Skip to main content
Log in

Novel Dating Method for Speleothems with Microscopic Fluorescent Annual Layers

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Terrestrial carbonate deposits with a banded layer structure can be good tools for the extraction of past environmental information on global and local scales using trace element concentrations and stable isotope ratios. The absolute age dating is most important for the reconstruction of an environmental chronicle. The measurements of fluorescent annual bandings in stalagmites using a microscopic spectrofluorometer with an XY-stage can be a convenient dating method and are especially effective for young samples whose absolute age is very difficult to be determined by other methods. The number of annual bandings was objectively counted using a personal computer. The optimal conditions for the measurements are discussed. The annual banding in stalagmites is caused by the seasonal differences in the fulvic acid concentrations in the dripping water which forms speleothems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. P. Shwarcz, “Handbook of Environmental Isotope Geochemistry, The Terrestrial Environment, B.”, ed. J. C. Fonts and P. Fritz, 1986, Elsevier, Amsterdam, 271.

  2. M. Gascoyne, Quat. Sci. Rev., 1992, 11, 609.

    Article  Google Scholar 

  3. M. Itou, T. Ono, T. Oba, and S. Noriki, Mar. Micropaleontology. 2001, 42(3-4). 189.

    Article  Google Scholar 

  4. S. E. Lauritzen, D. C. Ford, and H. P. Schwarcz, Commun. 9th Int. Congress of Speleology (National Speleological Society). 1986, 2, 77.

    Google Scholar 

  5. D. Ford, in “Cave Minerals of the World.”, ed. C. A. Hill and P. Forti, 2nd ed., 1997, National Speleological Soc., 271.

  6. N. J. Mockler and W. L. Barnes, Water Resour. Res., 1999, 35, 407.

    Article  Google Scholar 

  7. W. S. Broecker, E. A. Olsen, and P. C. Orr, Nature. 1960, 185, 93.

    Article  Google Scholar 

  8. J. A. Dorale, L. A. Gonzalez, M. K. Reagan, D. A. Pickett, M. T. Murell, and R. G. Baker, Science. 1992, 258, 1626.

    Article  CAS  Google Scholar 

  9. J. Matsuoka, A. Kano, T. Oba, T. Watanabe, S. Sakai, and K. Seto, Earth Plan. Sci. Lett., 2001, 192, 31.

    Article  CAS  Google Scholar 

  10. D. A. Richards and J. A. Dorale, Rev. Min. Geochem., 2003, 52, 407.

    Article  CAS  Google Scholar 

  11. Y. Y. Shopov, in “Cave Minerals of the World.”, ed. A. H. Carol and P. Forti, 2nd ed., 1997, National Speleological Soc., 244.

  12. Y. Y. Shopov, “Problems of Karst Study in Mountanious Contries.”, 1987, Metsniereba, 228.

    Google Scholar 

  13. Y. Y. Shopov and D. C. Ford, Geology. 1994, 22, 407.

    Article  Google Scholar 

  14. W. B. White and E. S. Brennan, in Proceedings of the 10th International Congress on Speleology, 1989, Budapest, Hungary, 212.

    Google Scholar 

  15. W. Li, J. Lundberg, A. P. Dickin, D. C. Ford, H. P. Schwarcz, and D. Williams, Nature. 1989, 339, 534.

    Article  CAS  Google Scholar 

  16. Y. Y. Shopov, V. Dermendjiev, and G. Buyukliev, International Geological Correlation Project No. 299 Newsletter. 1992, 3, 52.

    Google Scholar 

  17. I. Shinno, J. Min. Soc. Jpn., 1993, 22(1). 21.

    CAS  Google Scholar 

  18. T. M. Miano and M. J. P. Sposito, Soil Sci. Soc. Am. J., 1988, 52, 1016.

    Article  CAS  Google Scholar 

  19. N. Senesi, Anal. Chim. Acta. 1990, 232, 77.

    Article  CAS  Google Scholar 

  20. N. Senesi, T. M. Miano, M. R. Provenzano, and G. Brunetti, Soil Sci. Soc. Am. J., 1991, 52, 1016.

    Google Scholar 

  21. S. Matsuda, K. Hiraki, and Y. Nishikawa, Bunseki Kagaku. 1979, 28, 341.

    Article  CAS  Google Scholar 

  22. P. V. Beynen, R. Bourbonniere, D. C. Ford, and H. P. Schwarcz, Chem. Geol., 2001, 175, 319.

    Article  Google Scholar 

  23. K. Hayase and H. Tsubota, Geochim. Cosmochim. Acta. 1985, 49, 159.

    Article  CAS  Google Scholar 

  24. A. M. Anterola and N. G. Lewis, Phytochemistry. 2002, 61, 221.

    Article  CAS  Google Scholar 

  25. L. A. Donaldson, Phytochemistry. 2001, 57, 859.

    Article  CAS  Google Scholar 

  26. M. Bouder, Plant Physiol. Biochem., 2000, 38(1/2). 81.

    Google Scholar 

  27. E. Tatar, V. G. Mihucz, L. Zambo, T. Gasparics, and G. Zaray, Appl. Geochem., 2004, 19, 1727.

    Article  CAS  Google Scholar 

  28. A. Baker, P. L. Smart, R. L. Edwards, and D. A. Richards, Nature. 1993, 364, 518.

    Article  CAS  Google Scholar 

  29. K. Kurisaki, H. Nakamura, H. Kawamura, K. Hatae, and K. Yoshimura, Chikyu Kagaku. 2006, 40, 245.

    CAS  Google Scholar 

  30. K. Yoshimura, K. Hatae, K. Kurisaki, Y. Inokura, and T. Takaso, in Proceedings of the 68th Symposium on Analytical Chemistry, 2007, Utsunomiya, The Japan Society for Analytical Chemistry, 12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurisaki, K., Yoshimura, K. Novel Dating Method for Speleothems with Microscopic Fluorescent Annual Layers. ANAL. SCI. 24, 93–98 (2008). https://doi.org/10.2116/analsci.24.93

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.24.93

Navigation