, the first term in (4) converges to 

- 	 - 
VfOO

t
Y , NJ  2cA-. 	J 

)-g.(10i0c1c-TclIconvergestoVg.(Tc)ty > 0, and X I(  + cc. 
It  

Since this is impossible, we conclude that Vg i  (X)
ty < 0 for each ieI(X). 

Thus yEK(x) fl C(x) and so Vf(x) ty > 0. Since 

f(xk) - f(X) 	t 	R(x,xk-x) 
	  of (x) v + 	 

'k 

6e  ty  
and since R(X,xk-x)/11xk-XII + 	

ao  tyk 
 0 and of 	

vf ) 	> 0, we conclude that 

f(xk) - f(x) > 0 for keK large enough. But by (3), f(xk) < 19(xk ,Ak) < f(X), 

a contradiction. This completes the proof. 

The assumption that Vf(x)
t  y > 0 for each nonzero vector yeC(x) fl K(x) 

guarantees that x is a strict local minimum for Problem P. It also acts as 

a qualification that ensures an exact penalty strict local minimum. Theorem 

2.2 gives a similar result if x is a strict local minimum to Problem P and 

satisfies a suitable constraint qualification that does not involve the 

objective function. Theorem 2.2 extends similar results of Pietrzykowski [12] 

and Han and Mangasarian [8]. The following lemma is needed to prove the 

theorem. 

Lemma 2.1  

Let x be feasible to Problem P and suppose that there is a vector 

yEH(x) such that Vg i (X) ty < 0 for each ieI(X). Let x x  be a local optimal 

solution to Problem P(X). If xX + x as A + co, then x X 
is feasible to 

Problem P fora sufficiently large. 



Proof  

Suppose by contradiction that there exist a sequence {Xk}  and a sequence 

{xk} so that Xk  ce and xk  x, where xk  is a local optimal solution to 

Problem P(Ak) which is not feasible to Problem P. Since xk  4- x and gi
(x) < 0 

+ 	 _ 	+ 
for all i, then Ik  U Ik c: I(x), where Ik  and Ik  denote I

+ (xk) and I(xk), 

respectively. From [7], the directional derivatives of 8(•,X k) at xk  along 

y is given by: 

,y) = Vf(xk) ty + X [ 1 Vg.(x
k  )

ty 	1 (Vgi (xk) ty)+ ] 	(5) 
K k 	 k 

 
ieIk+   ieIk  

Since 
gi 
 is continuously differentiable and Vg.(x)

t
y < 0 for ieI(x), then 

there is an e > 0 so that Vgi (xk)
ty < - e for ieI(x) and for k sufficiently 

large. Thus, (Vg i (xk) ty)1_ = 0 for ieIk  and from (5) we get: 

tr(x
k'

X
k'
y) - Vf(xk) ty + X, 	Vg.(x, 

ieIk+ 	K 
t 

< Vf (xk)ty 	e Ak Ittl (6) 

1 +1 where lIk i is the number of elements in the set Ik . Since xk  is not feasible 

 
to Problem P, then lifk

l > 1. Since Xk 
co and Vf(xk

)
t
y 	Vf(x)

t  y, then (6) 

implies that: 

( xk , Ak ,Y) < 0 
	

(7) 

for k large enough. But, ycH(x) and x k 	so that there is a Il k  > 0 so 

that xk  + Ilya for each pe(0,pk). In view of (7), xk  could not have been 

a local minimum for Problem P(Ak). This completes the proof. 

Theorem 2.2  

Let x be a strict local minimum for Problem P and suppose there is a 

 
vectorycli(x)suchthatVgi (x)

t  y < 0 for each icI(x). Then, there is a 

X > 0 so that x is a strict local minimum for Problem P(A) 	 > ) for all A 	X 
0 	 — 0' 
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Proof  

By Pietrzykowski's theorem [13], there is a number X i  > 0 so that for 

A > X
1 
 there exist x

X and e(X) such that: 

	

- xII< E(A) 	 (8) 

	

lim e(X) = 0 . 	 (9) 
m 

0(xx ,X) < 8(x,X) for all xcX with 16-x < E(A) 	(10) 

By (8) and (9), x i,  -> X as A + 	From (8) and (10), it follows that x x  is 

a local minimum for Problem P(A). In view of this and the assumptions of 

the theorem, it follows that Lemma 2.1 applies, and hence xX  is feasible 

to Problem P for A sufficiently large. Thus, from (10) we get: 

f(x
X
) = E(xX' X) < 8(x,X) = f(x) 

Since xX 
is feasible for P and x

X 
x, then f(x

A
) = f(x) for A large enough. 

But, since x is a strict local minimum for Problem P, then there is a 

number X
0 
 > 0 so that xX 

= x for A > A 0 . 
	

> Thus, for A 	X0' 
 x is a local 

—  

minimum for Problem P(A). We wish to show that it is strict. If not, 

there exist a sequence fX 	and a sequence {xk} so that Ak co, x 0 xk 
x, 

where xk  is a local minimum for Problem P(A k). By Lemma 2.1, for k 

large enough, xk  is feasible to Problem P. However, since x is a local 

minimum for Problem P(A) for A sufficiently large, then f(X) = 8(X,X k) = 

6(xk dkk) = f(xk). We have thus exhibited a sequence {xk} feasible to 

Problem P so that X 0 xk  x and f(xk) = f(x). This contradicts the strict 

local optimality of x for Problem P, and the proof is now complete. 



3. A Globally Exact Penalty Function  

In this section, we present our main theorem which asserts the exis-

tence of a globally exact penalty function. This is done by requiring the 

set X to be compact, in addition to the existence of a suitable qualifica-

tion that guarantees a strict local exact penalty. 

Theorem 3.1  

Consider Problem P and suppose that the set X is compact. Denote the 

set of global optimal solutions {x1 ,...,x0 to Problem P by Q. Suppose 

that for each x.cQ one of the following two conditions hold: 

a. 	Vf(x.)
t
y > 0 for each 0 # yEC(x.) n K(x.) 

b.thereexistsavectorycli(x.)such that Vg.(x.)
t
y < 0 

for all ieI(x.) 

Then there exists a number X 0 
 > 0 such that for X > X 0'  xX 

 is a global 
 

optimal solution to Problem P(A) if and only if x xEQ. 

Proof  

Denote the optimal objective value to Problem P by 1 and consider the 

family of sets A(•) and B(') defined below: 

A(A) = {x: e(x,x) — f > 0) 

B(A) = A(A) U Q 	 (12) 
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We first show that B(A) is open in the relative topology of X for A 

sufficiently large, that is, given xcB(A) there exists an open neighborhood 
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NX
(x) around x so that X fl NA (x) c: B(X). Since 6 is continuous, then 

A(X) is open so that the existence of the desired neighborhood is clear 

forxeAM.Nowsupposethatx=x.O. From Theorems 2.1 and 2.2, it 

follows under conditions (a) or (b) that x. is a strict local minimum 

for Problem P(A) for A sufficiently large. Thus, there exists a neighbor- 

lloodliX(x.)sonatf= yeNX (x.) n X, which • 

shows that NAX (xj ) fl X aB(X). 

We have thus proved that there is a number Al  > 0 so that the collec-

tion (B(A): A > A1} is a family of open sets relative to X. Next, we 

show that this family covers X. Let xEX and consider the following three 

cases: 

Case 1: f(x) > 

Here, 6(x,X) > f(x) > 1 for all A > 0 
so that xeA(X) c:B(X) for all A > 0. 

Case 2. f(x) < f 

There must exist an index i such that g i (x) > 0. Thus, 

for A large enough, 6(x,X) > f(x) + A gi (x) > 1 so that 

xeA(X)c= B(A). 

Case 3. f(x) = f 

If gi (x) > 0 for some i, as in Case 2, xeB(X) for A > 0. 

If gi (x) < 0 for i = 1,...,m so that x is feasible to 

Problem P, then xeQ. Thus, xeB(X) for each X. 

Since X is compact, this relatively open cover has a finite subcover. Let 

A0 be the largest A in this subcover. Noting that A' > A implies that 

B(A) c: B(A'), then 

X c B(X) = A(X) U Q 
	

for all A > A0  

The above set inclusion can be restated as follows. If A > X 0 
 and xeX then 
 

either 6(x,X) > f or else xeQ in which case 6(x,X) = f. This is the desired 

result and the proof is complete. 



The following example shows that in order to validate the conclusion 

of the above theorem, the qualification given by (a) or (b) in Theorem 3.1 

must hold for each global optimal solution to Problem P. 

Example 3.1  

Problem P: minimize f(x) 

subject to g(x) < 0 

xeX 

where, 

2 	2 
f(xl ,x2) = -x1  - x2  

g(xl , x2)  = 

x2 - (x1
-1)

2 

x2 + (x1-1)2 

if x
1 
 < 1 

if x 	1 1 

   

X = ((xx
2
): x

1 
 + x

2 
 < 2, x

1 , x2 
 > 0) 

Note that the set of global optimal solutions Q to Problem P is given by 

{(0,1),(1,0)1. Thus, we have: 

At x
1 

= (0,1)
t 

C(xl ) = {(371 ,Y2): 2y1  + y2  < 0} 

K(xl ) = ceH(xl) = {(Y1 ,372 ): yl  > 0} 

Note that 0 # yeC(xl)n K(xl) implies that y 2  < 0, so that Vf(xl )
t
y > 0. Also, 

there exists a vector yeH(x1
) so that Vg(x

1
)
t
y < 0, say y = (0,-1)

t
. Therefore, 

both conditions (a) and (b) of Theorem 3.1 hold at x l . 

At x
2 

= (1,0) t 

C(x2) = {(y1 ,y2): y2  < 0} 

K(x2)  = all(x2 )  = "Y1' 37 2 ):  Y2 -›- 0)  
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Vf(x
2
)
t
y > 0 implies that y

1 
 < 0, but no restrictions on y 2 

while 

C(x2 ) fl K(x2) = {(yi ,y2): y2  = 0}, so that condition (a) of Theorem 

3.1 does not hold. Furthermore, Vg(x 2 ) ty < 0 implies that y2  < 0 so 

that 5411(x2 ). Thus, consition (b) of the theorem is not satisfied. 

In summary, the hypotheses of the theorem hold at x l , but not at 

x2 . That there exists no A such that the global optimal objective 

value to Problem P A  is equal to f = -1 is obvious by considering 

=- O)EX which yields: 
A-1' 

-A 
e(xA ,X) < (3(xx ,A) = f(xA ) + Ag(xA ) .4.  = -TT  < -1 

Since compactness of X and continuity of f imply that f is bounded 

below on X, it might at first appear that this boundedness property 

would ensure a global exact penalty problem if there is a local exact 

prOblem. The following example shows that this is not the case. 

Example 3.2  

Problem P: 

where, 

minimize f (x) 

subject to g(x) < 0 
xa 

 

X = {x: x > -4} 

Note that Problem P has solution x = -1 with value f = f(x) = 	. f and 

g are both bounded in X. 8(x,X) = f(x) + Ag(x)*  has a local minimum at 

1 x = -1 for each A > 8 . However, for each A > 0, 0(x,X) is arbitrarily 
 

close to 0 when x is large. Thus, it is not true that x 	-1 is a 

global minimum of 8(x,X) for A large enough. 



4. Estimating the Size of the Penalty Parameter  

Theorem 4.1 gives some insight into determining a lower bound on the 

penalty parameter in terms of the Khun-Tucker multipliers and in terms of 

suitable lower bounds of the functions f and 4. Conclusion (1) asserts 

the existence of a Kuhn-Tucker multiplier vector at an optimal solution to 

Problem P. This is assured by assumptions (a) and (b). Here, the former 

acts as a qualification and the latter enables us to use separation of dis- 

jointconvexsets.WenotethatconvexityofIc(x.)is not very restrictive, 

and indeed holds if X is convex or smooth at x j . Similar optimality condi-

tions can be found in Bazaraa and Goode [1], Guignard [6], and Mangasarian 

[10, P. 168]. Conclusion (2) of the Theorem shows the existence of a strict 

exact local penalty if the penalty parameter exceeds the value of each of 

the Kuhn-Tucker Lagrangian multipliers. Here, again, assumption (a) is 

used. This assumption can be replaced by a suitable second order sufficiency 

condition. A similar result, in the absence of the set X, can be found in 

Han and Mangasarian [8]. Conclusions (3) and (4) yield the form of the size 

of the penalty parameter needed for a global exact penalty. 

Theorem 4.1  

Consider Problem P and suppose that the set X is compact. Denote the 

set of global optimal solutions {x1 ,...,xh} to Problem P by Q and denote 

f(x.
3
)forjeQbyLSupposethatforeachx.eQ the following conditions 

hold: 

a. 	Vf(x j ) 	> 0 	for each 0 	y C(xj  fl K 

60 
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b. 	K(x.) is convex. 

Then: 

1.ForeachxEQthereexistscalarsPij  >OforieI(x,)such that: 

P. Vg.(x.)]y > 0 	 for yeK(xj ) [Vf(x.) + / 

	

ij 	
t 

1 j 
ieI(x ) 

i 

2. For each x.EQ, there exists a d i  > 0 such that x i xj , (ix-x.11 < 6 j , 
 

and A > X
i 	 .3 

imply that e(x,X) > 8(x.,X) = T, where 
 

A
j 	 J 

> max {Pii : iCI(X.)}. 

ut 

3. There exists a number E > 0 so that 1 g.(x) 1_ > E for each xEA fl B, 
1=1 1  

where A = {x: f(x) < f}, B = {xEX: Ilx-xj11 > S o  for j = 

and So  = min {6 j : 1 < j < h}. 

4. For A > A0 , 
xX  is a global optimal solution to Problem P(A) if and 

only if x
A
EQ, where A0  = maximum (Al' ...,Xh' 

? +b - -4 and b is such 

that f(x) > -b for each xa. 

Proof  

Part (1)  

* 	* 
This part is equivalent to showing that -Vf(x.)EK (x.) + C (x.), where 

J 	J 	J 

C
*
(x) = { 1 	 (x.) is the polar . 	

* 
a.. Va.(x.): a.. > 0 for icI(x.)1 and K 

J 	icI (x . ) 	* lj  °1 	
13 	 J  

.), 4hat is, K (x.) = {y: y z < 	 )}. If this cone of K 	 0 for each zEK(x. (xj 	
J 	

_ 	
.3 

* 	* 
were not the case, by convexity of K (x.) + C (x,

J
), there exist a nonzero 

vector c and a scalar a so that: 

	

t
Vf(x.

J
) > a 
	

(13) 

	

c
t
y < cc 
	

for each yEK. (c.) 	C (x.) 	(14) 

* 	* 
Since OEK (x.) + C (x.), then a > 0 from (14). Thus, by (13), c

tVf(x.) < 0. 
j 	J 	 J — 

Letting y = 1 	ctij 	1 Vg.(x.)ir1 0- 10,wherectij  ›OforiElbc.J ), it follows 
-  

ieI.) (xj  
that Iaij  ctVgi (xj ) < a. Since this is true for all a ij  > 	it 

iEI(x.) 
 

.3 
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followsthatc tVg.(x.)<OforeachiEI(x.)so that cEC(x.). Now, consider 

zEK
*
(x.). Then c

t
z < 0 because otherwise (14) would not hold for y = Az 

for sufficiently large A > 0. Since c
t z < 0 for each zEK (x ), then, 

** 
zEK (x ), the polar of K (x.). However, since K(x.

3
) is a closed convex 

** 
cone, then K(x.) = K (x.) [2, P. 52]. 

To summarize, we exhibited a nonzero vector cEC(x.) fl K(x.) with the 

property c
t
Vf(x.

J
) < 0. This violates assumption (a). Thus -Vf(x.)EK

*
(x.) 

+ C (x.), and part (1) follows. 

Part (2)  

We first show that x. is a strict local minimum for Problem P(A.). 

Suppose, by contradiction, that this is not the case. Then, there is a 

sequence{xidinXsothatxk ÷x.,xk  # x., and 

f(xk) + A. 	 = 8(xk ,Aj ) fe(xi dkj ) = 

Letyk =3.v.y/41,--30I . Then there is an index set K of positive 

integers such that yk  y as kEK approaches co. Note that HA = 1 and 
yeK(x.). It can be easily verified from (15) that 

Vf(x.) tY 	A. / 	(Vg.(x.)
t 	< 0 

J 

	

3iEI(x.) 	
3 	+ — 

From Part (1) and (16) above, we get: 

, t 
0 > A. / 	(V . 	.) 	/ 	P..Vg.(x.) Y 	X 	 )(Vg (x.)

t
y) 

J icI(x^) iEI(xj)
g 1J 1  3 ieI(x.) J J 

Since Ai  > Pik , the above inequality implies that (Vgi (xj )
t
y) f  = 0, and hence 

Vg(x.) ty<Oforie1(x.). Therefore, yEC(x ) fl K(x.). By assumption (a), 
i 3 	— 	 J 	 i 	J 

Vf(x) ty>0,whichisnotpossiblefrom(16).Thusx.is a strict local 
i 	 J 

(15)  

(16) 



minimumofProblemP(A.), and there must exist a number 6
i 
 > 0 so that x

i  7
4  x, 

 

Ilx-x
J
j < 6

i 
 implies that e(x,A.) > 0(x.,X.) = I. Since e(x , A) > 61(x 2 X ) for 

A > A,, part (2) follows. 

Part (3)  

Consider the following sets: 

= {x: 	< 60  for some xj al} 

E(v) = {x:g.(x)+  > v}t 	v > 0 
i=1 1  

F(v) = E(v) U 

Obviously, B, Em, and F(v) are all open for any v > O. Furthermore, the 

open family U F(v) covers A n X. To show this, let xeA fl X. If 	g
i

(x)
+ 

= 0 

V>0 1=1  
then x must belong to Q and hence xclic= F(v) for all v > O. If 

g(x).4. > 0, then xcF(v) for any v < 	g.(x) . Therefore, there exists 
i=1 1 	 i=1 1  
a finite subcover, say An Xc:. E(c) u E for some c > O. In other words, if 

xcX is such that f (x) 	1, then either 1 g i (x4 > c or else lix-x < 6 0 
i=1 

for some xi cQ. Thus part (3) follows. 

Part (4)  

Noting part (2), it suffices to show that 8(x,A) > f for xcB and A > A 0 . 

If f(x) > f, the result is immediate. Now suppose that f(x) < f so that 

xcA fl B. By part (3), 1 gi (x) 4. > c. Thus: 
i=1 

6(x,A) = f(x) + A 7 g,(x) 1_ > -b + Ac > -b + Al2-)c = T 
i=1  

This completes the proof. 
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An Extension of Armijo's Rule to Minimax and 
Quasi-Newton Methods for Constrained Optimization 

Mokhtar S. Bazaraat and Jamie J. Goode  

In this study, we propose an algorithm for solving a minimax problem 
over a closed convex set. At each iteration a direction is found by 
solving a problem having a quadratic objdctive function and then a suit-
able step size along that direction is taken through an extension of 
Armijo's approximate line search technique. We show that each accumula-
tion point is a Kuhn-Tucker solution and give a condition that guarantees 
convergence of the whole sequence of iterates. The special cases of uncon-
strained and constrained nonlinear programming are studied. Through suit- 
able choices of the quadratic form, our procedure retrieves various steepest 
descent and quasi-Newton algorithms for unconstrained optimization. For 
the constrained case and using an exact penalty function to handle the 
nonlinear constraints, our algorithm resembles that of Han, but differs 
from it both in the direction-finding and the step-determination processes. 

Key Words: Minimax Problems, Unconstrained and Constrained Nonlinear 
Programming, Armijo's Rule, Global Convergence, Quasi-Newton 
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1. INTRODUCTION 

In this paper we consider the following problem: 

P: minimize 	0(x) 

subject to xEX 

Here X is a closed convex set in R
n 

and e is of the form: 

e (x) = f(x) + 	a4 (x) 
j=1 

a (3) = max 	(lc)) 	j=1,...,Z 
ieI. ij 

WeassumethatLis a finite set of positive integers and that the 

functionsfandS..nre continuously differentiable on an open set S that 

contains X. 

Minimax problems of the above type arise in various contexts and have 

been studied by many authors. For an excellent exposition of this subject, 

both from theoretical and algorithmic points of view, the reader is referred 

to the works of Danskin [5], Demyanov [6], and Demyanov and Malozemov [7]. 

The reader is also referred to Chatelon, Hearn and Lowe [4] and Han [11] for 

the special case of unrestricted minimax problems and to Madsen and Schjaer-

Jacobson [15] for the linearly constrained minimax problem. 

Inaddition"ProblemPitself,the"ecialcasewherect.(x) = 0 for 

each j has been extensively studied. In [10], Goldstein described a gradient 

projection method for solving the problem to minimize f(x) subject to xeX, 

and a similar procedure was proposed by Levitin and Polyak [14]. These 

methods proceed as follows. Given xk, the next point x16.1  is determined by 



projecting xk-XkVf(xk) on X, where Ak  is a suitable step size that depends 

on the Lipshitz constant associated with Vf. In [16], McCormick proposed 

an anti-jamming procedure for solving the problem in the special case where 

X consists of bounds on the variables, and in a joint paper with Topia [17], 

the procedure was extended to the case of a general closed convex set. In 

[3], Bertsekas further studied this class of methods with emphasis on the 

choice of the step size. He also described various ways of achieving super-

linear convergence. 

We also note the class of subgradient optimization methods for solving 

the problem to minimize f(x) subject to xcX in the case where f is convex 

but not necessarily differentiable. Similar to the methods described above, 

given a point xk, xkl..1  is computed by projecting xk-XkEk  on X, where Ek  is 

any subgradient of f at xk. For conditions on the step size Ak  that assure 

convergence, the reader is referred to Polyak [18,19]. 

In this paper, we propose an algorithm for solving Problem P. We con-

cern ourselves primarily with global convergence properties of the algorithm. 

Local and superlinear convergence through appropriate choices of the quadratic 

approximation are only discussed very briefly. At any iteration the algorithm 

solves a subproblem that finds a search direction and then takes a suitable 

step along that direction. In the case where X is polyhedral, the direction 

finding problem reduces to a quadratic program, and in that respect, our 

method resembles quasi-Newton procedures for solving constrained nonlinear 

programs. Our direction-finding problem is also similar to the one proposed 

by Han [11] for solving minimax problems and primarily differs from it in 

the inclusion of the set X. The step size along the search direction is 

obtained through an extension of Armijo's [1] rule that handles the nondif-

ferentiability of the objective function 8. 
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In Section 2, we introduce an approximation to the directional deri-

vative that maintains continuity. This approximation is the key tool in 

overcoming the difficulties associated with discontinuity of the directional 

derivative in determining a search direction. In Section 3, we present our 

algorithm and in Section 4, we prove its convergence to a stationary point. 

Section 5 is devoted to various specializations of our method. Particularly, 

we discuss the cases of unconstrained and constrained nonlinear programming. 

For unconstrained problems, depending on the choice of the direction-finding 

problem, our algorithm gives rise to different. steepest descent and Newton-

type algorithms coupled with the efficient Armijo's step size rule.. For 

constrained programs, linear constraints are handled by the set X and non-

linear constraints are treated by an exact penalty function. As a byproduct, 

a slight modification to the method of finding a search direction for the 

class of quasi-Newton methods is suggested. This modification overcomes 

the difficulty of premature termination in, case the linearization of the 

feasible region at the current point is empty. 



2. APPROXIMATING THE DIRECTIONAL DERIVATIVE  

Note that the objective function e is not differentiable but has a 

derivative along any direction d. Particularly, the directional deriva-

tive 0'(x,d) is given by: 

A' (x,d) = Vf(x)
t 
 d + L 	max {V5. 4 (x) td} 

j=1 ieI (x) 	1' 
(2.1) 

where 

= 	5.. (x) -ct 	/ 
3 

(2.2) 

Since 8' is not continuous in x, a difficulty which could ultimately lead to 

jamming, we introduce the following approximate directional derivative 0-(x,d) 

which is continuous in both x and d: 

(x,d) = f(x) + Vf(x) td + 	max S
ij 
	+ 

veij (x) td}-6 (x)
j=i ieI. 

(2.3) 

If the functions f and f3 ij  satisfy a strong version of differentiability, 

which we refer to as upper uniform differentiability, then a one-sided second 

order approximation of 0(x+Ad) using the pseudo directional derivative 

* 
6 (x,d) can be devised. As will be seen in the remainder of the paper, this 

approximation is instrumental in proving convergence of the proposed algo- 

rithm. 
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Definition 2.1  

Let S be an open convex set in Rn  and let f: Rn+R. f is said to be 

upper uniformly differentiable  in S if f is continuously differentiable in 

S and if there is a number Kf > 0 so that 

f(x+d) < f(x) + Vf(x) td + 1/2 Kf1141 2 	 (2.4) 

whenever x, x+dES. 

Note that if f has a Lipschitz continuous derivative in S then it is 

upper uniformly differentiable. That is, if there is a number 1/2 Kf  so 

that 

Hvf(y) - vf(x)H < 1/2 K f 	 for x,yeS 

then for x and d such that x, x+deS, by the mean value theorem, we can 

write 

f(x+d) - f(x) = Vf(y) td 

for some y between x and x+d. But then 

f(x+d) - f(x) - Vf(x) td = Pf(y) - Vf(x)] t d 

< 1/2 Kf 
ily-x1 14 

< 1/2 Kf  11d11 2  

and hence f is upper uniformly differentiable in S. 



cad x ' cl)  = max { (3rj 	Vi3ri (N) td} 	3 (x)  reI 
j 

(2.8) 
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Lemma 2.1  

Let S be an open convex set in Rn  and suppose that f and 6 11  for 

i€1. and j=1,...,t are upper uniformly differentiable in S. Then, there 

is a number K > 0 so that the following hold for all x,x+dES: 

1. 6(x+d) < 6(x) + 6* (x,d) + 1/2 K1141 2  

2. 6*(x,Ad) < a8 (x,d) 	 for all AE[0,1] 

3. 8(x,Ad) < 8(x) + 4* (x,d) + 1/2 A 2K IId112 	for all XE[0,1] 

Proof  

Since f and 8 ij 
are upper uniformly differentiable, then there exist 

scalars Kf and Kij > 0 so that: 

f(x+d) < f(x) + Vf(x) td + 1/2 Kf  11d C12 	 (2.5) 

13ij (x+d) < 8ij (x) + V8 ij (x) td + 1/2 Kij  11d11 2 	 (2.6) 

for all x, x+dES. Let K
j 
 = max K and suppose that x, x+dES. Then from 

iclj 
(2.6) we get: 

ij
(x+d) < 

Si
.(x) + V8 ij (x)

t
d + 1/2 Kij 	

2 
— 3  

< max 13rj (x) 	Vi3 rj (x)
td} + 1/2 Kj  

(1 (x) i- c1.15EX ■ + 1/2 K. 11d11 2 	 (2.7) 
a 

whore 

12  
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Since (2.7) holds for each iEI., then 

ni 2 
a.06-0 < a.00 -1- CIAX,0 1-1 /21( .11 (qi 

J 
(2.9) 

Summing (2.5) and (2.9) for j=1,...,t and noting (2.3) and (2.8) we get: 

O(x+d) < 0(x) + 0 11 (x,d) + 1/2 K 110 

where 

K = K + 1K. 
j=1 

which proves part (1). Now let Xe[00.] and consider ia.(x,Ad) below: 

ct.(x,X<) = max
{ 

..-+ AU..(x)
t
d} - ct.(x) 

ieI
i  

max Ot[R 	Va ..00 td] 	0.-- A.) 	/- (1.0c) ij 	1.3 	
aij 

icI. 

X[cx.
J 
 (x) + a

J 
 60] 	(1-4 )c1 .60 	(x) 

= Ac (x) 

(2.10) 

(2.11) 

Thus, part (2) follows immediately from (2.11). Now part (3) is obvious 

from parts (1) and (2) and the proof is complete. 
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It is well known that 

0(x+Xd) = 0(x) + A 0'(x,d) + 0(d,X) 

where 

0(d,A) 	0 as A -0- 0 A 

uniformly in d withIldll= 1 (see for example Demyanov and Molozemov [7, 

p.53]). However, conclusion (3) of the lemma would be false if 0 * (x,d) 

is replaced by 0'(x,d). This is evident by considering 0(x) = 1x1 which 

corresponds to f(x) = 0, 	= 1, 
511 (x) 

 = x and 
521 (x)  = -x. 



3. DESCRIPTION OF THE ALGORITHM 

We present below a procedure for solving Problem P. 

Initialization Step  

Choose x1EX and choose 6 1 ,6 2  with 0 < 2S 1  < 62 . Let k=1 and go to Step 1. 

Step 1 (Find a direction) 

Given xkEX' 
let B

k 
be a positive semidefinite matrix satisfying 

I I J 1 d
t
Bkd < 6 2  !pH2 	for all dER

n 

Consider Problem D(xk) below: 

D(xk) : minimize 0 (xk ,d) + 1/2 d
tBkd 

subject to xk  + dEX 

If Problem D(xk) has an unbounded optimal solution go to Step 2. Otherwise, 

let dk  be an optimal solution to Problem D(x k). If e ock,do = 0; stop. If 

lc 
0
*
(x.,d

k 
 ) < - 6 Hd

k 
 , go to Step 3. If 0

*
(x.,d

k 
 ) > - 6

1 
 ild

k 
 II
2 
 , go to Step 2. 

-   

Step 2 (Modify the search direction) 

Replace Bk  by [1 - (25 1/S 2)]Bk  + 2611. Let dk  be an optimal solution to 

Problem D(xk) and go to Step 3. 
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Step 3  (Find Armijo step size) 

Given xk  and dk , let mk  be the smallest nonnegative integer v such that: 

1 v 	 1 v+1  
6(xk  + (y) dk) - 0(xk) 	

e a
t (xk,dk) 

Let xml  = xk  + (i) mk dk. Replace k by k+1 and go to Step 1. 

By convexity of X it is clear that the algorithm always generates 

feasible points to Problem P so that x iceX for each k. The direction-

finding problem is equivalent to: 

D' (xk): minimize f(xk) + Vf(xk)
td + 1 y. - 0(xk) + dtBkd 

subject to yj  > 13 1.j
( 
xk) + Vaij 	

J 
(xk)td 	ieI 	j=1,...,L 

' 

xk  + deX 

In the next section, we show that 0 (xk ,dk) = 0 if and only if xk  is a 

Kuhn-Tucker point to Problem P' defined below: 

P': minimize 	f(x) + 	}T.;  
j=1 J  

subject to y. > 
3 

icI., j=1,...,t 

xCX 

Since this latter problem is equivalent to Problem P, then the algorithm 

stops only when a Kuhn-Tucker solution is at hand. 

If X is polyhedral, then Problem D(xk) is a convex quadratic program. 

Note that in Step 1, we do not require B k  to be positive definite. In fact, 
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the case where B k 
= 0 is of special interest since it leads to a linear 

program. If the optimal solution is unbounded, however, B k  is modified 

slightly in Step 2 in order to guarantee a bounded optimal solution d k . 

Note that the identity in Step 2 can be replaced by another sufficiently 

positive definite matrix if that is deemed more desirable. 

Step 2 is also needed for cases where the pseudo directional deriva- 

1 
tive e * goes to zero too fast compared to lidj1 2 

 . This would cause the Armijo 

integers mk 's to become large. Step 2 recomputes d k  with a positive defi-

nite quadratic form to prevent this and to assure the uniform upper bound 

on mk  given by Lemma 3.1. Note also that if Step 2 is used then the new 

vector d
k 
 automatically satisfies e* (xk

,d
k

) 	(51 1Idk 11
2
. It is also in- 

1 

k teresting to note that if d tB
k  dk 

 > 26 hdk
d 2  at Step 1 then Step 2 is not 

— l 

needed. This follows directly from the fact that 0 > 6 (xk ,dk) +-2-L ciBkdk . 

Therefore, if Bk  is chosen to be sufficiently positive definite so that 

T 

d
t
Bkd > 261 11d11

9 
 for all deR

n
, then Step 2 is never used. As will be 

demonstrated in Section 5, in some special cases, we can devise schemes 

for generating a nonpositive definite matrix Bk  in such a way that it is 

1 
a priori guaranteed that d

t
kBk  dk  > 26 hdkh

2 
 which eliminates the need for 

— l 

Step 2. 

Lemma 3.1  

The integers mk's defined in Step 3 of the algorithm exist and mk  < fyl+ 1, 

where [y] is the greatest integer in y, and y = to(S1)/.en 2, where K is 

given by (2.10). 

Proof  

By part (3) of Lemma 2.1 we have: 
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2 	* 
But by the algorithm, we must have it d k

F1  < — 8 (x. dkVS1  so that 

.v 	 1 V K ] 

1 
8(xk  + 

1
) dk) - 8(x.) < (

1)v+1 
6*(xk' dk)f2  - (-2-) -CS-  K -- 2 

(3.1) 

	

1 	 * 
The right hand side in (3.1) is less than (2)v+1 

	
K 

8 (x. ,d
k 
 ) provided that 

2 - 1v K > 1. Therefore, 
Q1 

1 V 	 1 v+1 * 

	

6(xk + (2) dk)  - 6(xk)  < (-,i) 	6 (xk,dk) 

tn (--
K 

£1121

) 
6  

provided that v > y = 	. Thus mk  exists and is bounded above by [y] + 1. 



4. GLOBAL CONVERGENCE  

In this section, we prove global convergence of the scheme described 

in Section 3. The following two lemmas are needed. Lemma 4.1 asserts that 

the algorithm stops only if the point at hand is a Kuhn-Tucker solution to 

Problem P', which is equivalent to Problem P. The second lemma shows that 

if x, x + aEX and if {xk}  in X converges to x, then there is a direction d 

sufficiently close to d such that xk  + deX for large k. 

Lemma 4.1  

Let iex. Then (x, a(x)) is a Kuhn-Tucker solution to Problem P' if and only 

if 0 (x,d) = 0, where d is any optimal solution to Problem D(x) to minimize 
* w 	1 t 
(x,d) + -2-- d Bd subject to X+dEX and where B is positive semidefinite. 

Proof  

Let d be an optimal solution to problem D(x). Further suppose that 0 (x,d) = O. 

Since d = 0 is feasible to Problem D(x) and has an objective value equal to 0, 

and since B is positive semidefinite, then atBa = O. Thus, the optimal objec-

tive value is equal to 0 so that d = 0 is an optimal solution to Problem D(x). 

A 	_ 
Therefore, (a = 0, y = a(x)) is an optimal solution to Problem D (x). This 

A A 
further implies that the Fritz John conditions stated in [2] hold at (d,y). 

That is, there exist nonnegative scalars u 0 
 and v

ij 
 , not all equal to 0, such 

that: 

[uoVf(X) + u0Bd + 	X v .V13..60] (d-(i) > 0 	if x + dEX 	(4.1) 

	

j.„1 	 ij 
j 

"0 - 
iEIi

vii = 
	

j 	 (4.2) 
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Vii t;i  — Sij (37c) — vook 6ot a3 = 0 , iEI.
3

, 	j = 1,...,t 	(4.3) 

Note that u0  > 0 because if u0  = 0 then by (4.2), vij  = 0 for all i,j, 

which is impossible. Noting that d = 0 and that u0  > 0, (4.1), (4.2), and 

(4.3) show that (X,a(X)) satisfy the Kuhn-Tucker conditions for Problem P'. 

Conversely, suppose that (x,y = a(x)) is a Kuhn-Tucker solution to 

Problem P'. Then there exist scalars 
uij 

 >Oforia.and j = 	such 
— 	3 

that: 

[Of (x) + 	u .V6 .(X)j t  d > 0 	if x + dEX 
j=1. :LEI. 1 J 13  

3 

X uij  = I 
ieI 

j = 1,...,t 

uii [yi  - 6ij (x)] = 0 	iEI., 	j = 1,...,t 

These conditions are precisely (4.1), (4.2), and (4.3) with d = 0, u0  = 1, 

vij 	ij 
= u . Therefore, (d = 0, y = a(x)) is a Kuhn-Tucker solution to Problem 

D'(x). Since this problem is convex, then this solution is optimal. Clearly, 

Problems D(x) and D'(x) are equivalent and hence d = 0 is an optimal solution 

to Problem D(x). Thus the optimal objective value is equal to 0, and hence 

* _ 
any optimal solution a to Problem D(x) must satisfy 6 (x,d) = 0. This follows 

* - - 
because if e (x,d) < -z for some z > 0, then 

* - 	1 2-t - 	 1 2-t - 
8 (x, ad) +

2 
 X d Bd < -Xz + TX d Bd < 0 

for X > 0 and sufficiently small, violating the fact that the optimal objec-

tive value for Problem D(X) is equal to 0. This completes the proof. 



Lemma 4.2  

- - 
Let X be a convex set in R

n 
 and let xeX. Let d # 0 be such that x + deX 

and let {xk} be a sequence in X converging to x. Then given an e > 0, there 

exists a vector d such that Hd-dll < c and xk + deX for k sufficiently large. 

Proof  

Let ri(X) denote the relative interior of X. Then there exists a point 

y # x + d such that yeri(X). Now consider d given by 

	

( 	d) 
d = d + 6 rx-  - where 

, 

6 = min {- 	HY-Tc-dil} 

	

2 	2 

Then 

(y-X-7j)  i d = ( 27c 	a) 	6  4y-k-aff 

6  
Hy-i_all Y 	(1 - 	

- 	- 

	

HY-x- _,7111) (x 	
d) 

Thus, x + a is a convex combination of y and x + d so that x + deri(X). There-

fore, there exists a z > 0 so that if llx + d - 	< z and if h lies in the 

affine manifold generated by X then heX. Since xk , x, x + deX, it is clear 

that xk  + d is in the affine manifold generated by X. Now let h = xk  F d. 

-m - 
Then Ilx + d - 	= llx - xk ll, and since xk  x, it follows that IKx + d) - 

(xk  + d)11 < z for k sufficiently large so that x k  + deX. This completes the 

proof. 

Now we are ready to state our main convergence theorem. The theolsew 

shows that each accumulation point .x corresponds to a Kuhn-Tucker solution 

(x,a(x)) to Problem P'. As a corollary, we demonstrate that if x is a strong 
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local minimum then indeed the whole sequence fx kl converges to x. Here, x 

is a strong local minimum to Problem P if there exists a number y > 0 so 

that for each 6 > 0 there is a number z(6) > 0 so that 

xcX, I I x-711 < y, and e (x) - A (X) < z(6) 	jjx—Tc11< 6 	(4.4) 

Theorem 4.1  

Consider the algorithm described in Section 3 for solving Problem P. If the 

algorithm stops at iteration k then (x k ,a(xk)) is a Kuhn-Tucker point for 

Problem P'. Otherwise the algorithm generates an infinite sequence {(x k ,dk)}. 

In this case, if (x,d) is an accumulation point, then: 

1. lim d
k 

= 0 and in particular d = O. 
k-0.00  

2. (X,a(X)) is a Kuhn-Tucker point for Problem P'. 

Proof  

If the algorithm stops at iteration k then A (xk ,dk) = 0 and by Lemma 4.1 

it follows that (xk ,a(xk)) is a Kuhn-Tucker point for Problem P'. Now sup- 

pose that the algorithm generates the infinite sequence {(xk ,dk)} and suppose 

K - 
that there is an infinite set K of positive integers such that (xk ,dk)÷(x,d). 

- 
First, note that 6(xk) is decreasing and that e(xk)4.

K 
 0(x), and hence 

lim 8(xk) = ea). Also we have 
k-*02 

"xk+i )  '(xk) < (-i)mk 
* (xte dk) < - 1 

6 1 dkl 12 for all k 

and hence the right hand side must converge to O. But by Lemma 3.1, m k  is 

bounded above so that dk  0, and particularly d = O. This proves part (1). 



82 

Since d
t
B
k
d <(S

2 114
2 for all deRn  and all k, then there exists an 

' 

infinite set of positive integers K'=K such that B k 
K 

 B, and furthermore 

B is positive semidefinite. Now, suppose by contradiction to Part (2) 

that (x,a(x)) is not a Kuhn-Tucker point for Problem P'. Then by Lemma 

* _ 
4.1 an optimal solution d' to the problem to minimize 0 (x,d) + 2  1- d

tBd 

* _ 
subject to x + deX must satisfy 0 (x,d') < - z for some z > 0. By con- 

tinuity of 0 and by Lemma 4.2, there exists a vector d such that 

A (xk ,d) < - z and xk  + deX for keK I  sufficiently large. By Lemma 2.1, 

for Xe(0,1) we have: 

*
(xk ,Xd) + 1 X

2 
d
t 	 1 Bkd <

*
(xk ,d) + 	2 dt Bkd 

< -Xz + 1 — X 2 d 11 2  

Let A = min {1, 	). Then 	 1 (xk ,Ad) + X dt  Bkd < -h, where 

6 z2 1142 

NO2 

h = 
1  z  

2 

2 a 2 
11d112 

if z "2 O11
2 

11 if z < 6 2 
hdH 2  

We have thus constructed a vector d = Ad so that x + deX for large keK' and 

* 	1 "t 
furthermore 6 (xk,d) + -2- d Bkd < -h < 0. But since dk  solves Problem D(xk), 

t 
then 	

1 
(xk,dk) + dkBkdk  < -h. Letting k in K' approach co and noting that 

d . 0, it follows that 0 < -h. This contradiction proves part (2). 

Corollary 

If the accumulation point x is a strong local minimum for Problem P, then 

lim xk  = x. 
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Proof 

Let y > 0 be the number given in the definition of a strong local minimum. 

Fix 0 < 6 < 	. We will show that there exists an t. such that Hxic-Tcli < 6 

K - 
for all k > 	which proves the result. Since dk  + 0 and xk  x, then there 

is an feK such that 

< 6, 0(xt ) 
- e(x) < z(6), Ild k li< 	for all k > 
	

(4.5) 

We show the desired result by induction. For k = £, the result immediately 

, 
follows from (4.5). Now let k > E and suppose that hx k-xll < 6 and note that: 

112E104-ill 	 + 	< 
	+ <1+2= y 	(4.6) 

Further, since 0(xk+1) < 0(xt.), from (4.5) if follows that 0(x16.1 ) - 0(X) < z(6). 

In view of (4.6) and (4.4) it is then clear that Ilxkll-XH < 6. This completes 

the induction argument. 

It may be noted that if the directions generated by the algorithm do not 

converge to zero, then 0(xk) + -03 so that the problem has an unbounded solution. 

This follows by noting that 0 is decreasing and that if there exists a set of 

positive integers K so that Mdk li > e > 0 for kcK, then 

m  
e(x10.1) - 0(xk) < - 

1mk+1 
 0(xk ,dk) < - 1 k+1 L 	 6

1
11d1

2 
 

1 [y]+2 	2 
— - () 	• IE for each kcK 

If {x: 9(x) < 0(x1), xcX} is compact then {xk} has an accumulation point. If 

the functions f and (3 ii  for all i,j are convex, then every accumulation point 

is an optimal solution to Problem P. 



5. SPECIAL CASES  

In this section, we discuss various specializations of the algorithm 

to unconstrained and constrained nonlinear programming problems. 

Unconstrained Nonlinear Programming  

Here we let X = le and ia.(x) = 0 for j = 1,...,t. Under different 

choices of Bk 
our algorithm produces various methods for solving the pro-

blem to minimize f(x) subject to xce. 

Steepest Descent Methods  

At any iteration k the direction-finding Problem D(xk) is to minimize 

Vf(xk)
t
d + 1 dt Bkd. The following choices of B k  are examined. For each of 

these choices all entries of B
k 

are uniformly bounded so that any sequence 

{Bk} has a convergent subsequence as needed in Theorem 4.1. 

Steepest Descent Under the Euclidean-Norm  

Let Bk  = I. Here dk  = -Vf(xk) and d cBkdk  = -11Vf(xk)112 , where !MI  denotes 

the Euclidean norm. Note that e* (xk ,dk) = vf(xk)
tdk = 2 

so that Step 2 

of the algorithm is never used by letting d i  = 1. In this case, our algo-

rithm reduces to that of Armijo [1]. 

Steepest Descent Under the Sup-Norm  

LetBk beadiagonalmatrixwhoseithdiagonalentryb.is given by 

xk) f(  
b.1 	ax = I 

a 	
I /HVf( i = 1,...,n 

where 11.11 1 denotes the t 1
-norm. Note that B

k 
is positive semidefinite. An 

optimal solution d k  to Problem D(xk) is given by 



kvf (xk)11 1  
dik  = 	117f(xk)11 1  

0 

if Df(xk)/axi  > 0 

if 3f(xk)/axi  < 0 

if 3f(xk)/axi  = 0 
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Note that e
*
(xk ,dk) = vf(xk)

t
dk  = -11Vf(xk)[11.  = -IIdk 112s , where Ill s  denotes the 

sup-norm. If we let 61  = 1, it is clear that Step 2 of the algorithm is never 

used. 

Steepest Descent Under the t i-Norm 

Let 	denote the sup-norm and let 

3f( 	/3 
Vf(xk) 

i = 1,...,n 

Let I = {i: le i ' = 1}, and without loss of generality suppose that I = {1,...,V}. 

Let 

d
t 
= (c 	c ) 1 , 	2 v 

et = (cv+1n
) 

Now consider the matrix B k 
given below: 

Bk 

v columns 

d d
t 

n -V columns 

0 V rows  

n-V rows e d
t n -V 

4 
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We will demonstrate that B k 
is positive semidefinite, give the form of an 

optimal solution d
k 
which turns out to be a steepest descent direction under 

the £1-norm, and then show that Step 2 of the algorithm is not needed. Let 

y and z be arbitrary vectors in R and R
n-v . . Then: 

(yt ,z t ) 
Bk z 	ytd 	

+ (Y) = vtd d ty + z te a 
,ty+ n-v t 

Denote ytd by a and z
te by g. Then, the above equation yields: 

t t 

	

,z ),y‘ 	+ 
1 
 g )2 
	1 2 	n-v 

	

Bk ‘z) 	(a 	- TH3 	--4— ztz (5.1) 

By the Schwartz inequality and noting that the absolute value of each com-

ponent of e is less than 1, we have: 

g
2 
<Heil

2 HzH 2 < (n-V) HzH 2 

From (5.1) it is then clear that B k 
is positive semidefinite. Next note that 

dk  given below is a solution to the system Vf(x k) + Bkd = 0, which shows that 

under this particular choice of ak , our quadratic program yields a steepest 

descent direction under the 1-norm. 

1 	 

dik  = 

v ax. 

af(xk) 
i = 1,...,v 

0 	 i = v+1,...,n 

Finally, note that 

= 
v l 	

].c 
 af(x012 

e * (xk ,d ) = Vf(xk)
tdk  = - 	.7 	.  

1=1 	i 
Is = -ildk H 21 



where 11•1 denotes the £1-norm. Therefore, Step 2 of the algorithm is not 

needed by letting d i  = 1. 

A Newton-Type Method for Unconstrained Optimization  

In [9], Gill and Murray proposed a Newton-type procedure that produces 

a positive definite matrix Bk  through a modified version of Cholesky's 

factorization of the Hessian Hk . If Hk  is sufficiently positive definite 

then Bk  = Hk . Otherwise Bk  is of the form Hk  + Ek , where Ek  is a diagonal 

matrix with nonnegative elements. 

If during the factorization process of H k  into the form LDL
t
, a dia-

gonal element of D is not sufficiently positive, then it is replaced by a 

suitable positive scalar q. The factorization is stable and can be performed 

n3 
within T- multiplications. At the end, Bk  = LkDkLk  is at hand and the 

search direction d
k 

is obtained by solving the system Vf(x
k
) + L

k  Dk  L
t
k 
 d = O. 

One can easily choose the scalar q so that y Bk
y > 26

1
Il yH 2 for any desired 

d
l' 

thus eliminating the need for Step 2 of the algorithm. 

The above scheme of Gill and Murray [9] can thus be used in conjunction 

of our algorithm. If the Hessian at any accumulation point of the method 

is sufficiently positive definite, this method reduces to Newton's method, 

and quadratic convergence is assured. 

Constrained Nonlinear Programming 

Consider the following nonlinear programming problem: 

NLP: minimize f(x) 

subject to gi (x) < 0 	j = 1,...,m 

Recently, a great deal of attention has been given by many authors to extending 

quasi-Newton procedures from the unconstrained case so that they can handle 



problems of the above type. For a review of these methods, the reader is 

referred to Garcia-Palomares and Mangasarian [8], Han [13], and Powell [20]. 

A typical method in the class of quasi-Newton methods proceeds as 

follows. Given xk , let dk  be an optimal solution to the following problem: 

D(xk): minimize Vf (xk) td + 2 d t Bkd 
subject to gj (xk) + Vgj (xk) td < 0 	j = 1,...,m 

If xk  is sufficiently close to a Kuhn-Tucker point X and if B k  is sufficiently 

close to the Hessian of the Lagrangian at x, then the algorithm xk+1 = xk dk 

. converges to x at a superlinear rate. 

In [12], Han was able to prove convergence of the procedure starting 

from points remote from X. He showed that if p is sufficiently large so 

thatp>u.forj=1,...,m,whereu.is the Lagrangian multiplier associated 

with the jth constraint in Problem D(xk), then dk  is indeed a descent direc- 

timfortheperlaltyfunctionO lmc{0,.(2)1 at xk. He 
j=1 	g3 

was able to show global convergence by letting x ic4.1  = xk  + Xkdk, where Ak 

essentially solves the problem to minimize (1)(x k  + Adk) subject to 0 < A < 6, 

where 6 > 0 is a fixed number. 

We will now show that our minimax algorithm specializes to Han's method 

and extends it in two ways. First, rather than performing a line search, our 

procedure uses the easily implementable Armijo's search. In [12], Han suggested 

that it is of some practical value to devise such an approximate search pro-

cedure for the nondifferentiable function (I). Second, a typical quasi-Newton 

method could stop prematurely if Problem D(x k
) has an empty feasible region, 

that mss, if there exists no vector p such that Vg.(x,
K
)
t
p < 0 for jel, where 
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I = 	gj (xk) > 01. As will be seen shortly, our direction-finding problem 

is always feasible, and furthermore it reduces to Problem D(xk) if the latter 

is feasible. 

Note that Problem NLP can be put in the minimax format as follows. 

Lett=mandleta(2)=pmax{0,. 
g]

(x)}, where p is an exact penalty para- 

meter. Then Problem P becomes: 

minimize f(x) + p y max {0,g (x)} 
j=1 

At any particular iteration, our direction-finding problem reduces to: 

D I ( ): minimize 	Vf(xk) td + p 	y. 	1 dt Bkd 
j=1 

subject to gj (xk) + Vgj (xk)
t
d < 
	

j = 1,...,m 

j = 1,.. .,m 

The relationship between problems D(xk) and D'(xk) is given by Lemma 5.1 below. 

Lemma 5.1  

If Problem D(xk) is not feasible then any feasible point (d,y) to Problem 

D'(xk) must have I y. > O. Now suppose that Bk  is positive semidefinite and 
j=1  

symmetric. Further suppose that Problem -D(xk) is feasible and that it has 

(dk ,u) as a Kuhn-Tucker solution. If p > u. for j = 1,...,m, then (d k,y=0) 

is an optimal solution to Problem D'(xk). Further, if Bk  is positive definite, 

then any optimal solution (d,y) to Problem D'(xk) must satisfy y = 0 and d = d k . 

Proof  

Obviously, if Problem D(xk) is not feasible then any feasible point (d,y) to 

Problem D'(xk) must satisfy 2 yj  > O. Now suppose that (dk ,u) is a Kuhn-Tucker 
j=1 



solution to problem 5(xk). Then: 

Vf(xk) + Bkd, + 	u.Vg.(x„
K
) = 0 

j=1  

uj  [ gi (xk) + vgi (xk) tdo = 0 

gi (x0 vgi (xk)tdk 

u. > 0 
J 

j = 1, 	,m 

j = 1,...,m 

j = 1,...,m 

(5.1) 

But (d,;) is a Kuhn-Tucker solution to Problem D'(xk) if there exists a vector 

v such that 

 m 
Vf(xk) + Bkd + 	v.Vg.(x„

K
) = 0 

j=1  

U - v. > 0 
J — 

^ 
vj 	[gi (xk) + Vgi (xk)

t 
 d - yi ] = 

t^ 	̂ 

j 	= 	I,...,m 

0 	j 	= 1,...,m 	(5.2) 

gi (xk) + Vgi (xk) d < yj  j = 1,...,m 

v. >0 
-- 

j = 1,...,m 

( 	- vi )yi  = 0 j = 1,...,m 

Noting that p > uj , it follows that the system defined by (5.2) holds by 

letting d = dk, y = 0, and v = u. By convexity of Problem D'(xk) it follows 

that (d
k
,y=0) is indeed an optimal solution. 

A A 

Now suppose that B k 
is positive definite and let (d,y) be an optional 

A A 
solution to Problem D'(xk). Therefore X(d,y) + (1-X)(d ,0) is also an optimal 
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solution for all Xe(0,1). This further implies that T(X) defined below is 

constant for all XE(0,1): 

m 

	

= Vf(xk) tdk  + XVf(xk)
t 	X (d-dk) + P  

J=1 

+ - 
1 At

k  Bk  d k 	2 
+ 1  2(2...cik)tBk(ci-dk) 

+ X(2-dk) t Bkdk  

This implies that 1"(X) = 0 for Xe(0,1) and hence 

Vf(xk) t  (d-dk) + (d-dk) t  Bkdk  + p 	y
j 
 + 

j=1 
(5.3) 

x(a_do tBk (a-do  = 0 	 for all 4(0,1) 

But this is possible only if (2-d
k  )

t
k 

 B. (a-dk  ) 	0,  and since B
k 

is positive 

A 

definite, we must have d = dk. From (5.3) we have y = 0 and the proof is 

complete. 

The above lemma shows that if B
k 

is positive definite and if p is suffi- 

ciently large, then an optimal solution to Problem D'(xk) has 	y. > 0 only 
j=1 

if Problem 5(x k) is not feasible. To illustrate, consider the problem to 

minimize f(x) subject to g(x) < 0, where f(x) = (x-2)
2 

and 

	

-(x-1)
2 	

x < 1 
g(x) = 

otherwise 

If the starting solution is xl  = 1, then Problem B(x1) is infeasible and the 



quasi-Newton method would stop prematurely at the infeasible point xl . Our 

minimax algorithm will not stop at this point ans would eventually converge 

to the optimal solution x = 0. It is thus proposed that quasi-Newton methods 

should solve Problem D'(xk
) rather than Problem D(x

k
) in order to find a 

search direction d k.  
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AN ALGORITHM FOR LINEARLY CONSTRAINED 
NONLINEAR PROGRAMMING PROBLEMS 

Mokhtar S. Bazaraat  and Jamie J. Goode 

In this paper an algorithm for solving a linearly constrained nonlinear 

programming problem is developed. Given a feasible point, a correction vector 

is computed by solving a least distance programming problem over a polyhedral 

cone defined in terms of the gradients of the "almost" binding constraints. 

Mukai's approximate scheme for computing step sizes is generalized to handle 

the constraints. This scheme provides as estimate for the step size based on 

a quadratic approximation of the function. This estimate is used in conjunc-

tion with Armijo line search to calculate a new point. It is shown that each 

accumulation point is a Kuhn-Tucker point to a slight perturbation of the 

original problem. Furthermore, under suitable second order optimality condi-

tions, it is shown that eventually only one trial is needed to compute the 

step size. 
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1. Introduction 

This paper addresses the following linearly constrained nonlinear pro-

gramming problem: 

P: minimize 	f(x) 

subject to Ax < b 

where f is a twice continuously differentiable function on R n , and A is an 

.txnmatrixwhosejthrowisdenotedbya.,and where a superscript t denotes 

the transpose operation. 

There are several approaches for solving this problem. The first one 

relies on partitioning the variables into basic, nonbasic, and superbasic 

variables. The values of the superbasic and basic variables are modified 

while the nonbasic variables are fixed at their current values.  Examples of 

methods it this class are the convex simplex method of Zangwill [18], the 

reduced gradient method of Wolfe [17], the method of Murtagh and Saunders [12], 

and the variable reduction method of McCormick [8]. 

Another class of methods is the extension of quasi-Newton algorithms from 

unconstrained to constrained optinization. Here, at any iteration, a set of 

active restrictions is identified, and then a modified Newton procedure is 

used to minimize the objective function on the manifold defined by these active 

constraints. See for example Goldfarb [6], and Gill and Murray [5]. 

Other approaches for solving problems with linear constraints are the 

gradient projection method and the method of feasible directions. The former 

computes a direction by projecting the negative gradient on the space ortho-

gonal to the gradients of a subset of the binding constraints while the latter 

method determines a search direction by solving a linear programming problem. 
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For a review of these methods the reader may refer to Rosen [14], Zoutendijk 

[19], Frank and Wolfe [4], and Topkis and Veinott [15]. 

In this paper, an algorithm for solving problem P is proposed. At each 

iteration a correction vector is computed by finding the minimum distance 

from a given point to a polyhedral cone defined in terms of the gradients 

of the "almost" binding constraints. An approximate line search procedure 

which extends those of Armijo [1] and Mukai [10, 11] for unconstrained opti-

mization is developed for determining the step size. First, an estimate of 

the step size based on a quadratic approximation to the objective function is 

computed, and then adjusted if necessary. 

In Section 2, we outline the algorithm. In Section 3, we show that 

accumulation points of the algorithm are Kuhn-Tucker points to a slight per-

turbation of the original problem. Finally, in Section 4, assuming that the 

algorithm converges, and under suitable second order sufficiency optimality 

conditions, we show that the step size estimates which are based on the quad-

ratic approximation are acceptable so that only one functional evaluation is 

eventually needed for performing the line search. 

2. Statement of the Algorithm  

Consider the following algorithm for solving Problem P. 

Step 0  

Choose values for the parameters c, z, (S, and e. Select a point x0  such that 

Ax
0 
 < b and let d0  = S. 

Let i = 0 and go to Step 1. 

Step 1  

LetTgi betheoptimalsolutiontoProblemIKx.)given below: 



98 

D(xi): minimize 	Vf(xi) tw + z wtw 

subject to a.w < 0 
— 

for j EI (xi) 

where 

I(xi) = {j: a teci  > 	- .} 

	

(2.1) 

If w = 0, stop. Else, go to Step 2. 

Step 2  

Let 

T. 
I (w 

i) 
	

1J
: a 

j
w
i 
 > 01 

and let 

b 4 a.x 
j i  = min {1, 	 for jeI

+
(w )1 

a.w 
3 i 

Let 

d = Riwi  

and go to Step 3. 

Step 3  

If 

f(xj+Edi) + f(x
i 
 Ed.) - 2f(x ) 	

,2 n dill  2 
i 	

Si  

let 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

2  
c Vf(x.)

t 
 d. 

X = 	 1 1  
i 	f(x +Ed.) + f(x-Ed) - 2f(x.) 

i 	 1 
(2.6) 



A 

1 
and let 6 	= 6 and go to Step 4. Otherwise, let A. = 1, 6 	= 	6 

1+1 	i' 	 1 	' i+1 	2 i' 

and go to Step 4. 

Step 4  

Let 

a. = min 11 , A i 1 

and compute the smallest nonnegative integer k satisfying 

1 
f(x )

k

a•d.) - f(x.) < --(-1 )
k 
 a Vf(x.) d 

i 2 	1 1 	1 -- 3 2111 

(2.7) 

(2.8) 
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1 
1 	

k
i 	. 

Let k. = k, x. 	= xi 
 + a

i2 di' 
	i = + 1, and go to Step 1. 

1+1  

The following remarks are helpful in interpreting the above algorithm. 

1.Adirectionw.isdeterminedbysolvingftoblemp(x.1).This problem 

findsthepointintheconvexpolyhedralconefx.na. 

	

J 
	jcl(xi)

} 

which is closest to the vector - 
1 Vf(x). Methods of least distance pro-

gramming, as in the works of Bazaraa and Goode [2], and Wolfe [16] can be 

used for solving this problem. Special methods that take advantage of the 

structure of the cone constraints may prove quite useful in this regard. 

2. 	The restrictions enforced in Problem D(x) are the c-binding constraints 

atxi,thatis,thosesatisfyingb - c<a.x.<b.Ifw.= 0 , then the 

	

j — j 	1 

algorithm is terminated with x i . In this case, from the Kuhn-Tucker condi-

tionsforProblemIqy,thereexistu.for jcI(x i) such that 



	

Vf(x / 	X 	u.a 
jeI(xi) j  

	

> 0 
	

for jcI(xi) 

These conditions imply that x i  is a Kuhn-Tucker point for the following 

problem: 

minimize 	f 

subject to a
t
x < a.x. 
- 1  

a
t
x < b. 
- 

for jeI(xi ) 

for j+I(xi) 

Notingthatb.-c<a.x.<b.forjcI(x.), if c is sufficiently small, it 
3 	j — 

is clear that the algorithm is terminated if x i  is a Kuhn-Tucker solution to 

a slightly perturbed version of Problem P. The following definition will 

thus be useful. 

Definition 2.1  

Let x be a feasible point to Problem P. If the optimal solution to Problem 

D(x ) is equal to zero, then x is called a c-KT solution to Problem P. 

3. If x
i 
+ w

i 
is feasible to Problem P, then the search vector d i 

is taken 

as wi . Otherwise, d i  is taken to be the vector of maximum length along w. 

which maintains feasibility of x i  + di. 

100 



4. 	Steps 3 and 4 of the algorithm compute the step size taken along the 

vectord_in order to form x. 1.  As proposed by Mukai [10, 11], first an 

estimate of the step size A i  is calculated. When appropriate, Xi  is computed 

by utilizing a quadratic approximation of the function f at x i , otherwise Xi 

 is taken equal to 1. In order to ensure feasibility to Problem P, the first 

trial step size a i  used in conjunction with Armijo line search [1], is the 

minimum of X
i 
and 1. As will be shown in Section 4, under suitable assump-

tions, for large i, test (2.5) passes, k. = 0, and a. = X i  < 1. This confirms 

efficiency of the line search scheme where eventually only one trial is 

needed to compute the step size. 

3. Accumulation Points of the Algorithm 

Theorem 3.1 shows that each accumulation point of the proposed algorithm is 

a c-KT point. In order to prove this theorem, lemmas 3.1 and 3.2 are needed. 

These two lemmas extend similar results of Mukai [10] for unconstrained problems. 

In order to facilitate the development in this section, the following 

notation is used. Let w(x) be the optimal solution to Problem D(x) and let 

R(x) be as given in (2.3) with xi  replaced with x. Finally, let d(x) = P.(x)w(x). 

Lemma 3.1  

Suppose that x is not a c-KT point for Problem P. Then, there exist scalars 

p and s > 0 so that p < a(x) < 1 for each x with 11x-x 1 1 < s. 

Proof 

There exists s
1 
 > 0 so that I(x) = I(x ) for all 11x-1C

* 
 H < s1 . Thus, the 

feasible region for Problem D(x) is equal to that of Problem D(x ) for all x 

satisfying 11x-x H < sl . By continuous differentiability of f, it then follows 

that w(.) is continuous in x at x , see for example Daniel [3]. Particularly, 
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there exists a number s 2 > 0 such that I ty(x)) = 	(w(x )) if Hx-x
* 
 II < s 2 . 

This together with the continuity of w•) and the formula for computing 

imply that (3(•) is continuous in x at -x . Hence, d(•) is also continuous. 

* * 	 t 
Since x is not a c-KT point, then w(x) # 0. Furthermore,b - a,x > c if 

3 

a
t
J
w > 0 which implies that 5(x* ) > 0. Therefore d(x

*
1 4 0. By continuity 

of a(•) and d(..) at x there exist scalars q and s > 0 so that 

B 6011 dOc)11 2  > i a(x*)114(:)112 

f(x+ed(x)) + f(x-ed(x)) - 2f(x) < q 

if 	< s 	(3.1) 

u 	u 
if pc-x* 11 < s 	(3.2) 

Now, let x be such that flx-: ll < s. Since w(x) solves Problem D(x), then 

Vf(x) tw(x) < - 	z1Iw(x)11 2 . This, in turn, implies that - Vf(x) td(x) > 	z 

(3(x) Ild(x) H 2  and from (3.1) we get: 

1 
- VY(x)

td(x) > T,  z 0(x* ) II d(x*42 .= y > 0 (3.3) 

If test (2.5) passes, then from (3.2) and (3.3) the following lower bound on 

X is at hand: 

- 	f (x) 
t
d (x) 	e

2 
X 

	

	 > 
f(x-Fed(x)) + f(x-ed(x) - 2f(x) — q 

2 
If test (2.5) fails, then X i  = 1 and hence X i  > min 	= P. Since 

ai  = min 11, Xi}, the desired result follows. 

Lemma 1.2  

* 
If' x is not a c-KT point for Problem P, then there exist a number s > 0 and 

*„ 
an integer m so that k(x) < m if 11 x-x II < s, where k(x) is the Armijo integer 
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given by (2.8) with x i  and ai  replaced with x and a(x) respectively. 

Proof  

As in the proof of Lemma 3.1 and by continuous differentiability of f, there 

* 
exist scalars s, h, and y > 0 so that for II x-x H < s the following hold: 

Vf(x) td(x) < -y 	 (3.4) 

IVf(x+gd(x)) td( ) - Vf(x) td(x)I < 	y 
	

for each gc[0,h] 	(3.5) 

Now let m be the smallest nonnegativ.! integer so that ()
m < h and let x be 

2 

such that hx-x II < s. Then there exists 8c[0,1] such that: 

f(x+(1 m a(x)d(x)) - f(x) - 
1-(1ma(x)Vf(x)

t
d(x) 3 2 

= (4Yma(x)Vf(x+.41(1)%(x)d(x)) td(x) - 23:(2)ma(x)Vf(x) td(x) 

= 1)ma(x)[{Vf(x+e(2)ma(x)d(x)) t
d(x) - Vf(x) td(x)} d(x)t + 2 
	td(x)] (3.6) 

2 

1 
Since 6(2) m  a(x) < h, (3.4) and (3.5) imply that the right hand side of (3.6) 

is < 0 which in turn shows that k(x) < m, and the proof is complete. 

Theorem 3.1  

Either the algorithm terminates with a c-KT point for Problem P or else gen-

erates an infinite sequence {xi } of which any accumulation point is a c-KT 

point for Problem P. 
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Proof  

Clearly the algorithm stops at x i  only if x i  is a c-KT point. Now, suppose 

that the algorithm generates the infinite sequence lxi l. Suppose that x is 

• 
 an accumulation point so that x 
K 

x* for some infinite set K of positive 

integers. Since f(x) is decreasing monotonically and since 	 ) 

	

f(x.
1 	

f(x ) 

then f(x) f(x ). Suppose by contradiction to the desired conclusion that 

x is not a c-KT point. From Lemmas 3.1 and 3.2, there exist positive numbers 

p and y and an integer m so that ai  > p, vf(xdtd < y , and ki  < m for large 

i in K. Therefore, 

1 1 ki 	 1 	1 
f (xj+i ) 	f (xi) < 	ui  Vf (xi )

t
di  < - 	y ( -2-)

m 
 

for large i in K. This implies that f(xi) 	-co, contradicting the fact that 

f(xi) 	f(x ). This completes the proof. 

4. Eventual Acceptance of the Step Size Estimate  

* 
In the previous section, we showed that an accumulation point x of the 

sequence {xi{ generated by the algorithm is a KT point to the perturbed pro-

blem P' given below: 

P': minimize 	f (x) 

subject to ax < ajx 
 

- 

a
t
x < b. 

-- 3 

for jEI(x ) 

* 
for jc .1(x ) 

Here, we assume that the whole sequence 	converges to a point x which 

satisfies suitable second order sufficiency conditions. Under this assump-

tion, we show that test (2.5) is eventually passed. Furthermore, we show 
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thatXj <landthatk.= 0  for i large enough. 

The second order condition is given in Definition 4.1. It is well-known 

that x satisfying this condition is a strong local minimum for problem P'. 

That is, there exists a number y > 0 so that f(x ) < f(x) if x is feasible 

to problem P' and Hx-x11 < y, see for example McCormick [9] and Han and 

Mangasarian [7]. 

Definition 4.1  

LetxbesuchthatAx<bandlet >b.-cl. x
* is said 

to satisfy the second order sufficiency optimality conditions for problem P' 

if there exist scalars u. > 0 for jE.I(x ) and y > 0 so that: 

Vf(x*) +* u a =0 
jeI(x ) 	a  

H 
f(X

*
)
td < 0, aid < 0 for jEl(x

* 
 ), H d H = 1 => d

t
H(x

*
)d > y (4.1) 

Theorem 4.1 shows that test (2.5) will eventually be passed so that 

Ai 
is given by (2.6). The following two intermediate results are needed to 

prove this theorem. 

Lemma 4.1  

If Cd < 0 and 11 d ll = 1 imply that d tHd > y > 0 then there is a number e > 0 

so that Cd < 01 and H d it = 1 imply that d tHd > y/2. 

Proof  

Suppose by contradiction that for each integer k there is a vector d k  such 

that 
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fldk  = 1, cdk  <- 	and d
t
Hd

k 
 < y/2 

	

k 	k 
(4.2) 

Since the sequence {dk} is bounded, it has an accumulation point d. From 

(4.2), lid = 1, Cd < 0, and d tHri < y/2 which contradicts the assumption of 

the lemma. 

Lemma 4.2  

If either {xi} converges or {x: Ax < b, f(x) < f(x0)1 is bounded, then 

d i 

Proof  

Since 0 < ai  < 1 and di  = aiwi, it suffices to prove that wi  .4. 0. Suppose 

there exist an infinite set of positive integers K and a number E > 0 so 

that 

Ilw. II> c 	for icK 	 (4.3) 

Clearly, under either of the assumptions of the lemma, there exist an infinite set 

K' C K and a point x
* 
 so that xi 

4- x* . By Theorem 3.1 x
* 

is a c-KT point 

for Problem P. Thus, w = 0 is the unique optimal solution to Problem D(x ). 

But for large icK', I(x ) = I(x), and by continuity of the solutions to 

D(s) we must have II 	< E/2 for large i in K'. This contradicts (4.3) and 

the proof is complete. 

Throughout the remainder of this section, the following notation will 

be used for any scalar y: 
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1 
Hi = 2 f (1-y) H(xi +yyd.)dy 

0 

We can integrate by parts to obtain 

f(xi+ydi) 	f(x.) = YVf(x.) td + N'2de.(1. i 	2 T  iii 

(4.3) 

(4.4) 

For further details, the reader may refer to Polak [13, p. 293]. 

Theorem 4.1  

Let {x.} be a sequence generated by the algorithm. Suppose that x 	and 

* 
x satisfies the second order optimality conditions for problem P'. Then 

there exists an integer m so that test (2.5) passes for all i > m. 

Proof  

From (4.3) and (4.4) we get: 

1 
f(xi+Edi) - f(xi)=EVf(xi )

t
di  + -2- e

2 
 diHidi  

1 	t 
f(xi-edi) - f(xi) = -eVf(xi 	+ £

2 
 d iFli

-E 
 di  

Adding we obtain: 

- 

f(x +Ed.) + f(x i-Ed i 	
1 2f(x.) = — e2  d. 

t 	£ 
1 (H.+H )di  

(4.5) 

NowforjelA,atJx* 	
J 	 1 

> b. - c. Since x. - x
* 

then for i large enough, 

> x at .13 a..By step 1 of the algorithm a
t
w. < 0 and so 

i i 	i 
-csothatj C2c) 	 j   

di 	 * 
at c----41-7< 0 for i large enough and JET (X ). Likewise, from step 1 of the 
J r 	i 11 



lutS 

d
d  1 

* 
algorithm Vf(x.)

t 	 t 	i  

	

i < 0 and hence Vf(x i) 	LS 0. Since xi  +x , then for 
— 

i 
II  any number EY> 0, Vf(x

* t d 
) 	di < 0 for i large enough. Thus, Lemma 4.1 and 

the second order conditions imply that 

 diH(x
* 
 )dI 
	2 
> 	i 112 
—  

for large i (4.6) 

Now note that 

114.- H(x*) II =112 $ (.-y) [H(x,
'I"
+yed i)-H(x* )1dy 11 

0  

* 
< 2

0 
 f (1-y) hH(xi47Edi)-1.1(x  ) hdy  (4.7) 

Since x i  + x , then by Lemma 4.2, d i  + 0. Particularly, for i large enough, 

1,111(xi+yEd i)-H(x*) H < 	for all yE[0,1]. From (4.7), 11111 - H(x* ) H < 	. 

This together with (4.6) yields: 

* 
d
t
H
Ed = d

t 
 H(x

*  )d. + d.
t 
 (H.

E  -H(x ))d. 

> 2 11d. 11 2 	11d. I 2  II 	x*) H 

> 4Hdi  H 2 	for large i 	 (4.8) 

Similarly, 

dtHcd. > 1-Hd. 11 2 
4 

for large i 	 (4.9) 

From (4.5), (4.8), and (4.9) it immediately follows that 
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f(xi+Ed) + f(x.-Ed.) - 2f(x ) > 
	

4 " 
2 /li d  n 2  

	

-- 	" 
for large i 	(4.10) 

From (4.10), if test (2.5) fails for a large i, we must have: 

2 

	

e
2
Si

1
Id H 2 

> f(x.+Ed.) + f(x i
-Ed) - 2f(x.) > e

2 / 	11 
1 	4 	1 

that is, S i  > I ' If the conclusion of the lemma does not hold, then test 
4  

(2.5)failsinfinitelyoftenandthen4.+0. This contradicts (5i 4 > 	for I  

large i, and the proof is complete. 

Theorem 4.2  

Let { 
	

be a sequence generated by the algorithm. Suppose that x i  + x and 

that x satisfies the second order optimality conditions for Problem P'. Then 

:here exists an integer m so that f(x.+4a.d
i1 

 ) - f(x.) < 	a.Vf(xiI  )
t
d. for all 

i 1 	3 
1 

1  

i>m,th:tis,1‹.
1
...0 for all i > m. 

Proof  

By Theorem (4.1), test (2.5) passes for large i so that X i  is given by 

- e2Vf(x ) t
d. 	 - Vf(x.) d. 3. 	3. 

- 
f i+Ed 	

+ f (x .3.  -Ed .3.
) - 2f(xi 	2 1 ) 	— d .

t  (H .e  +H 
1e 

 )d 1 

(4.11) 

If X < 1 so that a.1  = X.1
, then from (4.4) and (4.11) we get: 

1 	. 	1  
f(xi) - 	.Vf(x.)

t 
 d. = 	A d.

t 
 H. d. +—X.Vf(x.) d. 

31 	a. 	1 	2 1,11131 	1 

1 	t 
A
i 	1 t e 	-E 	1 2 t e -e 

1d1). d 	 ) di] - 	X.d.(11 +11 )d. 2iii 2iii 	121iii 	1 
(4.12) 
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Sincex..+x,thenbyLerrmia4.2,d.+0. Thus H i
i  , H.

e  , and H-E converge to 

H(x* ) and the first term in (4.12) will be less than 24  X2  11c1 i 
 112 for i large 
 

enough. As in the proof of Theorem 4.1, d ti (HeitUlc)d i  >i-Ildp 2  for large i. 

Substituting in (4.12), the desired result holds. 

Now suppose that X i  > 1 so that ai  = 1. Then 

f(x +a,d.) - f(x.) - — a.Vf(x.)
t
d. = —

t1  d.H.d. + 3- Vf(x )
t
d 1 	 1 

i 	 1 	31 	1121113 	ii 

Since X > 1, then from (4.11) we must have 

- 
Vf (xi)

t
di  < - 

1 
 d i (Hi+Hi

E 
 )d i  

Substituting in (4.13) we get: 

f(x.+a.a. 	 3 d.) - f(x.) - 
1 
— 	

1 
a.Vf(x1  )

t
d. < — [d.

t 
 H.
1 	1 

1 	2 1 
d. - — d.

t 
 (H.

E 

1 
 +H.
E 

1 
)d.] 

1 	1 	211 	 1  

1 	 - 
- 	d.

t 
 (H.+H.

6 
 )d. 

	

12 1 1 1 	1 

(4.13) 

(4.14) 

That the right hand side of (4.14) is < 0 for large i follows exactly in the 

same manner in which we proved that (4.12) is < 0. This completes the proof. 

Finally, we state certain conditions in Theorem 4.3 below which guarantee 

thatX.<1sothata.=X. for i large enough. 
1 

Theorem 4.3  

LetHbeasequencegeneratedbythealgorithm.Supposethatxx and 

that x satisfies the second order optimality conditions for Problem P'. If 

z qt ,thenthereisanintegermsothatX.<1 for all i > m, that is, 

a ..-- X
i  for all i > m. 



(H +H )d > 1 11c1
i11 2  i . 
	

— 4  
for i large enough 	 (4.16) 1 t c -c 

Proof 

By Theorem 4.1 there is an integer m so that for i > in we have: 

- C 2Vf(xi ) td i 	 - Vf(xi) td i  

f(x.1+cd i
) + f(xi-cdi) - 2f (xi) 	1 dt (161.117c)d.  

2 i` 1 

(4.15) 

As in the proof of Theorem 4.1 

Since wi  solves Problem D(x i), then there exist scalars uij  >0 for jcI(x.) 

such that 

Vf(x)+ zw + 	u..a = 0 i 	 13 j jcI(xi ) 
(4.17) 

u..a.w. = 0 13 3 1 
for jcI(x i) 	 (4.18) 

1 
From (4.17) and (4.18) it follows that Vf(x.) tw. = - z bap

2 
 . But by Theorem 3.1 

x is a c-KT point and hence the optimal solution w to Problem D(x ) is 

* 	 * 
w = 0. Since xi 

.4- x , by continuity of the optimal solution to Problem D(-), 

and since b
J 
	at 

 x
i  a

t
x
i 	 1 
> c for each jcf* (w.) ' 

 it follows from (2.3) that S i  = 1 

for large i. Thus d. = wi  so that 

Vf(xi) td i  = - z Hdp 2 
	

for large i 	 (4.19) 

Substituting (4.19) and (4.16) in (4.15), it is clear that A i  < 1 for i large 

enough, and the proof is complete. 
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ABSTRACT 

Optimality conditions for families of nonlinear programming 

problems in Rn  are studied from a generic point of view. The ob-

jective function and some of the constraints are assumed to depend 

on a parameter, while others are held fixed. Under suitable con-

ditions, certain strong second-order°conditions are-shown to be 

necessary for optimality except possibly for parameter values lying 

in a negligible set. 
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I. Introduction. 

For families of nonlinear programming problems of the type 

(Q p ) 
	

min f(x,p) in x subject to g(x,p) < 0, h(x,p) = 0, and 

X E C 

we derive optimality conditions which are generically necessary 

in the sense that they hold at all local minimizers for (Q p ), un-

less p belongs to a certain first category set of measure zero. 

Here, P is an open subset of Euclidean space (or more generally a 

manifold), f, g, and h map R
n 

x P into R, R
I
, and R , respectively, 

I and J being finite sets, and the inequality g(x,p) < 0 [resp., 

the equality h(x,p) = 0] is interpreted coordinatewise. 

,In Spingarn and Rockafellar [7], such conditions for one spe-

cific class (Q p ) were derived: right-hand-side perturbations of the 

constraints and linear perturbations of the objective function. For 

that class it was demonstrated that, except possibly for problems 

(Q p ) for p in a set of measure zero, the "strong second-order 

conditions" (the Kuhn-Tucker conditions with strict comple- 

mentary slackness, linear independence of the active constraint 

gradients, and positive definiteness of the Hessian of the 

Lagrangian on the subspace perpendicular to the gradients of the 

active constraints) hold at every local minimizer for (Q p ). 

When studying questions of genericity, the class of problems 

to which the results apply is crucial. The classes of problems 
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considered in this paper are more general than in [7] in two ways. 

First, the manner in which f, g, and h depend on p is given more 

freedom. Rather than requiring perturbations of a special (e.g. 

right-hand-side) type, we will only require that the family of 

problems satisfy a general and easily verifiable criterion. Sec-

ond, in addition to the constraints g < 0 and h = 0, which we re-

fer to as the "variable" constraints, we also investigate the ef-

fect of the "structural" of "fixed" constraint x EC that does not 

vary with p. The distinction between these two types of con-

straints is important here because the two types play different 

roles both in the analysis of the conditions and in the statement 

of the conditions themselves: the conditions that turn out to be 

generically necessary for optimality depend on the particular 

class of problems under consideration. 

The regularity conditions that we 	the set C have 

been incorporated into our definition of "cyrtohedron". Cyrto-

hedra, which were introduced in [5], are piecewise smooth sets 

that can be represented locally by a finite number of nonlinear 

inequality and equality constraints. They are similar to, but 

more general than the "manifolds - with - corners" studied by 

Schecter [4]. 

The idea to study mathematical programming problems from the 

generic point of view goes back to the Saigal and Simon study [3] 

of the complementarity problem. Several others have studied ques-

tions which arise in economics concerning the generic properties 

of equilibrium models and Pareto optima. The dominant notion of 



117 

a "generic" property in all of these studies has been the category 

theoretic one, relative to spaces of differentiable mappings under 

the Whitney topology, rather than the "measure zero" notion used 

here, and which we feel is better suited for studying nonlinear 

programming problems. 
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II. Preliminaries and notation. 

A set Mc R
n 

is a k-dimensional C s submanifold (s > 1) if for 

each x EM there is an open set U c Rk and a C s  diffeomorphism 0 

mapping U onto a neighborhood of x in M [2]. For any x=(q)EM, 

Mx = range d0(q) is the tangent space to M at x. If f : Rn  4- R, 

then "fIM" denotes the restriction of f to M. For any x E Rn, 

"Vf(x)" denotes the ordinary gradient of f at x, while "V(fIM)(x)" 

denotes the gradient of fIM at x, the latter being a linear func-

tion on Mx . If V(fIM)(x) = 0 (i.e., if Vflx) is perpendicular to 

Mx ), then x is a critical point for f on M, and in this case the 

Hessian for fIM at x = 0(q) is the bilinear function on M x  defined 

by 

(V 2  (f IM) (x)) 	= (V2 (fo 0) (q)) (u,v) 

where u = d0(x)u, v = d0(x)v, and V
2
(f00)(q) is the ordinary 

Hessian of foO. If V
2 (f00)(q) is nonsingular, then x is a nonde-

generate critical point [1]. 

A subset S c Rn  is of measure zero provided for every E > 0, 

S can be covered by a countable family of n-rectangles, the sum of 

whose measures is less than e [1]. S c Rn  is of first category  

provided S is a countable union of sets whose closures have empty 

interior. We will call S a negligible set if S is both of measure 

zero and first category. 
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If F, N, S are submanifolds, S c N, f 	F 4- N, then f ; F 	N 

is transverse to S if N 	S + df (x) (F
x

) whenever y = f (x) E S. 

For a proof of the following, consult Hirsch [1] : 

(2.1) THEOREM (Pamametric Transversality) Let F, S, N be C s  sub-

manifolds, P open, with S c N, 	: FXP 	N of class C s , 

s > max{0, dim F + dim S - dim N}, and let 4) be transverse to S. 

Then there is a subset P' cP such that P\P' is negligible and for  

all p EP' , (1)(•,p) : F + N is transverse to S. 

(2.2) COROLLARY. Let f 	FxP -÷ R be C
2

, P open,F c R
n 

a C
2 

sub- 

manifold, and assume for each x E F that the Jacobian of the func-

tion p 	V xf (x, • ) is of rank n at all p E P. Then except for p in 

a negligible set, all critical points of f (•,p) on F are nonde-

generate. 

Proof: Let TF = { (x, C) E Rn  x Rn  : x°6 F, 	E Fx }, 4(X,P) 

(X,V
x

f (X,P)) • For each p E P, (1)(• ,p) is transverse to F x {0} if, 

and only if, all the critical points of f (•,p) on F are nondegen-

erate. But the hypothesis implies that cp(x,•) is transverse to 

F x {0} for each x E F, and hence that 4) (• , •) is transverse to 

F x {0}. We then apply the theorem with s = 1, N = TF, and S = 

F x {0}. ❑ 

(2.3) COROLLARY. Let F, S, N be C I-  submanifolds, P open, S c N, 

: F x P 	N of class C 1 , dim F + dim S - dim N < 0, and let  (1) be 

transverse to S. Then there is a subset P' cP such that P\P' is 

negligible and  cp ( x , p ) S for all p E P' , x E F. 
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Proof:  It follows from the fact that if (1) (• ,p) is transverse 

to S, 	then the dimension requirements force (1)(x,p) e S for all 

x E F. ❑ 

For any S c Rn , "rank S" denotes the dimension of the linear 

subspace "span S" spanned by S. "relint S" is the interior of S 

relative to the affine flat spanned by S. 

Let U c Rn be an open set, Ga , a E A and H i3 , 13 E B, finite col-

lections of differentiable functions on U. For any A o  c A and 

x E U, define 

r (x,A 0 ) = {vc c, (x) : a E 	u {Vli r3 (x) : S E B} 

Z (A o ) = {y E U : 0 = G ct  (Y) = H t3 (y) Va E Ao r S E B} . 

A nonempty connected set C c R n  is a cyrtohedron  of class C s  (s > 1) 

if for every x E C, there are finitely many C s functions Ga , a E A, 

and H t3 , 13 E B, defined on a neighborhood U c R n  of x such that 

x E Z (A) and 

(2.4) 	(a) For all x E U, X E C if, and only if, 

G ct (x) < 0 V aEA and H (x) = 0 V S EB. 

(b) If y Aaa VG a (X) + Bb VH (X) = 0 for some a E RA  and 

b E RB , then a= 0 and b= 0. 

(c) For each A o c A there is an integer s(A 0 ) such that 

rank F (x,A 0 ) = s (A 0 ) for all x E U. 
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If C is a cyrtohedron, then U may always be chosen [5] so that 

(b' ) For all x E U, (b) holds with x in place of x 

(c' ) If Ao  c Al  c A and s (A 0 ) = s (Ai ) then Z (A 0 ) = Z (Ai ) 

(d) 	For all A
0 
 c A, Z (A 0  ) is connected (n-s (A

0 
 ) ) 

dimensional submanifold 

and when this is done, we will say that (G et  (a E A) , 	E B) ,U) , or 

more briefly (G ct ,H,U), is a local representation  (abbr. 1.r. ) for 

C. 

Let 	(G,H 

ict E A 	: 	G
a

(x) 	= 

T 	(x) 	= {C 

Lc (x) 	= 	{C 

,U) 	be a 1.r., 	x EC n U. 	Letting A+  (x) 	= 

01, we define 

E Rn 	C •VG
a 
 (x) <0 VaEA

+ 
 (x) 	C • VH S  (x) = 0 

E 	Rn 	: 	Y•VGa (x) 	= OVaEA+  (x) ' 	C •VH 	(x) = 0 

13 € B} 

V f3 € 13'  1. 

The dimension  of C is defined to be dim C'= n - IBI. It does not 

depend on x or on the particular local representation. 

For x,y E C, define an equivalence relation - by specifying 

x y if, and only if, there is a sequence x = x 0 , x 1 	= y 

in C such that for each pair (x i  ,x i+i ) (i = 0, • • • ,p-1) , there is a 

1.r. (Get , H i3 ,U) such that Z (A) {x i ,xi+1 }. The equivalence classes 

under this relation are the faces  of C. The proof of the following 

may be found in [5] : 
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(2. 5) THEOREM. Let C c Rn  be a cyrtohedron of class  Cs  (s > 1) , 

X E C. Then  x lies on a unique face  F of C, and F is a connected  

C
s 

submanifold of  R
n

. The tangent space  F
x 
 to F at x is LC (x) 
 — — — 

There is a 1.r.  (Gc4 ,11 13 , U) for  C such that  x E Z (A) , and for any  

such 1.r.  , Z (A) = F n U and  dim F = dim Lc  (x) = n 	s (A) . 
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III. First-order conditions. 

In this section, certain first-order conditions (3.2) are 

shown to be generically necessary for optimality. This will be 

done by showing that a constraint qualification, called the "in-

dependence criterion" is generically satisfied at all feasible 

points. We will then appeal to a result from [5] stating that in 

the presence of this qualification, these conditions are necessary 

for optimality. 

It is assumed here that f, g, and h are of class C
1 
on Rn , 

and Cc Rn  is a d-dimensional cyrtohedron. 

If x is feasible for (Q), the independence criterion (IC) is 

satisfied for (Q) at x if for any a E RI +  and b E Rj , 

° (IC) 	

I+ 
aiVg(x)J 	3 

b.Vh.(x) E LC  (x)implies 0 = a = b. 

It is trivially satisfied if I +  = J = 0. If C = Rn , IC says that 

the gradients of the active constraints at x are linearly indepen-

dent. More generally, if F is the face of C that contains x, IC 

says that the gradients of g i lF, i El+  and hi lF, j E J at x form 

a linearly independent set. From [5], we have: 

(3.1) THEOREM. If x is a local minimizer for (Q) and if the in- __ 

dependence criterion is satisfied at x, then there exist y E RI and 

- 

Z E Rj  such that  
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(3.2) 	 (i) 	-VxL(Tc,Y,E) E N c (Tc) 

(ii) yi > 0 implies g i  (X) = 0 ViEI. 

Showing that the first-order conditions 3.2 are necessary for op-

timality in "most" problems reduces, by this theorem, to showing 

that IC holds for "most" problems. 

Let E : R
n 	

R
I 

x  RJ be given by E(x) = (g(x),h(x)). (If 

I = J = 0, then RI x RJ = {0} and E (x) = 0) , and for any I' c I, 

define SUI')= {(x,WER I xRj  :x. =0 ViEI'}. 

(3.3) LEMMA. Let x be feasible for (Q). The independence cri-

terion for (Q) is satisfied at x if, and only if, 

(3.4) 	 RI x RJ = dE(x)(Lc
(x)) + Q(I

+
(x)). 

Proof: dE(x) is the (III + IJI) xn matrix whose rows are the gra- 

i dientsoff,iEI,and. 
g-J 	

a,j J. Let c = 	represent an arbi- 

trary (III + IJI)-dimensional column vector. IC holds at x if, 

a  
(b 	

I_, 
and only if, there exists no c = 	0  with a E R + such that 

c'dE(x)z = 0 for all z E L (x), an assertion that is easily seen to 

be equivalent to 3.4. ❑ 

(3.5) LEMMA. Let F be a face of C. If EIF : F 	RI  x Rj  is trans- 

verse to Q(I') for every I' C I, then IC is satisfied at every  X E F 

which is feasible for (Q), 
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Proof:  Immediate from the definition of transversality and the 

preceeding lemma. ❑ 

Now suppose that f, g, and h are of class C on Rn x P, and 

let E : Rn 
xP -* R

I 
x R

J 
be given by E(x,p) = (g(x,p),h(x,p)). We 

say the family (Q p ) is full with respect to constraints  if the 

Jacobian of the function p' µ E (x pi ) has rank III + IJI at 

every (x,p) E C x P. The usual right-hand-side perturbations fit 

this requirement; here, P = RI  x Rj , and for any p = (s,t) € P, 

g(x,p) = u(x) - s and h(x,p) = v(x) - t for some C l  functions u 

and v. 

(3.6) PROPOSITION. Let F be a face of  C. Assume that  C, g, and 

h are of class  Cs , with  s > max(0,d-IJI) (d = dim C), and that  (Q p ) ° 

is full with respect to constraints. Then there is a subset  PF 
P 

such that  P\PF 
is negligible, and for all  p E P

F' 
 IC holds at all  

x E F which are feasible for  (Q p ). 

Proof:  Since (Q p ) is full with respect to constraints, the Jacobian 

of the function p' 	E(x,p') has rank I I I + PI at all (x,p) E F x p. 

In particular, El (FxP) 	Fxp 	Ri xRJ  is trivially transverse to 

any submanifold of R
I 

x R
J

. 

For each I' c I, S2 (I' ) e R
I 

x R
j 

is a subspace of dimension 

III - II' I < III. Since El (FxP) is transverse to S2 (I' ) , and since 

I J 
dim F + dim Q(I') - dim(R xR ) < d + III - (III 	IJI) = d 	IJI 
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and since F and E are of class C s  with s > max ( 0,d--1,71) , it follows 

by 2.1 that there is a subset P F  c P with negligible complement 

such that for all p E P F , the function El (Fx(p)) : F -0- R I  x Rj  is 

transverse to S-2(I'). Clearly, it may be assumed that P F  has this 

property for all I' c I. By Lemma 3.5, for all p E PF , if x E F is 

feasible for (Q ) , then IC is satisfied at x. ❑ 

(3.7) LEMMA. A cyrtohedron has only countably many faces. 

Proof:  Let (Ga , 	,U) be a 1.r. for C. It is enough to show that 

U meets only countably many faces of C. For each x E U n C, define 

A+ (x) = {a € A : G
a

(x) = 0}. Fix A' c A, and let T(A`) = ix EUnC : 

A+
(x) = A' }. Clearly it is enough to show that T (A' ) meets only 

countabl.y many faces of C. For each y E T (A' ) there is an open 

ball V c U about y, such that (G(a€A 1 ) ,H (13€B) ,V ) is a 1.r. for 

C and G
a 

< 0 in'Vy  for all a E AAA'. By definition of "face", the 

set V n T(A') is contained in a single face of C. Thus each 

y E T (A' ) has a neighborhood in T (A' ) lying in a single face of C, 

showing T(A') meets only countably many faces of C. ❑ 

(3.8) PROPOSITION. Let  C, g, and h be of class  Cs  with  

s > max (0,d--1,31) (d = dim C) , and  let  (Q p ) be full with respect  

to constraints. Then there is a subset  PC CP  with negligible com-

plement such that if  p E Pc  and x is feasible for  (Qp ) , then x 

satisfies  IC for (Q ) . 
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Proof:  For each face F of C, let PF  be as in Proposition 3.6, 

By Lemma 3.7, Pc  = n F  PF  has the desired property, ❑ 

Combining this with Theorem 3.1, we obtain 

(3.9) THEOREM. Let  C, g, and h be of class  Cs  with  s >max(0,d - 1,31) 

(d = dim C), and let  (Q p ) be full with respect to constraints. 

Then there is a subset  Pc c P 
with negligible complement such that  

if p E p and  X E C is a local minimizer for  (Q-) , then there exists  

_ 
(y,z) E R

I 
x Rj  such that 

(3.10) (i) -V L(X,Y,2,P) EN
c

6c) X 

(ii) di El, y i  > 0 implies g i (x,p) = 0 

The assumption that (Q p ) is full with respect to constraints 

can be weakened somewhat: 

(3.11) COROLLARY. If there is a closed subset  P' cP of measure  

zero such that the subfamily  {(Qp ) : p eP\P'} is full with respect  

to constraints, then the conclusion of  3.9 holds. 

Proof:  Apply Theorem 3.9 to the subfamily. ❑ 
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IV. Generic Second-Order Conditions 

Henceforth, f, g, h, and C are assumed to be of class C
2

. 

Let R
r 

= Rri x RI 
x R

J
, and define 1.  : R

r 	
R
r 

by 

(W) = (V
x
L (w), -V L(w), -V zL(w)) 	(w= (x,y,z)). 

If we let C = C x R
I 

x Rj , then CcRr  is also a cyrtohedron of class 

C
2

. 

The second-order conditions which we show here to be generi- 

cally necessary for optimality are the generalized strong second-

order conditions discussed previously in Spingarn [5]. A point 

w = (x,y,z) EC is said to e  satisfy these conditions for the problem 

(Q) if 

(SSOC) 
	

(i) x is feasible for (Q) 

(ii) -VxL(W) Erelint NC  (x) 

(iii) YiE I, Yi  > 0 if, and only if, g i. (R) = 0 

(iv) The independence criterion for (Q) holds 

at x 

(v) If F is the face of C containing x, then 

(Vx
2 
 (L F)( 1:0)(c,0 >0 for all 	E Rn  satis- 

fying 0 	E Lc (>7), and r  .Vg i (X) = 

yVh.
3 
 (x) = 0 for all i E I +' j c J. 
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For a more detailed discussion of these conditions, and a discussion 

of their relationship to the classical conditions, we refer to [5]. 

If a particular representation (G a ,H v U) for C near x is 

chosen, these conditions could be rephrased in terms of the func-

tions Ga and }iv  without ever mentioning the set C. We have 

avoided doing this for several reasons. Most important, the roles 

played by the two types of constraints, fixed and variable, are 

not the same, and the above formulation emphasizes the different 

ways they enter into the conditions. Also, this formulation sug-

gests the possibility of generalizing the conditions to a broader 

class of sets C. Consider, for example, the set 

C = { X = (Xi/X 2 ,X 3 ) E R3  : IX < 1 and x1+x2 +x3
> 1x'). 

Because no representation of the type 2.4 exists for C near ;i = 0, 

C is not a cyrtohedron. But, like a cyrtohedron, C can be parti-

tioned into "faces" (four in this case) that are submanifolds, 

and N (x) and L (x) have obvious meanings, so the conditions SSOC, 

as stated, are still meaningful. In fact, C has all the properties 

that are required for our proof of the genericity of SSOC. We do 

not know if there is a "natural" broader class to which our re-

sults apply. It seems that the conditions should be generic for 

sets C that look (in some sense) locally like the intersection of 

a cone with a neighborhood of the origin. One possible class 

would be those sets C such that each x e C has a neighborhood U 

such that for some diffeomorphism 4, and some closed convex cone 
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K, (p(x) = 0 and cp(CnU) = (p(U) n K. For this class, the proof of 

the genericity of the above conditions does indeed go through, but 

since this class does not seem to include cyrtohedra, it is not as 

broad as one would like. 

We observed in [5] that for any w = (x,y,z) E C with x feasi- 

ble for (Q), 

(4.1) 

(4.2) 

w satisfies 3.2 	 - TW 	(w) 
C 

if x is a local minimizer, SSOC holds <=,:> 

(a) -TWE relint N-(07) and 
C 

1.4 

(b) w is a nondegenerate critical point for L on G. 

Our proof of the generic necessity of•SSOC will proceed as follows. 

If x is a local minimizer, then from the previous section we have 

the (generic) existence of y and z satisfying the first-order con-

ditions  3.2. Let w = (x,y,z). From 4.1, it follows that 

 -TW

- 

EN-(W). By 4.3, - TWEN-(w) implies (generically) that 

- TW

- 

E relint N„,(w), so it will follow that 4.2a holds. By 2.2 we 
C 

know (generically) that all critical points of L on all faces of 

C 

- 

are nondegenerate, so that 4.2b also, and hence SSOC holds. ❑ 

(4.3) PROPOSITION. Let C c R
n be a cyrtohedron of class C

2
, P 

open, and  T : R
n 

X P 	R
n 

a C
1  function. Suppose that for each 

(x,p) E C X P, the map p' 	T(x,p 1 ) has Jacobian of rank n at (x,p). 
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Then there is a subset P o c P such that P\P 0 is negligible and for 

all p E P o and all  x E C, 

(4.4) 	 (x,p) E NC  (x) 	T (x,p) E relint N (x). 

Proof: Let F be a face of C. For every x E F, there is a l.r. 

(Ga ,N,U) for which x E Z(A) = F nU. For each such l.r., we will 

show that there is a subset P cP with P\P negligible such that if 

per) and xEFnU, then 4.4 holds. F may be covered by sets U cor-

responding to countably many such l.r. Taking the intersection 

of the corresponding sets P gives a set PF  such that 4.4 is satis-

fied for all p EPF  and all x E F. By Lemma 3.7, the set P o  = nFPF 

 (taking the intersection over all faces F of C) will have the de-

sired property. 

So fix a face F, x E F, and (Ga ,H,U) such that x E Z(A) =F n U. 

For any TENc (X)\relint Nc (x), it follows from the definition of 

Nc (x) that there exists A 0 	c A such that 'T E span r(x,A 0 ) 	span r(x,A). 

Now, for any A 0  c A, s(A0 ) = rank r(x,A0 ) for all X EU, so it suf-

fices to show for any A 0  clk with s(A0 ) < s(A), that except for 

pE P belonging to a negligible subset, T(x,p) span F(x,A 0 ) for 

all xEFnU. Henceforth, we fix A o cA such that s(A0 ) < s(A). 

	

Let N = (FnU) x Rn  and 	S = {(x,w)EN:wEspan r(x,A 0 )}. 

Since C is of class C
2 , S is a (dim F + s(A 0 ))-dimensional C

1 
 sub-

manifold, and N is a (dim F + n)-dimensional C
2 submanifold. De-

fine (1)(x,p) = (x,T(x,p)), and fix x E Fn U, p E P such that 

cp(x,p) E S. By hypothesis, range d cp(x,p) = {0} x R n . Also, 
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Nc (x,p) = Fx 
x R

n 
and S 4) (x,p) = Fx x K for some subspace K c R

n
. 

Hence N )(x,p)
= S Ox,P) + range d (1)(x,p), showing that (p(x,A) : 

P 	N is transverse to S, and hence that 1) : (FnU) xP 	N is trans- 

verse to S. By 2.5, 

dim(FnU) + dim S - dim N = dim F + s(A 0 ) - n < dim F + s(A) - n = 0. 

So, by 2.3, there is a subset P (A 0 ) c P with P \ P(A 0 ) negligible, 

such that for all p E P(A0 ) and all xEFn U, we have (I)(x,p) S, or 

equivalently, T (x,p) span r (x,A0 ) . ❑ 

The family (Qp ) will be called full provided the function 

/0 ,  1-..›
w
L(w,p') ER

r has Jacobian of rank r at all (w,p) EC x P. 

This notion should not be.confused with "full with respect to con-

straints", which is a weaker property: 

(4.5) PROPOSITION. If (Q 
P
) is full, then it is full with respect 

to constraints. 

Proof: (Q p ) is full with respect to constraints if, and only if, 

the Jacobian of p' 	Vy,zL(w,p') has full rank III + IJI at 

every (w,p) EC xP. When it does not have full rank, then neither 

does the Jacobian of p' 	VwL(w,p 1 ) = Vx,y,z L(w,p'), so (Q p ) is 

not full. ❑ 
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For an example, suppose that u : Rn RI , v R
n 	

R , and 

Z : Rn  R are C
2 
functions. Let P = Rn  x R

I x Rj , and for any 

p = (q,s,t) EP, define g(x,p) = u(x) - s, h(x,p) = v(x) - t, and 

f(x,p) = Z(x) - x'q. Then the Jacobian of p 	VwL(w,p) is minus 

the identity matrix, and hence of rank r. 

Previously, we saw that the first-order conditions 3.2 and 

3.10 are necessary for optimality for most pEP if (Qp) is full 

with respect to constraints and sufficient differentiability is 

assumed. When (Q p) is full then, for most p, the stronger condi-

tions SSOC are also satisfied provided that the first-order condi-

tions are: 

(4.6) THEOREM. Let C e Rn be a cyrtohedron of class C 2
, P open, 

and let f, g, and h be C 2  functions on R
n 
x P. If (Q p) is full, 

then there is a subset P o  c P such that P\P o is negligible and for  

all p

- 

 E P
0 
 : if x E is a local minimizer for (Q_), and if y E R

I 
 — p 

and z E 

- 

Rj  satisfy 3.10, then SSOC holds. 

Proof: Since (Q p) is full, the hypotheses for Proposition 4.3 are 

satisfied with EcRr in.place of CeRn  and - T in place of T. So, 

there is a subset P' eP with negligible complement such that for 

any pE P' and WE C, -T (w,p) EN„,(w) implies -T(w,p) Erelint 
C 	 C 

Since (Q p) is full, the Jacobian of p' 	VwL(w,p 1 ) E Rr  is of 

rank r at every (w,p) EC x P. By 2.2, for every face G of C, there 

is a set P(G) with negligible complement in P such that L(•,p) has 

only nondegenerate critical points on G for all p EP(G). Let 
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P" = nP(G), taking the intersection over all (countably many by 

Lemma 3.7) faces of C, and define P o  = P/ nP". 

Fix 	 - - pEP 0  ,x a local minimizer for (Q_) , and let w = (x,y,z) 

- - satisfy 3.10. Then -T(w,p) EN (w) by 4.1, which implies that w 
C 

is a critical point for L(•,p) on the face G of C containing w by 
- - 	 - 

[5, Lemma 3.1c], and that -T(w,p) Erelint N (w) since p EP'. Since 
C 

p E P", w is a nondegenerate  critical point. Thus both parts of 

4.2 are satisfied and SSOC holds. ❑ 

(4.7) THEOREM. Let C c  Rn  be 	cyrtohedron of class  

CS , P open, f of class C 2 
and g and h of class C on Rn  xP with 

s > max{l,d-IJI}. If (Q 
P 
 ) is full, there is a subset P

0  cP with  

P\P 0 	 i negligible such that for all  pEP : if x EC is a local mini- 

mizer for (Q_) there exists (y,z) E RI x RJ satisfying SSOC. 

Proof: Combine Theorems 3.9 and 4.6 and Proposition 4.5. ❑ 

In the manner of Corollary 3.11, it follows that the conclusion 

of Theorems 4.7 is still valid if there is a closed measure zero 

subset P' cP such that the subfamily {(Q p ) : p E P\P'} is full. 

Acknowledgement. I wish to thank Professor R. T. Rockafellar for 
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I. Introduction. 

In nonlinear programming theory there is a large gap between 

the weak first-order conditions that are necessary for optimality 

and the much stronger second-order conditions that have been found 

useful in the design and analysis of algorithms. It is common 

practice to assume (without giving any real mathematical justifi-

cation) that very strong optimality conditions are satisfied at a 

minimizer, and to base convergence proofs, and thus to justify 

algorithms, on the basis of such assumptions. Of course, for any 

given problem, those a priori assumptions cannot be checked, unless 

the solution is already known. 

In this paper, we discuss a "generic" approach to optimality 

conditions that has been developed in Spingarn and Rockafellar [10] 

and Spingarn[7,8,9]. Rather than talking about conditions that are 

necessary for optimality in specific problems, we discuss instead 

conditions necessary for optimality for most problems in a family  

of problems. More precisely, for a family (Q(p)) of nonlinear pro- 

gramming problems indexed by a parameter pE Pc 1211  we study conditions 

which, unless p belongs to a negligible set, hold at all local 

minimizers for (Q(p)) where by negligible we mean a first category 

set of measure zero in P. 

This approach gives a rigorous mathematical underpinning to 

the a priori assumption of conditions which are not truly necessary 



for optimality, by describing the exact sense and the circumstances 

in which these conditions can be expected to hold. Another attrac-

tive feature of the theory is that "constraint qualifications", 

which are normally required to prove the necessity of Kuhn-Tucker 

type first-order conditions, need not be assumed to obtain conditions 

which are merely generically necessary. 

In this paper, no proofs are presented. Instead, we refer 

the reader to the references [7,8,10]. 

II. A simple class of perturbations. 

Consider the basic problem 

(Q) 	 min f(x) over all XE Rn  such that 

g(x) 5_ 0 	and 	h(x) = 0 , 

where the functions f : Rn -)- R, g : Rn -> Rm , and h : Rn -> Rk 

are continuously differentiable. 

The standard first-order conditions for local optimality of 

x in (Q) are that x should be feasible and there should exist 

vectors y E Rm and z E Rk such that + 

(KT) 	 Vf(x) + y'Vg(x) + z'Vh(x) = 0 

and for all i I +  (x) , y i  = 0 

where 



xI+ (x) = {i : 	 g.( ) = 0}. 

These conditions are not actually necessary  for optimality. They 

are only necessary under an additional assumption called a "constraint 

qualification", the simplest such being 

(C Q) 
	

{Vg.(x):iE1 + (x) }uiVh.(x) : j=1,...,k1 

is linearly independent. 

When the functions f, g, and h are twice differentiable, a vector 

x is said to satisfy the strong second-order conditions  for local 

optimality in (Q) if (CQ) holds, and there exists yE RT and ZE Rk 

 such that (KT) holds with 

y i  > 0 for all iE I + (x), and 

every nonzero w E Rn  for which w•Vg i (x) = 0 

for all iE I (x) and w.Vh.(x) = 0 for all j also 

satisfies w•H(x,y,z)w > 0, 

where H(x,y,z) is the Hessian of the Lagrangian function in (Q): 

H(x,y,z) = V
2
f(x) + y y.V 2g (x) + X z.V

2
h.(x) . i=1  1 	i 	j=1 3 	3  

These conditions are known to guarantee that x is an isolated 

locally optimal solution to (Q). They also have other important 

consequences, for example with respect to the sensitivity of x 



to changes in a parameter; cf. Hestenes [ 3], Fiacco [1]. 

The strong conditions are useful for proving convergence results; 

for example, cf. Robinson [5], Rockafellar [6 ], Powell [4], 

Fiacco and McCormick [2]. 

Let us embed (Q) in the following family of nonlinear program-

ming problems 

(Q(v,u,t)) 	 min f(x) - x•v over all xE Rn  

such that g(x) u, h(x) = t. 

The original problem (Q) then coincides with Q(0,0,0). Any partic-

ular problem in this family may be "bad" in the sense that the 

strong conditions may fail to hold at some local minimizer for 

that problem. However, the set of bad problems is small, as the 

following shows [10]: 

THEOREM 1. Suppose f is of class C2 
and g and h are of class C

n-k .  

Then except for (v,u,t) belonging to a set of measure zero in  

R
n
xR

m
xR

k , (Q(v,u,t)) is such that every local optimal solution  

x satisfies the strong second-order conditions. 

III. General perturbations. 

Next, we examine what happens when more general families of 

problems are allowed. The families we wish to consider are of 

the form 



(Q(p)) 	 min f(x,p) over all x satisfying 

g(x,p) < 0, 	h(x ► p) = 0 

with p ranging over some open subset P of Euclidean space. 

The family Q(v,u,t) just considered clearly is a special case. 

Obviously, some additional assumption is required in order 

to guarantee that the strong conditions fail only in a negligible 

subfamily. After all, we could start with a "bad" problem (Q) 

for which the strong conditions fail at some local minimum, and 

then, by introducing trivial perturbations so that (Q(p)) = 

(Q) for all p, we would obtain a family for which the conditions 

fail for every problem. The problem here is that the indicated 

family would not be "rich" enough; it would not contain enough 

perturbations. 

The following definitions specify two different ways a family 

can be "rich". If g and h are of class C l , let us say that the 

family (Q(p)) is full with respect to constraints if the Jacobian 

of the function p' 	(g(x,p),h(x,p)) ER
m+k has full rank m+k at 

every (x,p) E Rn  x P. For any w = (x,y,z) E Rr  (r=n+m+k) and p E P, let 

L(w,p) = f(x,p) + y'g(x,p) + z'h(x,p) 

be the Lagrangian for (Q(p)). If f, g, and h are of class C 2 , 

the family (Q(p)) will be called full provided the function 

p' 	VwL(w,p 1 ) E Rr has full rank r at all (w,p) E R
r 

x P. Every 

full family is automatically full with respect to constraints. 
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These two properties are sufficient to guarantee the generic 

necessity of the first--order (KT) and strong second-order condi-

tions, respectively: 

THEOREM 2. (a) Let g and h be of class C s  on Rn x P with 

s > max(0,n-k) and let (Q(p)) be full with respect to constraints. 

Then there is a subset P' c P with negligible complement such that  

if p E P' and x is a local minimizer for (Q (p) ) , then there exists  

(17, 2) E RM+  X Rk  satisfying (KT) . 

(b) Let f be of class C
2 

and g and h of class C s  on Rn  X P 

with s > max(1,n-k). If (Q(p)) is full, then there is a subset 

P' cP with negligible complement such that for all PE P': if x 

is a local minimizer for (Q(p)) there exists (c7, Z) E RM+  X Rk  satisfying 

the strong second-order conditions. 

To see how Theorem 2 can be applied, consider again the family 

(Q(v,u,t)). We take p = (v,u,t), so for any w = (x,y,z), 

L(w,p) = f(x) - x•v + y'(g(x) - u) + z'(h(x) -t). 

We may then compute 



g. (x) - u. 

• 

/( 

Of(x) - v + Yy i
Vg

i
(x) + Xz.

I
Vh.

7
(x) 

• 
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h.(x) - t. 
J 	J 

• 

and hence V V 
w
L(w,p) = -I, where I is the (n+m+k)-dimensional 
 

identity matrix, which is trivially of rank n+m+k. 

The full rank criteria given in Theorem 2 are sufficient, 

but not necessary for the generic necessity of the strong conditions. 

However, the rank criteria can be weakened (and thus the theorem 

strengthened) slightly. To illustrate, consider the family 

( Q (p)) minimize x
4 

+ p
2
x over all XE R. 

The Lagrangian for (Q(p))is L(x,p) = x
4 

+ p
2 x (since there are no 

constraints) so V V xL(x,p) = 2p. For Theorem 2 to apply, it would  

have to be true that 2p 	0 for all p. This is not a real obstacle 

though ;  since the theorem could be applied to the subfamily 

{Q(p) : p 	0}. The same reasoning shows in general that the 

result of the theorem holds whenever the set of p values for which 

the rank condition fails is contained in a closed measure zero 

subset of P: 

v wL(w,p) - 



COROLLARY 1. If there is a closed subset P'c P of measure zero 

such that  the subfamily {(Q(p)) : pE P\P'} is full [with respect  

to  constraints], then the conclusion of Theorem 2a[resp., of  

Theorem 2b] holds. 

Another minor extension is suggested by the family 

(4( p )) 
	

minimize px
2 
+ (1 - p)x over all XE R 

where pE R. In this case, V 
p 
 V 
x
L(x,p) = 2x - 1. For Theorem 1 

to apply, it would have to be the case that 2x -- 1 	0 for all 

XE R. Nonetheless, it is possible to conclude in such an instance 

that except for p in a negligible set, the strong conditions hold 

for (Q(p)) at all local minimizers other than possibly x = 1 

COROLLARY 2. If there is a closed set  KE Rn  such that the rank 

condition of Theorem 2 holds except for  X E K, then the conclusion 

of that theorem holds, except possibly at minimizers which are in K. 

IV. Families with selective perturbations. 

We are confronted with additional questions when we consider 

a family like the following one: 

(S(v,u,t)) 	min f(x) - x•v over xe Rn  

subject to g(x) s u, h(x) = t, and x 0. 



This family is identical to Q(v,u,t), with the important exception 

that here there is an additional "fixed" constraint 	0 that is 

independent of the parameters. Neither Theorem I nor 2 can be 

applied in this situation. 

Those theorems would apply, were we to alter the family by 

replacing the fixed constraint with a perturbed constraint x s. 

This would yield a family Q(v,u,t,$) for which the strong conditions 

are necessary except for (v,u,t,$) in a set of measure zero. 

However, the family of interest, namely (S(v,u,t)) = (Q(v,u,t,0)), 

would be a measure zero subfamily of (Q(v,u,t,$)). Thus, although 

the set of "bad" problems in (Q(v,u,t,$)) is negligible, it does 

not follow that the bad problems in S(v,u,t) are negligible with  

respect to S(v,u,t). 

Rather than concentrate on this particular family, we study 

the generic behavior of more general families of the form 

(S (p)) 	 min f (x ,p) over all X E Rn  

subject to g(x,p) s 0, h(x,p) = 0, and X E C, 

where C is a fixed set. For the family S(v,u,t), we would take 

C = R.4_, while the situation in Theorems 1 and 2 requires C = R
n

. 

Concerning the family (S(p)), we will address ourselves here to 

three questions: (1) What reasonable assumptions can we impose 

on the set C which allow us to develop a theory of generic second-

order conditions for (S(p))? Intuition suggests that C must be 

"piecewise C 2 -smooth" in some sense. (2) What are the appropriate 



generic second-order conditions? It turns out that these conditions 

actually depend on the set C, and are not always (but sometimes are) 

exactly the same as the conditions that would be obtained by 

replacing the constraint XE C with inequality or equality constraints 

and then writing down the usual strong conditions for the problem 

so obtained. (3) That "rank condition" ensures that these condi-

tions are generic for (S(p))? 

We begin by stating our assumptions on the set C. These have 

been incorporated into the definition of "cyrtohedron". The name 

is taken from the Greek "KupToo" (= curved, bent) + "E(Spa" (= side), 

and is motivated by the fact that these sets look like polyhedra, 

except that the "faces" instead of being polyhedral, are submani-

folds. 

Let U c Rn be an open set, G a , a E A and H y  f3E B, finite col-

lections of differentiable functions on U. For any A c A and 

XE U, define 

F (x,A 0  ) = {VG a (x) : a EA } u {VH S  (x) : S E B} 

Z (Ao ) = {y E U : 0 = G
a
(y) = H (y) da E A0 , \le, E B} • 

A nonempty connected set Cc Rn  is a cyrtohedron of class C s  (s 1) 

if for every RE C, there are finitely many C s  functions Ga , a E A, 

and H 	13E B, defined on a neighborhood U c R
n 

of x such that 

x E Z (A) and 



(a) For all XE U, XE C if, and only if, 

Ga (x) s 0 Va E A and H (x) = 0 '1/E B. 

(b) If 
IAaaVGa 

(x) +
B
b VH (T) = 0 for some a E R

A and 

b E RB , then a= 0 and b= 0. 

(c) For each Ao A there is an integer s(A 0 ) such that 

rank r (x '  A 0  ) = s(A0 ) for all X E U. 

Examples of cyrtohedra. (a) A differentiable submanifold in R
n 

is a cyrtohedron for which the set A may always be taken to be 

empty. 

(b) Cyrtohedra for which the set A may always be taken either 

empty or of cardinality one are submanifolds with boundary. 

(c) A polyhedral convex set is the intersection of a finite 

number of closed half-spaces in Rn . 

(d) Sets that can be expressed as C = iXE Rn 	gi (x) s 0, 

i = 	 and h.(x) = 0, j = 1,•••,p}, where the functions g. 

and h.
3 
 are of class Ck and have the property that for every 

XE C, {Vg i (x) 	iE I+ (x)}u {Vh i (x) 	j = 1,...,p} is linearly 

independent, where I + (x) = 	: gi (x) = 0). 

For an example of a simple set that is not a cyrtohedron, 

consider the set Cc R
3 
which consists of all x = (x l ,x 2 ,x 3 ) such 

that lx1 s 1, x l  + x3  s 1, and -x l  + x 3  s 1. For this set, there 

exist no functions Ga' H12, which satisfy the above requirements in a 

neighborhood of the point (0,0,1). 

If C is a cyrtohedron, then U may always be chosen so that 



(b') For all xE U, (b) holds with x in place of x 

(c') If A0  c A l  c A and s (A0 ) = s (A1 ) then Z (A0 ) = Z (A 1 ) 

(d) 	For all A o c A, Z(A0 ) is connected (n-s(A0 )) - 

dimensional submanifold 

and when this is done, we will say that (G a (aEA),H0f3E B),U), or 

more briefly (G a ,H,U), is a local representation (abbr. l.r.) 

for C. 

Let (Ga' H(3, ,U) be a 1.r., xECnU. Letting A + (x) = 

faE A : G
a
(x) = 0), we define 

L
c
(x) = {CE R

n 
: yVG

a
(x) = 0 \la EA (x) , YVH (x) = OWE B). 

A (x) 
a VG (x) + 	b VH (x) : aE R

+
+ 

and bE RB ) N
C
(x) = { 

a E A 	a a (x) 	 E B 

N
C 
 (x) is the normal cone to C at x, and L (x) is the linear approxi-  

mation to C at x; the latter is the tangent space at x to the "face" 

(definition below) of C containing x. The dimension of C is defined 

to be dim C = n - IBI. It does not depend on x, and none of these 

definitions depend on the particular local representation chosen. 

For x,yE C, define an equivalence relation - by specifying 

x-y if, and only if, there is a sequence x = x 0 , xl ,•••,xp  = y 

in C such that for each pair (x i ,x i+i ) (i=0,•••,p-l), there is a 

l.r. (G a ,H i3 ,U) such that Z(A) Dfx i ,xi+1 ). The equivalence classes 

under this relation are the faces of C. 



A few examples help to clarify the latter definition: 

(a) The faces of a polyhedral convex set are the relative interiors 

of its "faces" in the usual sense (that is, subsets which are 

the intersection with some supporting hyperplane). 

(b) A submanifold Cc Rn  has only one face. 

(c) If C is the hemisphere C = {x = (x 1 ,•••,xn ) E Rn 	Ix! s 1 and 

x 	0}, then C has four faces, corresponding to the choices of 

equality or strict inequality in the definition of C: 

F 1 = {x 	1x1 < 1 and xn 
> 0} 

F 
2 

= (x : lx1 = 1 and xn > 0) 

F
3 = {x 	

1x1 <1 and xn 
= 0} 

F 4 = {x 	1x1 = 1 and xn = 0} 

To state the optimality conditions, we need some more defi-

nitions. Consider a specific problem 

(S) 	 min f(x) over all XE Rn  such that 

g(x) 	0, h(x) = 0, and x E C. 

If x is feasible for (S), the independence criterion (IC) is 

satisfiedfor(S)atxifforanyaERmandbERkwitha.=0 

for all i I + , 



(IC) 	 a.Vg.(x) +b.Vh,(x) 	Lc
(x) 1  implies 0 = a = b. 

i=1 	 j=1 D 

It is trivially satisfied if m = k = 0. If C = R
n , IC says that 

the gradients of the active constraints at x are linearly indepen-

dent. More generally, IC says that the projections of the gradients 

of g., i6 I + and h
j 

at x onto L (x) form a linearly indepen-

dent set. 

A set Mc Rn  is a k-dimensional Cs  submanifold (s 	1) if for 

each xc M there is an open set Uc Rk  and a Cs  diffeomorphism (I) 

mapping U onto a neighborhood of x in. M. For any x = (0(q) EM, 

M = range d(1)(q) is the tangent space to M at x. If f : R
n 

+ R, 

then "OM" denotes the restriction of f to M. For any XE Rn , 

"Vf(x)" denotes the ordinary gradient of f at x, while "V(04)(x)" 

denotes the gradient of fIM at x, the latter being a linear func-

tion on M.  If V(fIM)(x) = 0 (i.e., if Vf(x) is perpendicular to 

Mx
), then x is a critical point for f on M, and in this case the 

Hessian  for fIM at x = 4(q) is the bilinear function on M x  defined 

by 

(V
2
(f1m)(x))(71,) = (V 4 (focH(q))(u,v) 

where u = dflx)u, v = d(1)(x)v, and V
2
(f04))(q) is the ordinary 

HesSian of foci). If V 2 (f01))(q) is nonsingular, then x is a nonde- 

generate critical point for f on M. 

Suppose henceforth that f, g, and h are of class C
2 
on R

n
, 

Rn  i and that Cc R is a cyrtohedron of class C 2
. We extend the definition 



of the strong second order conditions to the problem (S) by 

declaring a point w = (x,y,z) with x E C, y E R+ , and ZE Rk  to 

satisfy the conditions whenever 

(SSOC) 	(i) x is feasible for (S) 

(ii) -Vx
L(w) E relint NC (x) 

(iii) i E I, y 1  > 0 if, and only if, g i (X) = 0 

(iv) The independence criterion for (S) holds at x 

(v) If F is the face of C containing x, then 

(V
2
(LIF)(w))() > 0 for all 	E R

n 
satis- 

fying 0 / cE Lc (x), and c•Vg i ( X) = 

yVh.(x) = 0 for all iE I +' and all j. 

As before, we say the family (S(p)) is full provided the map 

p' 	VwL(w,p 1 ) E R
r 
has full rank r at all (w,p) E Rr x P. We now 

have covered all the preliminaries needed to state the final result. 

THEOREM 3. Let Cc Rn  be a d-dimensional cyrtohedron of class  

C
s
, P open, f of class C

2 
and g and h of class Cs on R

n 
P with  

s > max{1,d-k}. If (S(p)) is full, there is a subset P o c P with  

p\p o  negligible such that for all  TDE P o  : if XE C is a local mini- 

_ 
mizer for (S(p)) there exists (y,z) E R

m 
x R

k satisfying SSOC. 

Of course, this result can be slightly improved in the manner of 

Corollaries 1 and 2. 
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V. Comparison with the classical conditions. 

For problems of the form (Q) we have seen that under mild 

assumptions, the classical strong conditions 

(SC) 	i) x is feasible for (Q). 

ii) Vf(x) + N.Vg.(R) + Xi.Vh (R) = 0. 

iii) Strict complementary slackness: Y i > 0 <=> 	= 0. 

iv) The gradients of the active constraints, i.e. 

tvg.(;):1El_dulVh3  .„6 	—10 c) : j=1,, 	form a 

linearly independent set. 

v) For any c€ Rn  satisfying c 	0, 

c-Vgi(x)=0ViE1.4.,and 	
J- 

) = 0, j=1,-..,k, 

we have V[V 2 f070 + 0 
1 	1 	 3 	3 

are generically necessary for optimality in families of problems 

containing (Q) (cf. Theorems 1 and 2), and that for problems of 

the form (S) (i.e., families with fixed cyrtohedron constraints), 

the more general conditions SSOC are generically necessary for 

optimality. 

Locally, the fixed set C can be represented by inequality and 

equality constraints; if (Ga H,U) is a local representation for C, 

then Cn U = fx< U : Ga (x) s 0, UE A, HOx) = 0, fiE B). So, at least 

locally, (S) is equivalent to a problem (Q') of the type (Q) (i.e., 

without "fixed" constraints): 



Q ) 
	

min f(x) subject to g i (x) 5- 0, i = 

h.(x) = 0, j = 	 G
a
(x) 	0, a E A, 

H
6 
 (x) = 0, 6 E B. 

It is natural to ask what the relationship is between the conditions 

SSOC for (S) and SC for (Q'). 

In most cases, the two sets of conditions are essentially  

equivalent in the following sense. If (x,y,a,z,b) E Rn x Rm x R
A 

 R
k 

x  R
B 

+ 	+ 

satisfies SC for (Q'), then (x,y,z) satisfies SSOC for (S). If 

(x,y,z) E R
n 

	X R
k 

satisfies SSOC for (S) , then it is possible to 

- 	 - 
find aE RA  and bE R

B 
 such that (x,y,a,z,b) satisfies SCi, 

and for any such a and b, SCv will automatically hold for (Q'). 

However, SCiv may fail. For example, if C is a four-sided pyramid 

in R3  with apex x, SCiv can never be satisfied for (Q') because no 

set of four vectors in R
3 can be linearly independent. However, 

SSOCiv can (and usually will) be satisfies at X. In fact, (x,y,z) 

will satisfy SSOCiv if and only if the projections onto L c (X) 

of the gradients of the (nonfixed) constraints active at x are 

linearly independent. But L (x) = {0} in this case, so SSOCiv 

merely says that there are no active constraints at X. Of course, 

one would expect the generic conditions to assert this. If k> 0, 

one would expect the apex of the pyramid to be a minimizer with 

probability zero. If k = 0, it is not unusual that the apex should 

be a minimizer, but one would expect one or more of the inequality 

constraints to be active there only with probability zero. 



In the most common cases, such as C = R+, 
the set C will be 

expressible as the set of points which satisfy a finite number of 

equality and inequality constraints with linearly independent 

gradients (cf. section III, example (d) under "examples of cyrto-

hedra"). Then, the two sets of conditions are essentially the same. 

The main difference is that in the SSOC formulation, no multipliers 

are associated with the constraints defining the cyrtohedron. 

We also remark that the SSOC formulation suggests what the 

generic conditions should look like if we generalize them to a wider 

class of fixed sets C. Consider, for example, the set 

1 
C = {x= (x 1

,x
2
,x

3
) E R

3 
 : ix' 5.1 and x

1
+x

2 +x3 	lx1}- 

Because no local representation exists for C near x = 0, C is not 

a cyrtohedron. But, like a cyrtohedron, C can be partitioned into 

"faces" (four in this case) that are submanifolds, and N C (x) and 

L (x) have obvious meanings, so the conditions SSOC, as stated above, 

are still meaningful. In fact, C has all the properties that are 

required for our proof of the genericity of SSOC. For such a set C, 

it would be impossible to reformulate the problem (S) as a problem 

in the form of (Q'), so the old conditions SC have no bearing here, 

although the new conditions SSOC would apply and can be shown to 

be generically necessary for optimality. We do not know if there 

is a "natural" broader class to which our results apply. The above 

example suggests conditions should be generic for sets C that look 



(in some sense) locally like the intersection of a cone with a 

neighborhood of the origin. One possible class would be those 

sets C such that each XE C has a neighborhood U such that for some 

diffeomorphism 4, and some closed convex cone K, 41(x) = 0 and 

q'(CnU) = '(U) n K. For this class, the proof of the genericity of 

the above conditions does indeed go through. However, this is not 

as broad a class as we would like; it does not seem even to include 

the class of cyrtohedra. 
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The class of "lower- C
1, 
 functions, that is functions which 

arise by taking the maximum of a compact family of C 1 functions, 

is characterized in terms of properties of the Clarke subdif-

ferential. A locally Lipschitz function is shown to be lower-C 1 

if, and only if, its subdifferential is "strictly submonotone". 

Other properties of functions with "submonotone" subdifferentials 
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0. Introduction  

One of the nice features of convex optimization is the link 

with "monotone" mappings. Due to this, convex problems can be 

rephrased as "variational problems", often resulting in consid-

erable simplification. This can be useful for theoretical 

reasons, by emphasizing when the central justification for a 

proof or procedure is the monotonicity of the subdifferential. 

For example, Rockafellar [7,8] has exploited the link between 

monotone mappings and saddle functions to unify and simplify 

the existing theory of multiplier methods in convex programming. 

It is the aim of this paper to show that a concept closely 

related to monotonicity, e.g. "submonotonicity", also plays a 

natural role in the analysis of nondifferentiable, nonconvex 

problems. We will do this by demonstrating how properties of 

nondifferentiable functions can be related to monotone-type 

properties of their Clarke subdifferentials. 

Our most important result appears in section IV, where a 

complete characterization is obtained, in terms of properties 

of the Clarke subdifferential, for the class of "lower-C 1 " 

functions, that is functions that arise by taking the maximum 

of a compact family of C 1 functions. It is shown that these 

functions are precisely those locally Lipschitz functions whose 

Clarke subdifferentials are "strictly submonotone". 

In section III, some implications of the submonotonicity 

property are developed, and several equivalent characterizations 
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are given. This concept is then contrasted with properties that 

have been discussed by other authors. Among these are regularity 

in the sense of Clarke [2], quasi-differentiability in the sense 

of Pshenichnyi [5], lower semi-differentiability in the sense of 

Rockafellar [9], and semismoothness in the sense of Mifflin [4]. 

We wish to thank Professor Rockafellar for sharing many 

valuable insights with us. 
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I. Notation  

Rn denotes Euclidean space with the usual inner product 

x•y = <x,y> = lx.y.. The closed unit ball in R n is denoted 

by B = {x€ Rn 	lxl 	1/. 

If Kc Rn  is a compact convex set, then 'P K  is the support  

function of K, defined by T K (u) = sup{<u,x> : XE K}. For any 

ue Rn , we let Ku = {K: <u,x> = TK (u)1. 

The notation T : Rn 	Rn  indicates that T is a set- 

valued mapping. T is closed provided the set {(x,y) : yE T(x)1 

is closed. T is locally bounded if for every XE Rn  there is 

> 0 and R > 0 such that yE T(x), lx -RI < c implies lyi < R. 

We will say the sequence (xn ) converges to x in the  

direction  UE Rn , written xn —+ x, provided either xn x 

x -x 
and u = 0, or u 	0,  	, and x / x for all n. 

	

I xn-x l 	1111 	 n  

If f : Rn  + R, the directional derivative of f at x 

(when it exists) is 

	

. 	f(x+tu) t- f(x)  f"(x;1.1) = lim 	 • 
t+0 



II. Submonotonicity 

In this section,  T : Rn Rn denotes a convex-valued closed 

multifunction.  T will be called submonotone  at xE Rn  provided 

lim inf 
x' ÷x, x' Ex 

yET(x), y'ET(x') 

<17 1  -  y, X I  - X>  > 0  . 
lx ,  - XI 

(T is trivially submonotone at x if T(x) = 0). T is directionally  

upper semicontinuous  (d.u.s.c.) at x provided that for all ue Rn , 

whenever xk  --+ x and yk E T(xk) for all k, then for every e > 0 u 

there exists k 0  such that 

T(xk ) c T(x) u + EB 	Nik 	ko 

For u = 0, this is automatically satisfied since T is assumed 

to be closed. If T is locally bounded near x then T is d.u.s.c. 

at x if, and only if, for all u 0, whenever x k --+u  x and 

T(xk ) 	yk -+ y, then yE T(x) u . If T is submonotone [respectively, 

d.u.s.c.] at all XE Rn , then T is submonotone  [resp., d.u.s.c.].  

(2.1) THEOREM. Let T : Rn  Rn  be locally  bounded near  x (as 

is the case  if T = 3f with f locally1411.1.ssilitz). Then  T is 

d.u.s.c. at  x if and only if,  T is submonotone at x. 



1x1 - x2 1 	
0 

 

- x2 , y1  - y2 > 

Proof. If T is not submonotone at x, there is c > 0 and there 

are sequences xn 	x, xn 	x, yn  E T(xn ), yn 'ET(x), such that 

<xn-x, yn-yn 1 > 
-c < 0, ten. We may clearly assume xn 	x for 

lxn - xl 

some u # 0, and since T is closed and locally bounded, that 

yn 	yE T(x) and yn ' 	y' E T(x). Then TT(x) (u) > <u,y'>- e > <u,y>, 

so T is not d.u.s.c. 

Suppose that T is submonotone at x. Let x n  --÷ x, u 0, u 

yn E T(xn ), yn y. Since T is closed and locally bounded, 

yE T(x) and we will be done if we can show yE T(x) u . If ze T(x), 

<y - z, x - 
(y - z) •u = lim 	n 	 0  xj pc - n   

since T is submonotone at x. Since this holds for all ZE T(X), 

y•u 	TT(x) (u), showing that T is d.u.s.c. at x. ■ 

Of course if f : Rn  R is convex, of is monotone, and hence 

submonotone. The fact that of is directionally upper semicontinuous 

is proved by Rockafellar [6, Theorem 24.6]. 

The multifunction T : Rn  :t. Rn  will be called strictly submon-

otone at x provided 

lim inf 
x
12 

1=1,2 

y.ET(x.), i=1,2 

Strict submonotonicity clearly implies submonotonicity. 
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Next, we state a -Jharacterization of strict submonotonicity 

similar to the one pzovided in Theorem 2.1 for submonotonicity. 

The proof is similar, so it has been omitted. 

(2.2) THEOREM. Let T : Rn 	Rn  be locally  bounded near' x. 

Then T is strictly submonotone at x if, and only if, whenever  

xn 	x, x' 	x, xn  # xn, yn  T(xn ), yni  E T (Xn1  ) yn 	y, yn -• y', 

xn - 	 v x'n 	0, one also has v•y' < v•y. 



III. Lipschitzian functions  

Next, we turn our attention to a particular class of multi-

functions, namely those that are the Clarke generalized gradient 

mapping [1] for a locally Lipschitz function f : R n  4- R. Thus, 

if T = Df, we ask what the submonotonicity of of implies about f. 

If f is locally Lipschitz, the Clarke derivative of f is 

the function 

f(x+h+tu) - f(x+h)  f°(x,u) = lim sup 
t+0 
h÷0 

f°(x,-) is a continuous sublinear function which is the support 

function of the compact convex set af(x) called the Clarke general-

ized gradient of f at x. For every u,ve R n , f°(x;•), being a 

finite convex function, possesses a finite directional derivative 

at u in the direction v which we denote by f°(x;u;v). Alterna-

tively, we could define f°(x;u;•) to be the support function of 

af(x) u . Clearly f°(x;0;•) = f°(x;•). Let us also define 

lim sup 
f(x+h+tv) - f(x+h) 

t h --)-. 0 u 
f÷ (x;u;v) = 	t/lh1+0 

if u 	0 

f°(x;v) 	 if u = 0 

Clearly f-4- (x;u;v) 	f°(x;v). Also, e(x;u;-) is sublinear, so 

-0- 
f (x;u;.) is the support function of some subset of af(x). As 



we shall see, the case where that subset is af(x) u  corresponds 

to the case where of is submonotone or, equivalently, d.u.s.c. 

To see that f -)- (x;11;•) is sublinear, note that 

f(x+h+t(vi+v2)) - f(x+h) f-)- (x;u;v1+v2 ) = lim sup 

lim sup f(x+(h+tv1)+tv 2 ) - f(x+(h+tvi)) 
t 

+ lim sup f(x+(h+tvi)) - f(x+h) 
t 

= f÷ (x;u;v2 ) + f-)- (x;u;v1 ) . 

(3.1) THEOREM. Let f : Rn  + R be locally Lipschitz.  of is 

d.u.s.c. at x if, and only if, f°(x;u;v) = f 4- (x;u;v) for all  U,VE Rn . 

Proof: (<=) Let u # 0 (if u = 0, the assertion is trivial), 

xk 	u  x, 	) 	yk + y. To show of is d.u.s.c., it must be 

demonstrated that ye af(x) u . Fix an arbitrary vE Rn . Then 

f(xk+h+tv) - f(xk+h) 
v•yk  s f°(xk ;v) = lim sup 	  

h+0 
t4 0 

so hk' tk>0 can be found with 

1 f(xk  +hk  +tk 	k v) - f(x +hk  ) v•yk  - 	s 	 tk 

and 	max {tk, Ihk 	s Ixk - xl/k . 



Hence, 

v•y = lim v•yk  
k 

f(xk+hk+tkv) - f(xk+hk ) 
5 lim sup 

 k 	 tk 

5 f÷ (x;u;v), 

where the last inequality follows from the fact that x k  - x + hk  u 0 

and tk/lxk-x+hk 1+0. But f (x;u;v) = f°(x;u;v) by assumption, so 

v•y 5 f*(x;u;v) = T affx , (v) for all v, which implies that ye af(x) u . 
'u 

(=>) Fix u / 0, V E Rn . First we show that f°(x;u;v) a f ÷ (x;u;v). 

Pick sequences hn  u 0, tr/ihn l 4,0 such that 

f(x+h+tv) 	f(x+h) 

	

n n 	 n  f÷ (x;u;v) = lim  
n+ 	 n 00 

By the mean-value property [Lebourg, 31, there is, for each n, 

yn E af(x+hn+cntnv) with 0 < cn < 1 such that 

	

f(x+hn+tnv) 	f(x+hn ) 
v-yn 	to 

Without loss of generality, we can assume that y n  -4- y for some 

yE af(x). Since of is assumed to be d.u.s.c. at x, we have 

yE af(x) u . Hence f (x;u;v) = lim v•y n  = v•y 5 T affx, (v) = 

f°(x;u;v), as desired. 
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To prove the opposite inequality, fix u 	0, \re Rn , WE af(x) u , 

and we will show w•v s f (x;u;v). From this, the desired inequality 

follows by taking the supremum in w. 

By d.u.s.c., we may find 6 11  > 0 (n=1,2,•••) such that 

0 < n implies 

af(x+o(u+1 
	

1 	2 v)) c af(x) 	1 B  
• u+v I n 

Clearly we may assume S n  + 0. Let xn  = x 

yn E af(x). Then xn 
 --+ x and yn E af(x u 

+ dn (u+Hv) and choose 

+ — B. Since 
u+1 	

1 

v n 

yn E af(x l ), we may find to > 0 and hnrR
n such that 

1 	f(xn+hn
+tnv) - fi(x n  +h n  v.yn - tn 

max{ I hn  I , tn } < Ixn - xI 

Next, we will show that lim inf yn •v 	Since xn  + h --+ x n u 

and t Ix -x+h 1+0, this will imply 

f(xn+hn+tnV) - f(xn+hn ) 
w•v lim inf 

n 

s f(x;u;v) 

wilich is the desired result. 

n 	11.4.±v such that 1yn-41 For each n, choose y' E af(x) , 

Then 

f
l 

t 
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yn*(u+1n 	n v) = y i -(u+-
1  
v) + (Ynn  -Y 1 )*(u+

1v) 

1, 
a w-(u+

1 	f , 1 v) - I. 
n 

(because WE 3f(x), ynI E af(x) 1  ) 
u+-v n 

1 	1 -T  1 a y'-u + -w -v - 	iu+Evi 
n 

(because w e 3f (x) u  , yn E o f (x) ) 

y
n
•12 + 	w•v - 	(1u1+1u+lvI) 

n 

(because 	 -2- ). 
n 

So 

yn •V a w•v - i(lul+lu+.41) 

and hence lim inf yn •v a w•v, as desired. ❑ 

Combining our results so far, we obtain the following: 

(3.2) COROLLARY. If f : R
n R is locally Lipschitz, then the  

followin• are equivalent 

i. of is submonotone at  x 

ii. 3f is d.u.s.c. at  x 

iii. f (x;•;•) = f°(x;-;-) 



Now that we have acquired a better understanding of the 

submonotonicity property of of and what it implies about f, 

a logical question to ask next is: Just how strong is this 

property? In other words, if we take a look at "regularity" or 

"subdifferentiability" properties that have been studied for 

nondifferentiable functions by other authors, then which of these 

imply or are implied by the submonotonicity of 3f? 

A locally Lipschitz function tf : Rn  R is said to be 

semismooth at xE Rn  [Mifflin, 4] provided that xk u  x and 

yk  E 9f(xk) imply that <11,17k> -4- f'(x;u). 

(3.3) PROPOSITION. If of is submonotone at x then f is 

semismooth at x. 

Proof. If xk u 
 x and yk E 3f(xk ) t

hen every subsequence 

of (yk) has a subsubsequence converging to some point in 3f(x) u 

 by directional upper semicontinuity. Hence <12,17k > 	Yaf(x) (u). 

By Proposition 3.5, Y af(x) (u) = f'(x;u). ■ 

The function f(x) = -Ix1 is semismooth, but 3f is not 

submonotone at x = 0, so the converse of 3.3 is false. 

Following Pshenichnyi [5], let us say that f is quasi-differ-

entiable at x if there is a closed convex set K such that 

f 1 (x;.) = YK (.). The function f(x) = - lx1  is not quasi-differ-

entiable, so it is natural to ask whether every locally Lipschitz 

function which is both semismooth and quasi-differentiable has 
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a submonotone subgradient mapping. The answer is negative. 

Consider the function f : R
2 
4- R defined as follows: 

0 
	

if a 5 0 

f(a,b) = 	a
2/4 	 if a > 0, lb' 

1 
a
2/2 

Ibl - b2/a2 
	

if a > 0, lb' < a
2
/2 

Then f is differentiable at all points where either b 0 

or a 	0. At all points x = (a,0) with a > 0, f is quasi- 

differentiable since f'(x;•) = T K (•) with K = 1 1,0,-1),(0,1)]. 

f is also locally Lipschitz, and it is not hard to check that 

f is everywhere semismooth. However, of is not d.u.s.c. since 

of (0) = K but (0,0) E af(0,b) for all b 	0. 

A locally Lipschitz function f : Rn  R will be called 

regular at x [Clarke, 2] provided that f i (x;•) = T af(x) (•). 

Clearly this is a stronger property than quasi-differentiability. 

The function f of the previous paragraph is not regular at 0, 

so it is natural to ask whether semismoothness plus regularity 

implies the submonotonicity of Df. This time the answer is 

affirmative: 

(3.4) PROPOSITION. of is submonotone at x if, and only if, 

f is semismooth and regular at x. 

Proof. Suppose f is semismooth and regular at x. If xn —4- x 

(u 	0), yn E af(xn), and yn 	y then y E af(x) and 
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<y,u> = lim <yn ,u> 

= f'(x;u) (by semismoothness) 
* 

3f(x)(u) 	(by regularity) =  

so yE 3f(x) u . Hence 3f is d.u.s.c., hence submonotone at x. 

The other direction follows by Propositions 3.3 and 3.5. ■ 

Rockafellar [9] has defined zE Rn  to be a lower semigrad-

ient for f at x if 

lim inf f(x+tv) - f(x) 
	

<u,z> 	u Rn 
 . 

v+u 
t+0 

If such a z exists, f is lower semidifferentiable. 

(3.5) PROPOSITION. Let f : R
n + R be locally Lipschitz,  of 

submonotone at x. Then 

f(x+tv) - f(x)  lim o af (x) (u) 	R
tt+ 0 

V+U 

In particular, f is lower semidifferentiable at x and 3f(x) 

is the set of lower semigradients. Also, f is regular at x. 

Proof. If u = 0, this follows easily from the fact that f 

is locally Lipschitz, so suppose u 	0. Let tn+0, vn4u. For 

each n, there is cn E (0,1) and yn E 3f(x+cntnvn ) such that 



f(x+tnvn ) - f(x) lim 
n+co 

lira yn •Vn  
t
o 

f(x+tnvn ) - f(x) 	 - 
 to 	 Yn-v  n .  

Since x + c nt nvn u x, we must have yn + Taf(x)(u).  Thus --+  

= lim yn -u = T af(x) (u) . 

Hence f is lower semidifferentiable and af(x) is the set of 

lower semigradients. It is then obvious that f is regular 

at 	x 	1111 

	

The converse of 3.5 is false: f(x) = x2 	1 sin - is 

locally Lipschitz and differentiable but 3f is not submonotone 

at x = O. 
and lower semidifferentiable 

It is also possible for a function to be regular
A
but for 

of not to be submonotone. Consider, for example, any function 

f : R ►  R satisfying the following properties: 

1 	1 	1 (i) f(x) = x - - - for x = y 

	

1 	1 
(ii) f' exists and is decreasing on t H.T.r.  

v i 1 = and f'(1) = 0, n=2,3,4,--- 

(iii) f(x) = 1 - for x 	1  and f(0) = 0 4 

(iv) f(-x) = f(x) for all x. 



Since lx1 - x
2 s f(x) 	lx1 for all x, f'(0;u) = lul for all 

u. Also, 3f(0) = [-1,1] so f is regular at 0. But of 

is clearly not submonotone at 0. Note that the behavior of 

f is nice at all points x # 0. 

Since the property of strict submonotonicity is central to 

this paper, it is useful to mention an example of a function 

f : R
2 

R
2 such that 3f is submonotone everywhere, but is 

not strictly submonotone. The function is 

IYI 	if x s 0 

f(x,y) = 	1171-x2  if x 	0, 	lyi ?_ x2  

4 -y 2 
x 	2 if x z 0, 	1171 	x

2 

2x 
 

It is easily checked that f is locally Lipschitz, that 3f is 

everywheresubmonotone, and af(0,0) = [(0,-1),(0,1)]. If we 

1 ' n2 
1 

let xn = (1 ' 	, n 	-IT 
1 ) 	x' = ( - ), yn  = (1,-1), y' = 2 
	n=1,2,--, 

n 117  

and u = (1,0), then x 	0, x' 	0, y E 3f(x), and n u 	n u 	n 	n  

y'E 3f (x 1 ) for all n. However, 

<x -x', yn-y'> n 2 	for all n 
i x-x'  n n 

so of is not strictly submonotone. 



IV. Lower-C1 functions  

In this section, we characterize the class of "lower-C
1 

functions" in terms of their Clarke gradients. f : Rn  + R is 

lower-C1  provided f can be represented locally as f(x) = max g(x,$), 
seS 

where S is compact and g and V xg are continuous jointly in x 

and s. In Theorem 4.9, it is demonstrated that a locally Lip- 

schitz f is lower-C1  if, and only if,af is strictly submonotone. 

The term "lower-C1 function" was suggested to us by Professor 

R. T. Rockafellar. 

(4.1) IENEA. Let f : Rn  +It be locally Lipschitz, x,y E R n . For every 

> 0, there are neighborhoods U of x and V of y such that if  

X t  E U and y' E V, then 1T af (x i )  (Y) 	(xf ( y ') " 

Proof. Let K be a Lipschitz constant for f on a neighborhood 

U of x. Then af (o) c KB for all x' E U, and it follows that K 

is a (global) Lipschitz constant for T of(x , ) (•). Take V to be 

the open ball of radius e/K centered at y. ■ 

(4.2) LEMMA. Let f : Rn  + R be locally Lipschitz. Then 

f(x'+ty) - f(xl) 	T* (4.3) 	lim inf 	 (y) 	0, o af (x') x'+x 
n  Vy E R 

t+0 



if, and only if, for any compact Kc R n , and any e > 0, there is 

a neighborhood U of x and A> 0 such that 

(4.4) 
f(x'+ty') — f(xl)  — T * 	(y 1) 

t 	 af(x 1 ) 

whenever x' E U, y' E K, 0 < t < 

Proof. Assume 4.3 holds, and fix Kc R n  and c > 0. Since f is 

locally Lipschitz, 4.3 implies 

• urn inf f(x'+ty') - f(x') 	w* Nil (y) 	0, 	yE R. 
t 	 of (x') x' -x 

11 ' 411  
-LH) 

This, and Lemma 4.1, imply that for each yE K we may find neighbor-

hoods Uy  of x, Vy  of y, and Ay  > 0 such that 

* 	 * 

o af (x') (y) - T af(x') (y') z - c/2 

and 

t 	
(y) 	-6/2 

of (x') 

whenever X I E U , y'E V , and 0 < t < A y . Pick a finite subcover 

V 	 for K, and let .0 = U n 	n U 	and A = min{X 
ym 	 Irm Y1 	 Yl 	 1 	Ym 

For any x' E U, y' E K, and t E (0,A), let i be such that y' E V , 
Yi 

and we get 

f(x 1 +ty') - f( x 1) 	T* 



f(x'+ty') - f(x') 	T*  
af (x 1 ) (17 " 

( 	

*  
t 	

111; f(x , ) ( y± )) + T 3f(x , ) (Y i ) - Y af(xf) (I") 

< -6/2 - 6/2 = -6 , 

as desired. The opposite direction of the lemma is obvious. I 

(4.5) PROPOSITION. If f : Rn  + R is locally Lipschitz, then 

3f is strictly submonotone at x if, and only if,4.3 holds. 

Proof. (=>) If y = 0, the assertion is trivial. Without any 

loss of generality, we may assume that Iy1 = 1. Fix c > 0. 

Since of is strictly submonotone at x, there is r > 0 such that 

<x1-x2 ,y 1 -y2 > 

lxi--x2 1 

whenever Ixi  -- 	< 2r,Yi . f: af(x.) for i = 1,2, and x l 	x2 . 

Let x' and t be chosen so that Ix' - xl < r and 0 < t < r. We 

will complete the proof by showing that 

f(x'+ty) - f(x') 	T *  
t 	 af(x' ) 	-E 

Choose any yl E af(x') y . By the mean-value theorem of Lebourg [31. 

we may find SE (0,t) and y 2  E af(x'+sy) such that f(x'+ty) - f(x') = 

t<y,y2>. Letting xl  = x' and x2  = x' + sy, we have 



f(x2-tu) - f(x2 ) 

> 	- e=  
2 	

-E 
-  

f(x 1 +ty) - f(x') 
	= <171172-171> 

177 

<x2 -x1 , y2 -y 1
>  

(<=) Next, suppose 4.3 holds, and let e > 0 be given. By Lemma 

4.2, there is a neighborhood U of x and X > 0 such that 

t 	
(u) 	-c/2 of (x') 

whenever x'EU, lul 5 1, and 0 < t < X. We may also assume that 

U is small enough so that lz - z'l < X for all z, z'c U. Fix 

Xi  E U, yi  E 3f(xi ) for i=1,2, with x l 	x2 . Let t = 4x2  - xi l 

and u = (x2 - x1  )/t. Then 

- <u,y1> - <-u,y2 > 
lxi -x2 1 

* 	 * 
-T f(x1 )  (u) - T 3f(x2 )  (-u) 

f(xl+tu) - f(x l ) 	* 

t 	 af(x1 )  (u) 

f(x'+tu) - f(x') 	T * 

<xl-x2 , y1-y2 > 

T3f(x2
) (-u)  

which shows that 3f is strictly submonotone at x. 111 



t (y) 	- e Df(x l ) 
f(30+ty) - f(x l ) 	t*  

t (Y) 	-e 3f(x) 
f(x+ty) - f(x) 	v* 

(4.6) LEMMA. Let f : Rn  -0- R be locally Lipschitz, let C and K 

be compact sets in Rn , and suppose that Df is strictly submonotone 

on C. Then  

(x+ty}t  - f(x)  
lim inf 	 oaf (x) (y) 	0 . 
xEC 
yEK 
t4, 0 

Proof. Let c > 0 be given. By Proposition 4.5 and Lemma 4.2, 

for each XE C, there is Xx > 0 such that 

whenever Ix' - xl < A x
, yE K, and 0 < t < X x . Let xl' - • • ,x r

E C 

besuchthatforeveryxECwehavelx-x.1 i< X x 
 for some i. 

. 1 

Let A = min(Xxx
). Then for any X E C, y E K, we have 

l 	r 
 

whenever 0 < t < X. ■ 

(4.7) LEMMA. Let cp(t) be real-valued, defined for t > 0 suffi- 

ciently small, such that lim (PM = 0. Then there is a continu-
t-0-0 

ously differentiable function a(t) defined on [0,a] for some  

a > 0 such that  



a(0) = 	(0) = 0 

a(t) z t4(t), 	 E (0,a] . 

Proof. Let a > 0 be such that cp is bounded above on (0,2a], 

and let ak  = a/2k , 	 . If a is the infimum of all affine 

functions R. : R 3  R which satisfy Q(ak) z $(t) for all to (0,2ak ] 

and all k=0,1,2,••• then the following properties are easily 

checked: 

a is continuous, concave, nondecreasing on [0,a] 

13(0) = 0 

a 	(1) on (0,a] 

a is affine on [ak+1,ak],  k=0,1,2,••• . 

Also, 	the right derivative of a has these properties: 

a; is finite, nonnegative, and nonincreasing on (0,a) 
a+ is constant on [ak+1'ak),  k=0,1,2,••- 

a' is integrable on [0,a]. 

This last assertion is proven as follows. Whenever 0 < u < v < a, 

13(v) - S(u) = f 0;(s) ds 

(cf. Rockafellar [6, 24.2.1]). Since a; 	0 and a is continuous, 



a 	 v 
f V+ (s) ds = lim f + V(s) ds = 13(a) - f3, (0) < °°, 
0 	 u-4-0 u 

v÷a 

t 
so S is integrable. Note that since S(0) = 0, S(t) = f S!(s) ds 

0 1.  
for all tE [0,a]. 

For each k=1,2,•, pick ck  such that 

1 -2 (a
k 

+ ak+l ) < ck 
< ak 

(ak  - ck) 031(ak+1  ) - 13. 1+  (ak )) < ak+l 

Define p : (0,a) 	R to be the function that agrees with 1 + 

on the intervals [ak+1,ck]  (k=1,2,•..) and on [a1 ,a0 ), and is 

affine on the intervals [c k ,ak] (k=1,2,•••). Then p is continuous, 

nonnegative, and nonincreasing on (0,a) and 

t 
f 	p(s) - V(s) ds 	0 
	

for all k=0,1,2,•••, 

ak+l 	
t E k+1' ak ] 

Since 0 5 p 	13_1.  + 1 and S+ is integrable, it follows that p is 

integrable. Then for all tE [0,a], 

t 	 t 
f p(s) ds 	f S'(s) ds = S(t) . 
0 0 

t 
Define a(t) = tf p(s) ds for all tE [0,a]. Clearly, 

0 



• 

• 
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a is continuously differentiable on (0,a]. 

a(0) = 0 

a(t) z tc1)(t) for tE (0,a] . 

It remains only to show that a is continuously differentiable at 

a(t) 	t  0. We have a'(0) = lim, - lim f p(s) ds = 0. Also, for t > 0, 
t+0 4- t 	t+0 0 

t 
a'(t) = f p(s) ds + tp(t) 

0 

t 
= f (u(s) + p(t)) ds 

0 

• t 
...c 2f 

0
p(s) ds •

  
(since p is nondecreasing) 

so lim a'(t) = 0. ■ 
t--.)-0 

(4.8) PROPOSITION. Let f : Rn  -. R be locally Lipschitz. If  

of is strictly submonotone then for every compact Cc R n , there 

is a continuously differentiable a : [0,a] + R such that 

a(0) = a'(0) = 0 and 

f(x + ty) z f(x) + tT af(x) (y) - a(t) 

whenever xE C, lyi = 1, and 0 < t < a. 



Proof. For t > 0, define 

(PM = - inf min f(x+t'y) '- f(x)  o af (x) ( Y" 0  t t'5t 

xEC 
IYI=1  

Then (I) ?_ 0 and by Lemma 4.6, Iim 4(t) = 0. By Lemma 4.7, there 
t+0 

is a real-valued function a(t) which is continuously differen- 

tiable on [0,a] for some a > 0 such that a(0) = a'(0) = 0 and 

cc (t) 	t. (t) for all tE (0,a]. It follows that f(x + ty) 	f(x) + 

tT 3f(x) (y) - a(t) whenever xc C, 117 1 = 1 and 0< t s as 1 

(4.9) THEOREM. Let f : Rn  + R be locally Lipschitz. 3f is 

strictly submonotone if, and only if, for every  XE Rn there is  

a neighborhood U of x, a compact set S and a continuous function 

g :UxS+Rsuch that Vxg(x,$) exists and is continuous in  

(x,$) and such that 

f(x) = max g(x,$) 
	

VX E U 
SES 

Proof. (=>) Suppose 3f is strictly submonotone, and fix RE Rn . 

By Proposition 4.8, there is a > 0, and a C 1 function a : [0,a] + R 

such that a(0) = a'(0) = 0 and 

f(x+y) 	f(x) + <,y> - a(ly1) 



whenever Ix-XI s 1, ly1 s a, and cE 9f(x). Let b = min{l,a/2}. 

Then 

f(x) > f(x') + <x-x',> - a(lx-x'I) 

whenever lx-XI s b, Ix'-XI s b, and e 9f(x'). Let U = 

ix : Ix-XI < b} and S = 	 : Ix'-XI s b, cE 3f(x 1 )1. If 

we define 

g(x,x',0 = f(x') + <x-x',> - a(lx-xel), 

then g has the desired properties. 

(=>) Fix TCE Rn , let U, S, and g be as indicated, and let 

Kc U be a compact convex neighborhood of X. By .compactness, 

Vxg(x,$) is uniformly continuous on K x S. So, defining for t > 0 

n(t) = 	sup 	IVxg(z,$) - Vxg(z 1 ,$)1 
z,z'EK 

sES 

we have lim n(t) = 0. By Lemma 4.7 there is, for some a > 0, 
t4, 0 

a Cl  function a : [0,a] 	R such that a(0) = a'(0) = 0 and 

a(t) 	to (t) for all t E (0,a]. 

Fix x, X I EK such that x # x'. For each SE S, by the mean-

value theorem, there is "CI E K on the line segment (x,x') such 

that g(x',$) - g(x,$) = (x' 	x)•Cixg(x",$). Then 



x' - x 
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[g(x',$) - g(x,$) - (x'-x)•V xg(x,$)]/Ix' - xl 

= (Vxg(x",$) - Vxg(x,$)) 

-n(Ix" 	xl) 	 - xl) 	a(lx' - xl)  
Ix' - xl 

Hence, for all sE S, 

g(x',$) 	g(x,$) + (x' - x)•V xg(x,$) - a(Ix' - xl) . 

Let 	af(x) be arbitrary. By Clarke [1, Theorem 2.1], we may 

find s 1" sk  ES and numbers X 1" --- Xk  such that 

= IX.V xg(x,s i ) 

A i  ?. 0, 	1Xi  = 1, 	g(x,s ) = f(x) . 

Then 

f(x') 	1Xig(x 1 ,s i ) 

a IX.(g(x,s i ) + (x'-x)•Vxg(x,si ) 

a(Ix'-x))) 

= f(x) + (x'-x). t - a(Ix'-xl) . 
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Since this holds for all 	f(X), we have shown that for all 

x, X I EK with x 	x', we have 

f(x') 	f(x) +af(x)(x'  - x) - a(Ix' - xl) . 

It then follows easily by Lemma 4.5 that of is strictly submono-

tone at every interior point of K, and hence in particular at X. 
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