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Methylome and transcriptome profiles in
three yak tissues revealed that DNA
methylation and the transcription factor
ZGPAT co-regulate milk production
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Abstract

Background: Domestic yaks play an indispensable role in sustaining the livelihood of Tibetans and other ethnic
groups on the Qinghai-Tibetan Plateau (QTP), by providing milk and meat. They have evolved numerous
physiological adaptations to high-altitude environment, including strong blood oxygen transportation capabilities
and high metabolism. The roles of DNA methylation and gene expression in milk production and high-altitudes
adaptation need further exploration.

Results: We performed genome-wide DNA methylome and transcriptome analyses of breast, lung, and biceps
brachii muscle tissues from yaks of different ages. We identified 432,350 differentially methylated regions (DMRs)
across the age groups within each tissue. The post-mature breast tissue had considerably more differentially
methylated regions (155,957) than that from the three younger age groups. Hypomethylated genes with high
expression levels might regulate milk production by influencing protein processing in the endoplasmic reticulum.
According to weighted gene correlation network analysis, the “hub” gene ZGPAT was highly expressed in the post-
mature breast tissue, indicating that it potentially regulates the transcription of 280 genes that influence protein
synthesis, processing, and secretion. The tissue network analysis indicated that high expression of HIF1A regulates
energy metabolism in the lung.

Conclusions: This study provides a basis for understanding the epigenetic mechanisms underlying milk production
in yaks, and the results offer insight to breeding programs aimed at improving milk production.
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Background
Domestic yaks play an indispensable role in sustaining
the livelihood of Tibetans and other ethnic groups on
the Qinghai-Tibetan Plateau (QTP), in the Himalayas,
and in the connecting Central Asian highlands. They
provide milk, meat, hides, fiber, fuel, and transportation
[1, 2]. Yak milk is not only an important source of high-
quality protein, especially containing high quantities of
essential amino acids, but also rich in immunoglobulins,
antimicrobial peptides and growth factors [3, 4]. Protein
content and composition are essential for the transform-
ation of milk into cheese and other milk-derived prod-
ucts, and therefore important for the dairy industry.
Previous researches indicated that manipulation of DNA
transcription and posttranscriptional regulation can im-
prove the efficiency of milk production. The synthesis of
fat, protein, and lactose in milk can be regulated by
the activity of specific transcription factors, non-
coding RNAs, and alterations of the chromatin struc-
ture in mammary epithelial cells [5]. Despite such ad-
vancements in research, little is currently known
about the physiological and cellular regulation re-
quired for milk protein synthesis and secretion in yak.
We hypothesized that the genes responsible for milk
production were regulated by DNA methylation and
that distinct sub-modules of correlated expression
variation could be identified. In this study, we per-
formed genome-wide DNA methylome and transcrip-
tome analyses of yak lung, breast, and biceps brachii
muscle tissues at four different stages of development
to identify the regulatory networks associated with
milk protein synthesis, metabolism, and secretion.

Results
Global DNA methylation and gene expression in the
breast, lungs, and biceps brachii muscle at different ages
We generated the methylomes and transcriptomes of
lung, breast, and biceps brachii muscle tissues from 12
female Riwoqe yaks at four different stages (n = 3/stage)
of development: 6 months old (MO) (young), 30 MO
(pre-mature), 54 MO (mature) and 90 MO (post ma-
ture). Among these, only the post-mature yaks (90
months) were lactation, with ~ 3.16 kg/day milk yield.
After performing sequence quality control and filtering,
we obtained a single-base resolution methylome cover-
ing 85.6% (27,471,373/32,092,725) of CpG sites across
the genome with an average depth of 22.5×. We first cal-
culated pairwise Pearson’s correlations of CpG sites with
at least 10× coverage depth across all samples, which
were well clustered by tissue types (Fig. 1a). The correl-
ation of CpG methylation levels for biological replicates
was strong (median Pearson’s r = 0.74), the correlation of
CpG methylation levels between ages (median Pearson’s
r = 0.72) was relatively weaker and the correlation

between tissues was weakest (median Pearson’s r = 0.66)
(Fig. 1c). We aligned the transcriptome sequencing data
for all samples to our newly assembled yak genome ref-
erence, and we subsequently obtained the transcripts. In
total, we obtained 20,504 transcripts, that were then an-
notated to the Gene Ontology (GO) [6], InterPro [7],
Kyoto Encyclopedia of Genes and Genomes (KEGG) [8],
Swiss-Prot [9], and TrEMBL [10] databases (Table S1).
We also calculated pairwise Pearson’s correlations of all
transcripts and obtained similar results to those of DNA
methylation (Fig. 1b). Biological replicates showed the
highest correlation coefficients, while different tissues
showed the lowest correlation coefficients (Fig. 1d).

Differentially methylated regions among the age groups
We determined differentially methylated regions (DMRs)
across age groups within the breast, lung, and biceps bra-
chii muscle tissues (Table S2, S3, S4). Within the lung and
biceps brachii muscle tissues, age groups did not differ in
age-related DMRs (A-DMRs), but post-mature breast tis-
sue had considerably more DMRs (155,957) than the three
younger age groups (Fig. 2a). We then investigated the
correlations between DMRs and their corresponding dif-
ferentially expressed genes. The ratio of negatively to posi-
tively correlated gene pairs was 1.02 for promoters with
DMRs and 0.95 for gene bodies with DMRs. Not every
methylation was correlated with the expression of its asso-
ciated gene, due to the gene regulation complexity [11].
At ~ 90months, ~ 120 days after giving birth for the

third time, yaks are in the lactation period (milk yield of
~ 3.16 kg/day), so it is possible that the observed methy-
lation partially controls yak lactation. Since promoter
methylation decreases gene expression [11], we selected
375 hypomethylated promoter genes (highly expressed)
along with 207 hypermethylated promoter genes (lowly
expressed) from post-mature yak breast tissues. The
hypomethylated (highly expressed) genes were only
enriched in “protein processing in endoplasmic
reticulum (ER)” (9 genes, 2.964-fold enrichment, p =
0.0049). Specifically, the genes are involved in vesicle
trafficking (SEC23B), oligosaccharide linking (MOGS,
RPN2), folding and assembly (HSPA5), transportation
(LMAN2, SEL1L), and ubiquitination and degradation
(UBE2J1, UBE2J2, DERL2) [12, 13]. These genes were sig-
nificantly upregulated at 90months in breast tissues, but
not in lung and biceps brachii muscle tissues (Fig. 2b).
Based on this data, methylation might help regulate milk
production by influencing protein processing in the endo-
plasmic reticulum during the lactation period.
We also examined A-DMRs that overlapped across

age groups. Young and post-mature tissues rarely shared
A-DMRs when comparing the lung and muscle tissues
(for young tissues, muscle: 586 A-DMRs, breast: 2249 A-
DMRs, lung: 496 A-DMRs; for post-mature tissues,

Xin et al. BMC Genomics          (2020) 21:731 Page 2 of 12



muscle: 470 A-DMRs, breast: 12,050 A-DMRs, lung: 772
A-DMRs) (Fig. 2c, d). Pre-mature and mature stages also
rarely shared A-DMRs across muscle and lung tissues
(Fig. 2e), suggesting that methylation patterns were
already established at the young stage and that no exten-
sively divergent epigenetic difference occurred across dif-
ferent age groups under natural high-altitude conditions.

Consensus network analysis for tissues and age groups
We first performed a multi-way ANOVA test for each gene
across all samples (n = 36) to test the null hypothesis that
the gene expression level did not differ among age groups
and tissues. At the threshold for significance (p < 0.05), 417
age-related and 8560 tissue-related genes were selected for
further weighted gene correlation network analysis
(WGCNA), which uses network topography to group genes
into modules based on correlations [14]. Next, we

conducted WGCNA for tissue- and age-related gene ex-
pression respectively to identify a “consensus network”–a
common pattern of genes that are correlated in all condi-
tions. We performed a consensus network, module statistic,
and eigengene network analyses to identify modules, to as-
sess relationships between modules and traits, and to study
the relationships between co-expression modules [15]. The
consensus networks identified for tissues and age groups
had clearly delineated modules (Fig. 3a, b), and the modules
identified were significantly correlated with tissues and age
groups (Fig. 3c, d).

Age network analysis indicates that ZGPAT might
regulate milk production
Within the age-related gene network, the largest module
(“turquoise”, n = 356) had negative correlation for breast
tissue (r = − 0.57, p = 3e-04) and age (r = 0.37, p = 0.03)

Fig. 1 Global DNA methylation and gene expression among samples. Pearson’s correlation analysis based on the methylation of CpG sites (a)
and gene expression (b) among samples. Boxplot of Pearson’s correlation coefficients between replicates, ages, or tissues for methylation (c) and
gene expression (d). M6, M30, M54 and M90 represent different 6, 30, 54 and 90months old, respectively. B, L, and M represent breast, lung, and
biceps brachii muscle, respectively. 1, 2, and 3 represent different replicates
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and a positive correlation for biceps brachii muscle tis-
sues (Table S5). The breast tissue had a stronger signal
than that of age and may have overwhelmed the signal
from age. Genes in this module were enriched in the
GO categories of “protein polyubiquitination,” “RNA
polymerase II core promoter proximal region sequence-
specific DNA binding,” “ATP binding,” “transcription,
DNA-templated,” and “negative regulation of transcrip-
tion from RNA polymerase II promoter” (p-values of
0.000344, 0.000822, 0.000991, 0.00139, and 0.00244, re-
spectively). The “blue” (n = 48) and “grey” (n = 13) mod-
ules showed only a negative correlation with age (r = −
0.58, p = 2e-04; r = − 0.76, p = 6e-08, respectively) and ex-
hibited no enrichment of GO categories for genes. After
applying the threshold of the absolute value of gene sig-
nificance for age (|GS| > 0.5) and module membership

measures (|MM| > 0.6) in each module, we defined 20
and 7 “hub” genes in the “turquoise” and “blue” modules
(Table 1). The gene expression of the “hub” genes was
well clustered by modules, which was consistent with
the negative correlation with age (“turquoise” r = 0.37,
“blue” r = − 0.58). The upregulated expression level of
the “hubs” in breast tissue at 90 months old indicated
that the “turquoise” module had a stronger correlation
with breast tissue than with age (Fig. 4a).
We used the AnimalTFDB 3.0 database [16] to exam-

ine transcription factors in these 27 “hubs” and found
that ZGPAT encodes a transcription regulator protein
and was significantly upregulated in breast tissue at 90
months of age (Fig. 4a). Previous study reported that this
protein specifically binds the 5′-GGAG [GA] A [GA]A-
3′ consensus sequence and represses transcription by

Fig. 2 Overview of age-associated DMRs. a Basic statistics for A-DMRs within each tissue. b Expression levels of 9 enriched genes in “protein
processing in endoplasmic reticulum (ER)”. Overlap of A-DMRs associated with the 6-month group (c), 90-month group (d), and 30- and 54-
months groups (e) in the muscle, breast, and lung respectively
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recruiting the chromatin multi-complex NuRD to target
promoters [17]. ZGPAT was highly expressed in breast
tissue at 90 months, and it potentially regulated the tran-
scription of 280 genes (weight > 0.15) in the network
from the “turquoise” module. In order to identify the
most important cellular activities controlled by this TF
regulatory network, we analyzed over-represented GO
biological process and molecular function terms, as well
as KEGG pathways. These potential target genes were
enriched in the GO categories of “protein binding,”
“ATP binding,” and “zinc ion binding,” among others,

and the KEGG categories of “aminoacyl-tRNA biosyn-
thesis,” “autophagy animal,” and “protein processing in
endoplasmic reticulum” (Fig. 4b). These enriched GO
terms and KEGG pathways likely help regulate protein
synthesis, processing, and secretion in breast tissue. For
example, 6 of 7 genes from the “protein processing in
endoplasmic reticulum” category were also upregulated
at 90 months of age in breast tissue (Fig. 4c) and in-
volved in multiple processes in the endoplasmic
reticulum, including vesicle trafficking (SEC24C), folding
and assembly (SELENOS), transportation (BCAP31), and

Fig. 3 Modules of consensus networks and correlation with traits. Consensus networks from the age (a) or tissue (b) curves. Gene expression
similarity was determined using a pair-wise weighted correlation metric and clustered according to a topological overlap metric into modules;
assigned modules are colored on the bottom, and gray genes were not assigned to any module. Consensus network modules for age (c) and
tissue (d) correlated with traits using the eigenmodule (the first principal component of the module). The correlation coefficients and the p-value
in parenthesis are provided underneath; color-coding refers to the correlation coefficient (legend at right)
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ubiquitination and degradation (BAG1, UBE2G2, and
MARCH6) [12, 13]. Only DNAJC10 was downregulated
at 90 months of age in breast tissue. This gene encodes
an endoplasmic reticulum co-chaperone that is part of
the endoplasmic reticulum-associated degradation com-
plex involved in recognizing and degrading misfolded
proteins [13].

Tissue network analysis indicates regulative role of HIF1A
in lung
Within the tissue-related gene module network, four
modules showed a positive correlation and two showed a
negative correlation with the lung; all significant module-
trait relationships were negative in the muscle but positive
in the breast (Fig. 3d). Moreover, 99.54% of the total 8560
tissue-related genes were related to the top 4 modules
(“turquoise,” n = 3833; “blue,” n = 2795; “brown,” n = 1052;
“yellow,” n = 339) (Fig. 5a, Table S6), and these modules
were also highly correlated with other modules; for

example, “brown,” “yellow,” and “black” showed a high
eigengene adjacency with each other (Fig. 5b).
We applied the more stringent threshold absolute value

of gene significance for the age and module membership
measures in the top four modules to identify “hub” genes
in the “turquoise,” “blue,” “brown,” and “yellow” modules.
With the threshold values of |GS| > 0.7 and |MM| > 0.8,
34 “hub” genes were identified in the “turquoise” module.
Twenty-four hubs were then filtered from the gene signifi-
cance of module-lung relationships, and 10 were filtered
from the gene significance of module-breast relationships
(Table 2). These were further divided into 3 clusters by
hierarchical clustering, which showed high expression
levels in the breast (cluster 1), lung (cluster 2), and biceps
brachii muscle (cluster 3) tissues, with distinct clustering
patterns by tissue (Fig. 5c).
According to the AmalTFDB 3.0 database [16], EBF3,

HIF1A, and STAT6 were annotated as transcription fac-
tors. EBF3 encodes a member of the early B-cell factor

Table 1 List of “hub” genes in the consensus network for age

Yak ID Gene symbol Module color Gene significance p-value Module membership p-value

BmuPB009868 AP3D1 turquoise 0.513965075 0.001344116 0.868945999 6.37E-12

BmuPB004083 TMEM30A turquoise 0.505722627 0.001652657 0.848054843 6.65E-11

BmuPB000726 DDRGK1 turquoise 0.53596122 0.000754414 0.842070133 1.22E-10

BmuPB019011 OTUD3 turquoise 0.543916749 0.000606215 0.828680521 4.37E-10

BmuPB000091 CNPPD1 turquoise 0.51195228 0.001414359 0.814537409 1.50E-09

BmuPB006815 TOR1AIP1 turquoise 0.544705745 0.000593032 0.809789221 2.21E-09

BmuPB007137 MGAT4A turquoise 0.545969144 0.000572452 0.798170686 5.51E-09

BmuPB007385 HECA turquoise 0.603273223 9.84E-05 0.770629907 3.85E-08

BmuPB019443 SYAP1 turquoise 0.500377628 0.001884511 0.733120646 3.68E-07

BmuPB009825 PHAX turquoise 0.561938984 0.00036184 0.70497442 1.59E-06

BmuPB008032 UBE2G2 turquoise 0.52385538 0.001041698 0.70208134 1.83E-06

BmuPB012517 SYF2 turquoise 0.568328068 0.000299194 0.699367268 2.08E-06

BmuPB001610 FURIN turquoise 0.567906296 0.000303008 0.697046314 2.32E-06

BmuPB000679 ZGPAT turquoise 0.504624296 0.001698141 0.683958391 4.25E-06

BmuPB007049 SKP2 turquoise −0.527608908 0.000943732 − 0.669790419 7.91E-06

BmuPB000224 C2orf6 turquoise 0.531191165 0.000857925 0.652871802 1.59E-05

BmuPB007420 TAB2 turquoise 0.505905132 0.001645204 0.652844304 1.59E-05

BmuPB018569 ORAOV1 turquoise 0.51035386 0.001472421 0.637043276 2.95E-05

BmuPB010550 CCPG1 turquoise 0.644779605 2.19E-05 0.612874899 7.08E-05

BmuPB012521 TMEM57 turquoise 0.57317319 0.000258349 0.60967979 7.91E-05

BmuPB013324 MCM3 blue −0.583585649 0.000186982 0.841505398 1.29E-10

BmuPB010064 SPC24 blue −0.509962181 0.001486965 0.744497748 1.93E-07

BmuPB003102 C17orf49 blue −0.526803776 0.000964031 0.741805787 2.26E-07

BmuPB015902 SERPINH1 blue −0.607769763 8.44E-05 0.721017606 7.04E-07

BmuPB016582 SRPX2 blue −0.51838468 0.001200558 0.698151166 2.20E-06

BmuPB012996 UCK2 blue −0.588274454 0.000161067 0.677420455 5.68E-06

BmuPB015372 UMPS blue −0.503577413 0.001742514 0.648111658 1.92E-05
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(EBF) family of DNA binding transcription factors, and
may function as a tumor suppressor in several types of
cancer [18]. STAT6 is a member of the STAT family of
transcription factors, which form homo- or heterodimers
that translocate to the cell nucleus where they act as
transcription activators [19]. HIF1A, hypoxia-inducible
factor-1, functions as a master transcriptional regulator
of the cellular and systemic homeostatic response to
hypoxia [20]. HIF1A was upregulated in the lung to po-
tentially control the transcription of 2008 genes
(weight > 0.15), which were enriched in multiple GO bio-
logical process categories, molecular function categories
and KEGG pathways. Most of the enriched GO terms
and KEGG pathways were related to energy metabolism.
Specifically, enriched GO terms included “mitochondrial
respiratory chain complex I assembly,” “NADH dehydro-
genase (ubiquinone) activity,” “ATP binding,” “mito-
chondrial translation,” “tricarboxylic acid cycle,” and
“GTP binding” while enriched KEGG pathways included
“thermogenesis,” “carbon metabolism,” and “citrate cycle
TCA cycle” (Fig. 5d, e). Mitochondria function as the
primary energy producers of the cell and serves as the

hub for a variety of immune pathways as the center of
biosynthesis, oxidative stress response, and cellular sig-
naling [21]. NADH dehydrogenase is a core subunit of
the mitochondrial membrane respiratory chain and is
believed to contribute to the minimal assembly required
for catalysis [22]. The protein which binds ATP or GTP,
carries three phosphate groups esterified to a sugar moi-
ety and provides energy and phosphate sources for the
cell [23, 24]. The tricarboxylic acid cycle is a series of
metabolic reactions in aerobic cellular respiration, and is
the most important metabolic pathway for the energy
supply to the body [25].. The “thermogenesis” pathway
is essential for warm-blooded animals, because it ensures
normal cellular and physiological functions under chal-
lenging environmental conditions [26].

Discussion
Previous studies described transcription profiling of the
mammary gland in livestock (including cattle [27], sheep
[28], and goat [29]) and DNA methylation profiling of
the mammary gland in cattle [30]. These studies showed
temporal and spatial specificity in the methylome and

Fig. 4 “Hub” genes and potential target genes of ZGPAT in the age network. a Expression level of 27 “hub” genes. b Enrichment analysis of
ZGPAT’s potential target genes. c Expression level of 7 genes in “protein processing in endoplasmic reticulum”, which was enriched from
potential target genes of ZGPAT
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transcriptome profiles of the mammary gland in differ-
ent species, but they only reported the differential gene
expression profile of the mammary gland; and the regu-
latory network is still unknown. In this study, we for the
first time generated the methylomes and transcriptomes
of lung, breast, and biceps brachii muscle tissues from
yak at four different stages of development (6, 30, 54,
and 90months; young, pre-mature, mature, and post-
mature, respectively). We found that breast tissue at 90
months showed considerably differential methylation
levels compared with other month groups, but lung and
biceps brachii muscle tissues did not. Enrichment ana-
lysis for upregulated genes with hypomethylated DMRs
from breast tissues of 90-month-old yaks showed that
DNA methylation might regulate the activation of the
“protein processing in endoplasmic reticulum (ER)”
pathway. Because only the 90-month-old yaks were in
the lactation period, it appears that DNA methylation

regulates milk production by influencing protein pro-
cessing in the endoplasmic reticulum.
In this study, hub genes were identified by WGCNA.

The data show that the hub genes with the highest MM
and GS in modules of interest should be candidates for
further research. This study identified turquoise module
genes associated with milk yield, and 20 genes were con-
sidered hub genes, showing the highest mRNA expres-
sion level in breast tissue at 90 months when yaks enter
the lactation period. In these hub genes, ZGPAT was an-
notated as a transcription factor that potentially regu-
lated the transcription of 280 genes in the “turquoise”
module network, which was enriched in the KEGG cat-
egories of “aminoacyl-tRNA biosynthesis,” “autophagy
animal,” and “protein processing in endoplasmic
reticulum”. This result suggests that ZGPAT helps with
regulating protein synthesis, processing, and secretion in
breast tissue. Moreover, the 7 genes potentially regulated

Fig. 5 Modules and “hub” genes in the tissue network. a WGCNA modules of the tissue-related genes, (b) correlations between modules showed
by the eigenmodule adjacency heatmap, (c) expression level of “hub” genes in the tissue network, enrichment analysis of GO (d) and KEGG (e)
for potential target genes of HIF1A, and the number of enriched genes and enrichment fold are indicated on the right
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by ZGPAT in “protein processing in endoplasmic
reticulum” were totally different from the aforemen-
tioned 9 genes regulated by hypomethylation, illustrat-
ing that DNA methylation and transcription factor
possibly co-regulate milk production. In addition, the
tissue network analysis confirms the importance of
HIF1A in regulating energy metabolism, which is
necessary for adaptations to low temperature and
hypoxia in high altitudes.

Conclusions
The results of this comprehensive study provide a solid
basis for understanding the roles of DNA methylation
and transcriptional network underlying milk protein syn-
thesis and high-altitude adaptation in yaks. This infor-
mation advances our understanding of the regulatory
network in the mammary gland at different developmen-
tal stages and may help inform breeding programs aimed
at improving milk production.

Table 2 List of “hub” genes in the consensus network for tissue

Yak ID Gene symbol Module color Tissue Gene significance p-value Module membership p-value

BmuPB014336 EEF1G turquoise lung −0.73907039 2.64E-07 0.826748126 5.20E-10

BmuPB017352 PMS1 turquoise lung −0.71599797 9.13E-07 0.850552958 5.12E-11

BmuPB000878 MTPAP turquoise lung −0.715583465 9.33E-07 0.912877613 8.73E-15

BmuPB018762 CXHXorf58 turquoise lung −0.709433358 1.27E-06 0.82262518 7.50E-10

BmuPB014450 RWDD4 turquoise lung −0.708526806 1.33E-06 0.923713618 9.94E-16

BmuPB011005 HUS1 turquoise lung −0.707137304 1.43E-06 0.875052199 2.97E-12

BmuPB005540 MTUS1 turquoise lung −0.704482832 1.62E-06 0.871626441 4.58E-12

BmuPB011453 EBF3 turquoise lung −0.703373458 1.71E-06 0.870717052 5.13E-12

BmuPB010608 LAMB3 turquoise lung 0.70783756 1.38E-06 −0.85067459 5.05E-11

BmuPB004299 C3H3orf58 turquoise lung 0.708872549 1.31E-06 −0.88522675 7.61E-13

BmuPB020871 G6PD turquoise lung 0.708930411 1.30E-06 −0.90727231 2.41E-14

BmuPB007438 ZCCHC6 turquoise lung 0.709740967 1.25E-06 −0.84738754 7.13E-11

BmuPB007592 CTDSPL turquoise lung 0.711634321 1.14E-06 −0.8813581 1.30E-12

BmuPB004894 HIF1A turquoise lung 0.713237417 1.05E-06 −0.87302984 3.84E-12

BmuPB020508 FAM122B turquoise lung 0.720139618 7.37E-07 −0.82428698 6.48E-10

BmuPB018102 CCDC82 turquoise lung 0.720592854 7.20E-07 −0.90665968 2.68E-14

BmuPB014539 CNTRL turquoise lung 0.722130497 6.64E-07 −0.87149974 4.65E-12

BmuPB003882 VAV3 turquoise lung 0.725601285 5.53E-07 −0.89496378 1.82E-13

BmuPB020153 EPS8L1 turquoise lung 0.727495147 4.99E-07 −0.82286844 7.34E-10

BmuPB010308 PGM2 turquoise lung 0.746811608 1.69E-07 −0.83795918 1.83E-10

BmuPB004008 GDAP2 turquoise lung 0.754806874 1.05E-07 −0.88661303 6.26E-13

BmuPB012568 WASF2 turquoise lung 0.757428944 8.92E-08 −0.83874427 1.69E-10

BmuPB011966 ACTG1 turquoise lung 0.772114072 3.49E-08 −0.84373776 1.03E-10

BmuPB014173 STAT6 turquoise lung 0.80896084 2.37E-09 −0.84981355 5.53E-11

BmuPB015106 MAN2A1 turquoise breast 0.705124693 1.57E-06 −0.84782348 6.81E-11

BmuPB008614 VPS26A turquoise breast 0.731553581 4.01E-07 −0.88669366 6.18E-13

BmuPB018496 FAM92A turquoise breast 0.718223061 8.14E-07 −0.85598454 2.85E-11

BmuPB005078 RASA1 turquoise breast 0.705902582 1.51E-06 −0.85869193 2.11E-11

BmuPB011476 FAM53B turquoise breast −0.728187435 4.81E-07 0.848680696 6.23E-11

BmuPB008348 EPDR1 turquoise breast −0.710771064 1.19E-06 0.832481139 3.08E-10

BmuPB003453 TROVE2 turquoise breast 0.72654448 5.26E-07 −0.80669368 2.84E-09

BmuPB021200 VWA7 turquoise breast −0.722814498 6.41E-07 0.814033145 1.56E-09

BmuPB010528 RNF111 turquoise breast 0.737234077 2.92E-07 −0.80146106 4.28E-09

BmuPB015811 FRMD3 turquoise breast −0.739223421 2.61E-07 0.809147869 2.33E-09
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Methods
Animals and samples
In total, twelve female yaks (belonging to an indigenous
yak breed that lives at altitudes of 3800–4000m above
sea level in Riwoqe, Tibet, China) were collected be-
tween June and December of 2016 from private farms
(Keqiong farm, Riwoqe, Tibet, China). They were
grouped with 3 replicates into age categories of 6, 30, 54,
and 90 months. At the time of slaughter, their mean live
weights were 44.93 kg (6 months old), 153.06 kg (30
months old), 188.3 kg (54 months old), and 243.56 kg
(90 months old). Only the 90 month-old yaks were lac-
tating, producing ~ 3.16 kg/day milk yield (~ 120 days
after giving birth for the third time). The 54-month-old
yaks were in a dry period (~ 540 days after giving birth
for the first time) [31]. The blood relation between the
last three generations, which were housed simultan-
eously and fed the same diets, was unknown. The yaks
were not fed the night before they were slaughtered and
were humanely sacrificed with the following procedures:
(1) showered with clean water close to body temperature
(35–38 °C), (2) electrically stunned (120 V dc, 12 s) prior
to exsanguination, (3) sacrificed while in the coma by
bloodletting from carotid artery and jugular vein, (4) and
dissected rapidly to obtain breast, lung, and biceps bra-
chii muscle tissue samples, which were immediately fro-
zen in liquid nitrogen, and stored at − 80 °C until RNA
and DNA extraction.

Whole genome bisulfite sequencing
The QIAamp DNA Mini Kit (Qiagen, Hilden, Germany)
was used to isolate the high-quality DNA from each
sample. According to the manufacturer’s instructions,
1 μg of genomic DNA was fragmented by sonication to a
mean size of approximately 250 bp and subsequently
used for whole genome bisulfite sequencing (WGBS) li-
brary construction using an Acegen Bisulfite-Seq Library
Prep Kit (Acegen, Shenzhen, GD, China). Briefly, frag-
mented DNA was end-repaired, 5′-phosphorylated, 3′-
dA-tailed, and then ligated to methylated adapters. The
methylated adapter-ligated DNAs were purified using 1×
Agencourt AMPure XP magnetic beads (Beckman
Coulter, Brea, CA, USA) and subjected to bisulfite con-
version with a ZYMO EZ DNA Methylation-Gold Kit
(Zymo research, Irvine, CA, USA). The converted DNAs
were then amplified using 25 μl HiFi HotStart U+ RM
and 8-bp index primers with a final concentration of
1 μM each. The constructed WGBS libraries were then
analyzed with an Agilent 2100 Bioanalyzer (Agilent
Technologies, SantaClara, CA, USA), quantified with a
Qubit fluorometer with Quant-iT dsDNA HS Assay Kit
(Invitrogen, Carlsbad, CA,USA), and finally sequenced
on an Illumina Hiseq X ten sequencer (PE150 mode)
(Illumina, San Diego, CA, USA).

Methylation calculation and identification of DMRs
Low quality reads that contained more than 5 ‘N’s or had
a low-quality value for over 50% of the sequence (Phred
score < 5) were filtered. The sequencing reads of the sam-
ples were aligned to the yak reference genome [32] using
BSMAP (Version 2.74) [33]. The methylated CpG (mCG)
sites were identified following a previously described algo-
rithm [34]. The methylation levels for each sample were
calculated using in-house Perl scripts. Differentially meth-
ylated regions (DMRs) were identified using metilene
(Version 0.2–6) within a 500 bp sliding window at 250 bp
steps with at least 10 CpGs covered by over 10× sequence
reads, applying the thresholds of differential methylation
β > =15%, FDR for two-dimensional Kolmogorov-
Smirnov-Test p-value < 0.05 [35].. The enrichment ana-
lyses were conducted using WebGestalt (WEB-based
Gene SeT AnaLysis Toolkit) [36].

Total RNA extraction, library preparation, and sequencing
The TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was
used to isolate the total RNA of each sample. The purity,
concentration, and integrity of RNA were checked using
the NanoPhotometer spectrophotometer (IMPLEN,
Westlake Village, CA, USA), the Qubit RNA Assay Kit
in Qubit 2.0 Fluorometer (Life Technologies, Carlsbad,
CA, USA), and the RNA Nano 6000 Assay Kit of the
Bioanalyzer 2100 System (Agilent Technologies, Santa-
Clara, CA, USA), respectively. For each sample, 3 μg
high-quality RNA was used as input material for RNA-
seq library preparation. First, ribosomal RNA was re-
moved using the Epicentre Ribo-Zero rRNA Removal
Kit (Epicentre, Madison, WI, USA). Next, the rRNA-
depleted RNA was used to create sequencing libraries
using the NEBNext Ultra Directional RNA Library Prep
Kit for Illumina (NEB, Ipswich, MA, USA). Finally, the
library products were purified using 1× Agencourt
AMPure XP magnetic beads (Beckman Coulter, Brea,
CA, USA) and the Agilent Bioanalyzer 2100 System
(Agilent Technologies, SantaClara, CA, USA) was
employed to assess the library quality. Clustering of the
index-coded samples was completed on a cBot Cluster
Generation System using the TruSeq PE Cluster Kit v3-
cBot-HS (Illumina, San Diego, CA, USA), and then the
libraries were sequenced on the Illumina HiSeq X Ten
Platform to generate 150 bp paired-end reads.

Quality analysis, transcriptome assembly, and abundance
estimation
Clean reads were obtained by removing reads containing
the adapter or poly-N and by removing low quality reads
(over 10% of the sequence with a quality value < 30)
from the raw data using in-house Perl scripts. All down-
stream analyses were based on the good-quality clean
reads. Paired-end clean reads were mapped to the yak
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reference genome [32] with STAR (available at https://
github.com/alexdobin/STAR/releases). The mapped
reads of each sample were assembled using StringTie
[37]. Next, all sample transcriptomes were merged to re-
construct a comprehensive transcriptome using Perl
scripts. After the final transcriptome was generated,
StringTie and edgeR were used to estimate the expres-
sion levels of all transcripts [38]. StringTie was used to
assess the expression level of mRNAs by calculating
fragments per kilobase of transcript per million frag-
ments mapped (FPKM). Differentially expressed mRNAs
were identified using the DESeq2 package, with the cri-
teria of fold-change log2 > 1 or log2 < − 1 and with the
statistical significance set to FDR < 0.05.

Weighted gene correlation network analysis
WGCNA networks was generated for both age-related
and tissue-related genes, following the overall approach
described by Langfelder et al. [14]. Briefly, gene co-
expression network was constructed based on a signed
Spearman correlation; after network construction, mod-
ules are defined as clusters of densely interconnected
genes by the topological overlap metric (TOM) and the
dynamic tree cut algorithm [15] with a height of 0.25
and a deep split level of 2, a reassign threshold of 0.2,
and a minimum module size of 30 (100 for the consen-
sus network); module relationships were studied by
eigenmodules–the first principal component of the mod-
ule and a signature of gene expression, and each module
that was correlated with the dose-response curve with a
p-value < 0.01 was considered statistically significant.
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