CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

Towards Pertinent Characteristics of Agility
and Agile Practices for Software Processes

José Fortuna Abrantes, Guilherme Horta Travassos
Universidade Federal do Rio de Janeiro,
Rio de Janeiro, Brasil, 21941-972

abrantesjfawgmail.com ght@cos.ufrj.br

Abstract

Context: It is believed that agility in software processes can bring benefits to software
development and lead to an economy of efforts when accommodating changes is needed.
Objective: Assess pertinence and relevance of agility characteristics and agile practices for
software processes. Method: From 18 agility characteristics and 17 agile practices applicable to
software processes revealed through systematic literature reviews performed in 2010, a survey
was conducted to assess their pertinence and relevance. Results: 16 agility characteristics and 15
agile practices were considered pertinent to insert agility in software processes. Conclusion:
Results should be used sparingly. It would be interesting to replicate the study in other contexts,
with different subjects, and compare them, to increase the generalization of their results.

Keywords: Agility in software processes, characteristics of agility, survey, evidence-based
Software Engineering, agile practices, agile software development, agile methods.

1 Introduction

The last decades saw a need for software processes capable of adapting to last-minute unforeseen changes or
modifications, especially in requirements, to meet specific needs of business in an increasingly dynamic market, that is
competitive and opening itself to new possibilities. The most significant challenge for organizations in the twenty-first
century seems to be their ability to adapt to rapid change and unpredictability, in a more appropriate and faster manner
than their competitors [1]. Slowness to accommodate uncertainty and rapid changes inevitably lead to the obsolescence
of software and customer dissatisfaction [2]. Constant changes, especially in requirements and in a business
environment, become difficult when more rigid software processes are applied.

Some activities of software processes (e.g., testing activities) are amongst the costliest of all the activities which
are part of software development [3]. Changes in requirements may turn artefacts already planned, designed, specified
or even already implemented with their results analyzed, in obsolete or outdated artefacts. It is desirable that software
processes could have sufficient flexibility to accommodate inevitable changes and uncertainties. At the same time, it is
expected that these processes might be described, monitored and improved [4].

One of the most important innovations for software development approaches in recent years has been the
introduction of agile principles [5]. However, despite a series of agile methods being proposed, little is known of how
these methods are used in practice and what their effects are on software processes [6]. Thus, some concerns pop up
when one thinks of defining software processes susceptible to changes: how to embed flexibility in a software process?
What are the desirable characteristics in a software process so that it can be considered agile? These questions,
although seemingly simple, have not had adequate responses described in the literature.

According to [7], agile development approaches involve the adoption of a set of practices that are mutually
supportive. An alternative solution to embed characteristics of agility into software processes can be supported, hence,
by the adoption of agile practices. So, exploring this alternative involves answering the following questions: (1) what
characteristics of agility are pertinent and should or could be candidates for insertion in a software process in order to
make it agile? (2) what are the agile practices that are pertinent and can be considered for adoption in software
processes with the aim of trying to embed characteristics of agility in these processes? Despite the understanding that
one practice alone may not be able to bring a degree of agility suitable for a software process, it is necessary to consider

1

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

the pertinence of each one, separately, to support the formation of an appropriate set of agile practices that can turn a
software process to get the degree of agility desired for a specific software project.

The methodology used in this research is based on the concepts of experimental software engineering [8] and on a
structure presented by [9] in which secondary studies and primary studies are included. As suggested by [9], the
methodology is split into two phases: (a) definition of technology and (b) refinement of the technology.

In the first phase secondary studies are executed to find the knowledge necessary to support the development of a
proposal technology to solve a problem. In the second phase out primary studies (concept proofs, case studies and
experimental studies) are carried to evaluate the technology, which may then be refined and/or have their understanding
expanded. According to [10] the design phase of new technologies involves performing secondary studies and/or
primary studies with the objective of obtaining an initial proposal of the new technology. Figure 1 illustrates the steps
involved in this stage, adopted in this research.

Is there a baseline
regarding the
research area?

1
Yes .
Tuning the Survey
No
How mature v v No
Informal is this area? _ . th Can the
Literature i S};{stematlc Survey wit 4 evidence be
Review eview experts organized?

Yes

Tuning the
Systematic Review

Is the evidence
obtained
robust?

Is the evidence
obtained enough?

Body of
Knowledge

Initial Proposal
of the Software
Technology

Figure 1: Research Methodology — Design Phase, adapted from [10]

2

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

So, to answer the raised questions, after initial informal literature reviews, systematic reviews were done to
identify characteristics of agility to be expected in software processes and the agile practices that could be adopted in
the process to embed the desired characteristics of agility. To increase confidence in these results, the characteristics of
agility and agile practices identified through the systematic reviews became the subject of study in a survey to assess
the pertinence and the relevance level of each characteristic and practice, in the context of the agile approaches.

This paper is structured as follows: Sections 2 and 3 present the results of systematic reviews conducted to identify
characteristics of agility and agile practices for software processes, respectively. We carried out two separate
systematic reviews as the needs for the knowledge they produce had arisen in different moments. Besides this,
considering the high efforts required by systematic reviews, an informal literature review was initially tried to identify
agile practices, whose results were not considered sufficient and did not meet the requirements to this research work.
Section 4 presents results from a primary study (survey) performed to assess the characteristics and practices identified
through secondary studies previously mentioned. In Section 5 the threats to validity of the studies are discussed.
Section 6 has the concluding remarks as well as some possibilities for future work.

2 Characteristics of Agility — A Systematic Review

Software process agility has been defined as the capability of quickly adapting to changes in the requirements and
environments involving software [11]. The agile software process perspective means not only fast application
development, but mainly the capability for quick and flexible adaptation to changes in processes, products or
environments. Lean and highly iterative development, putting strong emphasis on stakeholder involvement, have been
pointed out as key characteristics of agile methods [12].

Agile methods have proposed a way of looking at software development, focusing on interactions among people
which can collaborate to achieve high development productivity. Besides, like conventional methods, the goal of agile
methods is to build high quality software to meet the users’ needs [13]. Boechm and Turner [14], [15] suggest that agile
development methods promise customer satisfaction in higher intensity, lower defect rates, faster software development
and a solution for rapid requirements changes when compared to traditional ones. However, there is neither universal
definition nor evidenced attributes for what could characterize a method or software process as agile [16], making hard
the task of identifying agile software processes and/or decision-making when tailoring them to be agile. For the agile
software development community, agility definition has been influenced by the values expressed in the Agile
Manifesto, whereas in a business context, agility is usually defined in terms of timeliness and flexibility [17]. As
observed by [18], the concept of agility has been approached in a number of disciplines and it originated, matured and
has been applied and tested thoroughly over time in the manufacturing and management area.

The text in this Section aims at describing the results of a secondary study with the purpose of identifying a set of
characteristics which could be used to characterize software processes as agile. A characteristic of agility represents a
relevant attribute which a software process may present to make difference under the perspective of agility. Relevant
attributes in the context of agile approaches will be considered as those attributes which contribute to achieve one or
more of the values expressed in the agile manifesto [19], [20]. The basic research question is: What are the
characteristics of agility in agile software process contexts? It is not intended to investigate characteristics for a
particular agile method or software process, e.g. the six basic characteristics of ASD — Adaptive Software Development
described by [21], but to identify what the desirable characteristics to support agility in software processes are. The
objective of the study is to produce a characterization of the field and organize an evidence-based knowledge repository
that can be used to support decision-making and knowledge management regarding agility in software processes.

2.1 Planning

A summary of the protocol, specifically designed for the study, is discussed in this Section.

The objective of the study is to identify the characteristics of agility for software development methods or
processes, in a general sense, independently from a specific agile method.

The question was: What are the characteristics of agility in software development processes? The problem
considered was to find characteristics of agility for software development processes. The research issue was structured
by four elements (population, intervention, comparison, and outcome), according to [22]. The population considered
was the set of software development projects. The interventions were the agile software development methods or
processes. There was no comparison (alternative intervention). The outcome was a list of characteristics of agility

3

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

related to software development methods or processes. As there were no comparisons between intervention and
alternatives [22], and also because it was not possible to undertake meta-analysis, this secondary study, although
systematic, is considered by [23] as a quasi-systematic review. The application of the guasi-systematic review is to be
used as a research support basis encompassing efforts to insert characteristics of agility in software processes.

Some documents were manually retrieved and analyzed before the execution of the initial searches. Three of them
were chosen as controls: [24], [25], [26]. These controls were used to verify and calibrate the search string
appropriately. The selected sources were the electronic databases available in [27], including conferences, journals and
technical reports indexed by Compendex EI, IeeeXplore, Inspec, ISI Web of Science, the ACM digital library, Science
Direct, and Scopus. The language expected for written documents was English. Any type of works or articles,
mentioning and describing the meaning of characteristics of agility, on agile software processes, was considered.

The keywords selected for population were software development, project, system, application, engineering,
building, and implementation. The keywords selected for intervention were agile, method, adaptive, rapid, approach,
technique, environment, process, practice, and methodology. The keywords selected for outcome were characteristic,
attribute, property, feature, characterization, aspect, idea, factor, dimension, driver, perspective, and requirement.

As inclusion and exclusion criteria, it was defined that documents should be available on the Web; documents
should cover characteristics of agility for software development processes. The characteristics should be described or
explained in the text. To avoid bias, documents reporting characteristics of specific agile methods were excluded.

A selection process for the studies was established. A researcher applied the search strategy to identify potential
documents. Then, this researcher analysed the documents identified and applied the inclusion/exclusion criteria. The
list of excluded documents was also analyzed by the second researcher, and in case of conflict, the document was
included. The documents included were read by both researchers to extract information on the characteristics of agility.

It was also established that appraisals for the quality of the studies would not be conducted, due to their dealing
with a characterization research and several kinds of studies. Most of the papers do not bring any evaluation through
empirical studies, so extensive rigour could limit the capacity of observation necessary to identify the desired
characteristics. The sources of documents were considered to provide initial confidence, since it was assumed the
papers had been externally revised, so it could represent a ‘quality’ seal to justify their inclusion in this study.

It was established that the following data would be extracted: document title, author(s), document source, year of
publication, and characteristics of agility. The results would be tabulated and an analysis would be done to identify
commonalities as well as relevant agile software processes characteristics. The frequencies in which different authors
approached each characteristic of agility were considered in assessing their relevance and as a basis for their ranking.

The search string was adapted according to specific search engines restrictions, observing: (1) the obtained search
string should be logically equivalent to the basic search string; (2) if it was not possible to maintain exact equivalence,
the obtained search string should be broader than the basic one, to avoid losses of relevant documents. This is to avoid
changing the search string significance due to syntactical differences on the construction of its logical expressions
among search engines and to avoid turning the search string less comprehensive due to specific engine restrictions. The
basic search string adopted was:

(software development OR software engineering OR software building OR software implementation OR software
projects OR software systems OR software application OR system development OR system engineering OR system
building OR system implementation OR system project OR application development OR application engineering OR
application building OR application implementation OR application project) AND ((agile OR adaptive OR rapid) AND
(method OR process OR practice OR methodology OR approach OR technique OR environment)) AND ((agile) AND
(characteristic OR attribute OR property OR feature OR characterization OR aspect OR idea OR factor OR dimension
OR driver OR perspective OR requirement))

Some search engines offer particular operators which can be used in the construction of their specific search
strings, such as Compendex EI’s operator NEAR. Also, different search engines may adopt different syntax rules.

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

2.2 Execution

The secondary study covered 4 protocol trials until January/2010. In Nov-Dec 2006 the protocol was executed for the
first time, using the Compendex EI, IeeeXplore, Inspec, ISI Web of Science, and ACM Digital Library databases.
References to documents published from 1978 to 2006 were retrieved. The second protocol execution was carried out
in December-2007 for the same five electronic databases, but with a limited time frame (2006 and 2007). The third
protocol execution was also carried out in December-2007, for two additional electronic databases, Scopus and Science
Direct, searching for documents published and/or indexed until 2007. Some issues occurred then with the ACM Digital
Library search engine which did not allow it to process the same search string due to some restrictions imposed by its
search engine, when the searches were first carried out (2007). To avoid it become a strong threat to validity, and trying
not decrease recall, the search string was adapted to be processed by the ACM Digital Library search engine. To update
the findings, a fourth protocol trial was carried out in January-2010, with all seven search engines, searching for
documents published and/or indexed from 2008 until 2009. The protocol executions along time can be seen in Figure 2.

Scopus,

Science Direct Exec 3

Exec 4

CompendexEl,
Inspeg leeeXplore Exec 1 Exec 2
Web of Science,
ACM

1977 2006 2007 2009

¢ Year of Publication R

Figure 2: Protocol Executions along Time

To support the handling and treatment of retrieved items, the reference manager JabRef 2.5
(http://jabref.sourceforge.net/) has been used. Together, all protocol trials retrieved 6,602 papers. The second and fourth
trial extended the search space ‘chronologically’. The third trial extended the search space ‘geographically’, by using
two new search engines. Table 1 shows paper distribution among the search engines for each protocol trial.

Table 1: Quantitative Summary for all Executions

Electronic Database Execl Exec2 Exec3 Exec 4 All Executions
ACM digital library 119 89 208
Compendex EI 303 179 327 809
leeeXplore 299 124 201 624
Inspec 250 94 7 351
Science Direct 997 310 1,329
Scopus 1,864 1,339 3,203
Web of Science 45 22 33 78
TOTAL 1,016 508 2,861 2,217 6,602

2.3 Results and Discussion

In the set of retrieved references, duplicates were eliminated, the remaining papers being counted for the electronic
database with most retrieved items. All references to documents adopted as controls were retrieved. References to
documents published from 1977 to 2009 were found. Successive evaluations (title and abstract) were carried out and
references to documents clearly dealing with aspects not concerning the research study were excluded. In some cases,
also the document introduction was read in this initial evaluation. Further, in a more detailed evaluation, a set of 157
documents were selected and prioritized. These documents were thoroughly read while observing the criteria
established in the protocol described in Section 2.1. Some of them lightly mention a possible characteristic of agility,
but do not mention anything about its meaning. Fourteen documents contributed to the quasi-systematic review. This
reduction in the number of documents is associated with part of the inclusion and exclusion criteria, as previously
described in Section 2.1. Figure 3 shows the distribution of documents that contributed for the study, per year of

5

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

publication. It shows that it was not possible to find documents published in 1999, 2000, and 2007 the met the criteria
established in the protocol.

Percentages of documents per year of publication

25,0% -

20,0%

15,0% A

10,0%

5,0% A

0,0% +=

1998 2001 2002 2003 2004 2005 2006 2008 2009

Figure 3: Documents contributing for the study per year of publication

The Scopus engine retrieved 9 out of 14 documents that contributed to this study. Inspec retrieved 5 of them.
Compendex EI and IeeeXplore retrieved 4 documents each. Web of Science and Science Direct retrieved 2 documents
each. The ACM digital library did not retrieve any reference among those 14 documents.

There was a concern to avoid repeated counts for one same characteristic of agility. To prevent this, two clusters of
documents were constructed, each cluster being computed once for the incidence of the characteristics in its documents,
avoiding repeated counts. A pair of documents was included in a cluster when they were approaching the same agility
characteristic, and any author of one of them belongs to the set of authors of the other document (same characteristic,
same author). Moreover, documents approaching the same characteristics, one of them referencing the other document,
were also included into the same cluster. The clusters (with two documents each) were conceived as follows: cluster 1
[25], [28]; cluster 2 [15], [26].The characteristics of agility in the context of agile software processes were caught in 14
of the selected documents [28], [29], [30], [24] [11], [32], [33], [34], [25], [26], [15], [35], [36], [37].

Taromirad and Ramsin [38] propose 17 main features of agility recommended for an agile method. However, in
this paper, they did not describe the perspectives they considered for these features. In their other work, Taromirad and
Ramsin [35] present nine characteristics of agility that have been defined based on the Agile Manifesto, Agile
Principles, and papers presenting common agile traits. The authors stated that these characteristics can be used to
evaluate the degree of agility for any software development methodology, even non-agile ones, which are: Speed
(related to how quickly the process can produce results); Sustainability (related to monitoring and controlling the
maintenance of speed and quality until the end of the development process); Flexibility (related to the capability of
capturing and handling in the project, expected or unexpected changes); Learning (related to the process ability to
‘learn’ from past projects and previous iterations); Responsiveness (related to the capability of the process to provide
feedback); Leanness (related to how the process values shorter time spans, using economical and simple quality-
assured means for production); Lightness and simplicity (related to how light and simple the development process is);
Technical quality (related to how the technical quality is monitored and controlled during the development process)
Active user collaboration (related to the degree of customers’ involvement in the development process).

Rico [36] in his study about relationships between the use of agile methods to develop Internet websites and their
quality pointed out four factors to characterize agile methods: iterative development, customer feedback, well-
structured teams, and flexibility. Iterative development was defined by [39] as ‘an approach to building software (or
anything) in which the overall lifecycle is composed of several iterations in sequence’. Customer feedback according to
[40], is ‘a general term describing direct contact with users and covering many approaches’ and it lies on the
‘continuum from informative, through consultative to participative’. Well-structured teams are defined by [41] as “‘work

6

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

groups made up by individuals who see themselves as a social entity, who are interdependent because of the tasks they
perform, who are embedded in one or more larger social systems, and who perform tasks that affect others’. Flexibility
is defined by [42] as ‘the ease with which a system or component can be modified for use in applications or
environments other than those for which it was specifically designed’. Rico [36] also presents, for each identified
agility characteristic or factor, sub-factors selected from the technical literature concerned with agile methods.

Qumer and Henderson-Sellers [37] describe five key attributes of agility: flexibility, speed, leanness, learning, and
responsiveness. They call these attributes of agility, as features, and describe them as follows. Flexibility - related to the
capability of the process to accommodate expected or unexpected changes. It encourages the acceptance and
accommodation of changes (generated from an internal environment or by a customer) in a software product, process,
plan, development team(s) and development environment. Speed - related to the capability of the process to produce
results quickly. Leanness - related to the capability of the process to follow the shortest time span, use economical,
simple and quality instruments for production. Learning - related to the capability of the capability of the process to
apply updated prior knowledge and experience to create a learning environment. Responsiveness - related to the
capability of the process to exhibit sensitiveness. It refers to the fact that not only does it make it easy to accept the
changes but the changes must be reflected and visible.

Analyzing the meaning of the characteristics described by the above authors of all 14 papers [28], [29], [30], [24],
[11], [321, [33], [34], [25], [26], [15], [35], [36], [37], the domain values and the results of applying them to evaluate
XP [24], as well as the sub-factors selected from the literature on agile methods pointed out by Rico [36], some
matching can be detected among them. This leads to a consolidation of the meanings of all instances of the agility
characteristics approached by the authors of all 14 papers.

According to [43], there are three context levels in which agility can be useful in a company: on the level of
software development projects; in the portfolio of the level of software projects; and on the entire enterprise level
where the company is challenged by its competitors. Simply using an agile approach on one level without considering
the next higher one will not lead to the optimum return. This can be interpreted as how an agile approach should be
aligned in these three context levels in order to achieve the best results for a software development organization.

Code reviews, mentioned by [32] as an agility characteristic, were analyzed and more appropriately considered as
a practice, not a characteristic of agility, and for this reason, it was not included in the results of this study.

The being collaborative and being cooperative characteristics are sometimes confused in the technical literature,
depending on their interpretation perspectives. However, in this quasi-systematic review, these two characteristics were
not mixed, trying to preserve the original authors’ ideas, besides the fact that strong and reliable foundations to mix
them in a secure way were not caught. The difference between these two agility characteristics is neither easily
noticeable nor highlighted in the retrieved and selected papers. The cooperation idea seems to be more directly
connected to the relationship among customers and development teams; it is associated with the role of constant
feedback [28], [29], [33]. On the other hand, the idea of collaboration seems to be associated with the relationship
among the development team members and relates to the continuous integration of new software increments with
modified or new functionalities [24], [30], [32].

When considering characteristics of agility, it is interesting to observe that deliverables should be quickly
produced. However, they should aggregate value, by providing pragmatic and effective results, according to customer
perception.

Thus, eighteen characteristics were identified and described in Table 2, as below. The sources for the descriptions
for each characteristic are indicated in the left column, below each characteristic name.

Table 2: Identified Characteristics of Agility

Characteristic Description

Being Incremental Do not try to construct the system at once; the system will be partitioned in increments (small releases with new

[11][15][24][28][34] functionalities) developed in parallel and quick cycles; when the increment is completed and tested, it can be
integrated into the system.

Being Cooperative Allow open iteration and proximity between all stakeholders (especially between customers and developers);

[28][29][33][35] the customer should be an active element in the development process and should provide feedback in a regular
and frequent fashion.

Adaptability Ability and capability to quickly adapt the process to attain and react to last-minute requirements and/or

[11][24][28][30][33]1[35][361[37] environment changes as well as to attain and react to previously unforeseen risks or situations.

Being Iterative Using several short cycles guided by the product features, in which a given set of activities is completed in a

[15][30][241[321[351[36][37] few weeks; these cycles are repeated many times to refine the deliveries.

7

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

Characteristic Description
Time-Boxing It is the establishment of a time frame for each of the programmed iterations. Big development efforts are
[11][24][32] divided in a predicted manner in multiple deliveries developed in incremental and concurrent ways,
Leanness (Also referenced as It is the elimination of losses and the ability to do more work with less effort; it represents an agile process
Parsimony) characteristic that requires the minimal necessary activities to mitigate risks and achieve goals; all activities that
[11][24][33][35][37] are not necessary should be removed from the development process.
People-Orientation Privilege people over processes and technologies; developers that are empowered raise their productivity,
[24][33][34] quality, and performance; communication and cooperation are fundamental and necessary; stand up meetings

and reflection workshops provide people with a chance to expose their concerns.

Being Collaborative

It is the attitude by the development team members, among whom the communication is encouraged in order to

[24][30][32] disseminate information and support quick increments integration.

Transparency The working practice is easy to learn and to modify, and it is documented accordingly.

[24, 35]

Self-organization The teams decide the better ways to work; they are autonomous and can organize themselves in order to

[15] complete the work items.

Emergence The processes, principles, and work structures are recognized during project execution, and are not defined in

[15]

advance; technologies and requirements are allowed to emerge during the product’s lifecycle.

Reflection and Introspection
[34][30]

There are meetings at the end of each subproject or iteration, in which team members can discuss what they are
doing well and what needs to be changed.

Feedback Incorporation
[29][30][35][37]

Teams should be able to receive and look for continuous feedback, in more frequent and quick ways.

Modularity
[11][24]

This characteristic allows a process to be partitioned in components called activities, making it possible to add
or remove these activities from a process when needed.

Convergence
[24]

Proactively attacking risks moves the system closer to the reality sought with each of the iterations. As this
action goes on, the system is delivered in increments. Everything within one’s power is done to ensure success
in the quickest way.

Small Teams
[32][36]

A small number of people per project is needed to promote a collaborative environment and requires less
planning to coordinate the activities of team members.

Constant Testing
[32][35]

To prevent quality decay due to short release schedules, a high degree of emphasis is placed on testing the
product throughout its lifecycle; integration testing must be automated with daily builds and regression tests to
ensure that all the functionalities are properly working.

Local Teams
[34]

For some methodologies this means the teams are located in the same or adjacent rooms; this works for teams
from 8 to 14 people. All methodologies are sensitive to team location and are strongly grounded on rich and
quick communication channels, supporting the reduction of documentation to be constructed and maintained.

Table 3 presents the final quantitative of papers in which the characteristics of agility were caught, according to the
criteria established in the planned protocol for the quasi-systematic review.

Table 3: Incidence of Agility Characteristics on Papers

Ord Characteristics le,‘:;’ :ll,'s()f Percentage
1 Adaptability 8 66.7%
2 Being Iterative 7 58.3%
3 Being Incremental 5 41.7%
4 Feedback Incorporation 5 41.7%
5 Leanness 5 41.7%
6 Being Cooperative 4 33.3%
7 Reflection and Introspection 4 33.3%
8 Being Collaborative 3 25.0%
9 People-Orientation 3 25.0%
10 Time-Boxing 3 25.0%
11 Constant Testing 2 16.7%
12 Modularity 2 16.7%
13 Small Teams 2 16.7%
14 Transparency 2 16.7%
15 Self-organization 1 8.3%
16 Convergence 1 8.3%

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

Number of

Ord Characteristics Papers Percentage
17 Emergence 8.3%
18 Local Teams 8.3%

Figure 4 below shows a graphical view of the information inserted in Table 3.

Incidence of Characteristics on the Papers

Percentages of Incidence

Characteristics

Figure 4: Incidence of Characteristics on the Papers

Observing the distribution of the eighteen characteristics found, it can be seen that the most frequent characteristics
of agility treated in the papers were adaptability (66.7%) and being iterative (58.3%) followed by being incremental,
feedback incorporation, and leanness with 41.7% of incidence each. The characteristics of agility with medium
frequency were being cooperative, reflection and introspection, being collaborative, people-orientation, and time-
boxing. The less frequent characteristics of agility treated in the papers were constant testing, modularity, small teams,

transparency, self-organization, convergence, emergence, and local teams.

Table 4 shows quantitative paper distribution approaching characteristics of agility, according to the criteria
adopted in the protocol, per year of publication range. While Table 3 shows the number of articles in which the
characteristics of agility were addressed, in Table 4 the focus is to highlight the time range in which the characteristics
of agility were the object of interest of authors, separating those which have been addressed only occasionally, from

those which were in evidence in a broader range of time.

Table 4: Distribution of Characteristics per Publication Time Range

Range No. Papers

of Per

Characteristic From To Range Papers Year
Adaptability 1998 2009 12 8 0.67
Leanness 1998 2009 12 5 0.42
Being Iterative 2001 2009 9 7 0.78
Reflection and Introspection 2002 2009 8 4 0.50
Time-Boxing 1998 2005 8 3 0.38
Being Incremental 1998 2004 7 5 0.71
Being Cooperative 2003 2009 7 4 0.57
Transparency 2003 2009 7 2 0.29
People-Orientation 2001 2006 6 3 0.50
Being Collaborative 2001 2006 6 3 0.50

9

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

Range No. Papers
- of Per

Characteristic From To Range Papers Year
Constant Testing 2005 2009 5 2 0.40
Feedback Incorporation 2006 2009 4 5 1.25
Modularity 1998 2001 4 2 0.50
Small Teams 2005 2008 4 2 0.50
Emergence 2004 2004 1 1 1.00
Self-organization 2004 2004 1 1 1.00
Local Teams 2002 2002 1 1 1.00
Convergence 2001 2001 1 1 1.00

This data distribution can be seen below in

Figure 5. It shows characteristics of agility which have been under the focus of the authors only sporadically and
which were addressed in a broader range of time.

Characteristics Distribution per Publication Time Range

Time Slice in Years

Characteristics

Figure S: Distribution of Characteristics per Publication Time Range

When looking at Table 4, the characteristics of agility with the highest time range and highest density of
publication in the period of time are: adaptability, being iterative, reflection and introspection, being incremental, being
cooperative, people orientation, and being collaborative (all of these with half or more the time range and papers per
year). Some characteristics of agility have a publication density at least 0.5 papers published per year: adaptability,
being iterative, reflection and introspection, being incremental, being cooperative, people-orientation, being
collaborative, feedback incorporation, modularity, and small teams. Emergence, self-organization, local teams and
convergence were approached in only one paper each.

The goal of the study was not to map the characteristics of agility found for the values or principles of the agile
manifesto [19], but rather, to identify which are the desirable characteristics to support agility in software processes.

Based on findings described in previous Sections, we can qualify some characteristics as core ones, to achieve
agility in software processes. According to the context presented, and considering the consolidated descriptions for
each characteristic of agility in Table 2, the characteristic that follows the Agile Manifesto most closely seems to be
adaptability. After that, and considering more pragmatic aspects in software processes, the characteristics of being
incremental and being iterative should be considered together. To these three characteristics, three others should be
added, which are directly associated with the agile methods’ core idea of focusing on people who conduct the activities
in the processes. These three other characteristics are: being collaborative, being cooperative, and people-orientation.

10

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

Feedback incorporation and reflection and introspection, according to their descriptions in Table 2, are important
characteristics as they can support lessons learned by teams and continuous improvement of the software development
process. Both have more than 33% of incidence in the papers included in the study. Besides these, two necessary
characteristics for the success of agility in software processes and essential to any process should be considered:
leanness and time-boxing.

Other agility characteristics mentioned in this quasi-systematic review are also important for the success of agile
software processes. However, they can be considered as subsidiary or derived from those previously referred as core
ones.

3 Agile Practices — A Systematic Review

It has been demonstrated that values, principles and agile practices bring benefits to many organizations [44]. Values
bring purpose to practices. Practices are evidence of values, which are universal and expressed on a higher level.
Practices are clearer and more specific. Bridging the gap between values and practices are principles, which are
domain-specific guidelines. Just as values bring purpose to practices, practices bring accountability to values [45].
Practices are activities that implement the principles governing the processes or methods. These in turn are ideas,
understandings or goals that are behind the practices [46].

In the last 16 years, an interesting changing in the software development processes was the introduction of the
‘agile’ perspective. However, software development teams need support the choice of the right combination of agile
practices based on their needs [47]. The aim of this study is to investigate software practices recommended in the
context of agile approaches for software development. A research protocol has been formalized to conduct a systematic
literature review. The searches were conducted in February 2010. The data was analyzed and the initial results
summarized.

3.1 Planning

The objective of this secondary study is to identify the software practices usually used in the context of agile
approaches for software development. The question made was: what are the software practices that can be considered
agile in the context of software development approaches? The problem was finding and identifying agile practices for
software development. The intended application of the results was to serve as a basis to support research involving
software practices that can be used as alternatives to embed agility into software processes. The research issue, also in
this review, was structured by four elements (population, intervention, comparison, and outcome), according to [22].
The population was the set of software development projects. The intervention was the agile software development
processes. There was no comparison. The outcome was a set of agile practices. Three papers were used as controls:
[25], [48], [29]. The sources were collected from the following digital databases, including conferences, journals, and
technical reports indexed by Compendex EI, IeeeXplore, Inspec, Web of Science, Scopus, Science Direct, and the
ACM digital library.

The keywords for population were "software projects”, "software systems", "software development", "software
engineering". The keywords for intervention were "agile approaches", "agile processes", "agile methods", "agile

nn

methodologies", "agile development", "agile software development", "agile projects". The keywords for outcome were
"practices", "software practices", "agile practices", "sub practices", "agile techniques", "techniques".

The inclusion and exclusion criteria were: documents should be available on the Web; documents should include
agile software practices in the context of agile approaches for software development; documents should provide a
description of the agile practices they see. In order to select studies, a researcher applied the search strategy to identify
potential documents. Documents identified by this researcher were analysed through the inclusion and exclusion
criteria. Subsequently, each document excluded was analysed by a second researcher. In case of conflict, the document
was included. Finally, documents were read by researchers to extract information about software practices in the
context of agile software development approaches. The sources of the documents were assumed to be reliable, as their
texts have undergone external reviews which serve as a filter so they present enough quality to contribute to this
secondary study.

The following information was extracted from each paper, after running the selection process: document title,
author(s), source, year of publication, and name and description of the agile software practices. The results were
tabulated. An analysis was done to identify similarities among significant practices for software processes in the

11

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

context of agile software development. The frequency with which each practice has been reported by different authors
was considered. If authors had more than one paper, repeated counts were avoided. The search string taken as the basis
for all search engines, structured according to Pai et al. [22] was:

("software projects" or "software systems" or "software development" or "software engineering") AND ("agile
approaches" or "agile processes" or "agile methods" or "agile methodologies" or "agile development" or "agile software
development" or "agile projects") AND ("practices" or "software practices" or "agile practices" or "subpractices" or
"agile techniques" or "techniques").

3.2 Execution

Search execution with the engines above returned 6,696 references, published between 1998 and 2010. Repetitions
were eliminated, keeping the remaining paper counted for the digital library with the largest number of items
recovered. All the controls were retrieved. From 5,093 references without repetitions, titles and summaries were
assessed for each retrieved reference, and references that clearly did not address issues concerned with the research
were excluded. After the removal of such items, 441 references were selected for the study.

3.3 Results and Discussion

Following the criteria established in the research protocol, 236 occurrences of practices were extracted from 24 papers
published between 2001 and 2009 [25],[48], [49], [50], [51], [52], [53], [54], [55], [56], [571, [58], [59], [60], [61],
[62], [63], [64], [65], [66], [67], [68], [69], [70] which were tabulated accordingly. In order to avoid bias, technical
papers concerned with performance studies or specific issues of a particular practice were not considered. Some
practices identified are associated to one or more commercial agile methods while others are not associated with any
method. Some papers approached agile practices, but did not present an adequate description of its meaning. In order to
identify repetitions, names and descriptions of the 236 occurrences of agile practices collected were analyzed and
grouped, leading to 51 different agile practices. Figure 6 shows the distribution of the 24 documents, per year of
publication.

Percentage of Documents per Year of Publication (agile practices)

25,0%

20,0%

15,0%

10,0% 1

50% A

0,0% _L—c . _—
2001 2002 2003 2004 2005 2006 2007 2008 2009

Figure 6: Documents Describing Agile Practices per Year of Publication

It is possible to see a significant increase of technical papers published in 2009 that meet the research protocol
criteria, as well as the growing interest by the scientific community on agile approaches, considering the results of
another secondary study on the characteristics of agility, previously made by the authors of this study, as described in
Section 2.

From 51 different agile practices identified, 17 were approached in the technical papers more than once and they
were selected to be further analyzed. Figure 7 shows the incidence of the agile practices in the papers.

12

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

Practices - Incidence on Papers
100,0%
80,0%
3
> 60,0%
g 40,0%
& 20,0%
0,0%
X . .
&\@o Q;\\oo @QQ@‘\@ o@z ooe,e: & S @"\‘(\ Q@@ a\@é & @9&\6@ .\\(\g‘) QQ’(‘Q c‘#\&
N O @7 o7 S F R O oV & RN &
F RO F P CE e P S
&Q.(\QQ\-QQ(\. @_‘DQ\Q‘(‘AO $°(}
& Lo &% ¢ ° N & & N KR s P
&\(\\)oq,b\« < o O R s Q & S
00(\ Practices

Figure 7: Incidence of Agile Practices on Papers
The descriptions for each practice from different papers were consolidated as follows:

Test driven development- Every programmer writes test cases before they write their production code. Developers
write unit tests before coding and encourage customers to write acceptance test cases. Upon the initial execution of
such a test case, it will fail as there is no corresponding code that implements the particular feature or condition being
tested. Then the developer builds just enough code for the test to pass or to satisfy the current goal, followed by
refactoring, to improve readability and remove duplications.

Continuous integration- The members of a team should frequently integrate their work, every time new changes or a
task is completed, to reveal integration problems and to detect system failures as soon as possible. Usually each person
integrates at least daily. All tests must still pass after integration or the new code should be discarded.

Whole team- Refers to the practice of including all necessary skills and perspectives in the team for it to succeed,
emphasizing teamwork and that all team members share a purpose and support each other. Customers, end-users and
other business stakeholders should have direct involvement in the project, to understand system behaviour early in the
lifecycle.

Pair programming- All the source code produced should be written by two people working at the same time on the
same machine. The programmers alternate the roles of driver and navigator throughout the day. The driver has the
control of the keyboard and mouse; s/he implements the code, explaining it to the navigator. The driver’s major
responsibilities are development tests and algorithm construction, whereas the obligations of the navigator are to watch
for both syntax and semantic defects, deciding if this is the best way to implement the functionality.

Planning game- Together, developers and customers play the ‘Planning Game’ where the customer chooses those User
Stories that comprise the most important content for a short, incremental deliverable. Each short implementation
increment is accepted and tried by the customer. Then, the remaining User Stories are re-examined for possible
requirement and/or priority changes and the Planning Game is re-played for the next implementation increment.
Planning is continuous and progressive.

On site customer- This practice indicates that the customer should be a member of the development team. To clarify
and validate the requirements and set priorities, an on-site customer representative works with the team. Thus a
customer works close together with the developers all the time, to answer the questions, resolve disputes, set small
scale priorities, perform acceptance tests, and ensure that the development is progressing as expected.

13

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

Collective code ownership- The code repository should be freely accessible to all programmers, who are encouraged to
make changes in all the code, anywhere and whenever they feel necessary, without asking ‘permission’ from anyone.
Any programmers’ pair who sees an opportunity to add value to any portion of the code can do so at any time. As the
code is accessible to more minds, programmers should examine code that is written by others.

Short releases- Release working software frequently. This practice shortens the release cycle to speed the feedback
from the customer. Given that requirements often change, one keeps release cycles short and ensures that each release
produces an useful software system that generates business value for the customer. An initial version of the system is
put into production quickly, after little iteration. At the end of each release, the customer reviews the interim product;
identifying defects and adjusting future requirements.

Metaphor- This practice presents a simple shared story which explains the essence of how the system works to give
both developers and customers a common understanding of the project. In a sense, the metaphor serves as the high-
level software architecture. While thinking about an appropriate metaphor, developers must expand their perspective
and analysis of the developed application.

Refactoring- This is a practice for restructuring an existing body of code, or constantly improving its understandability
and maintainability, as well as its design, altering its internal structure without changing its external behaviour or
system functionality. The different forms of refactoring involve simplifying complex statements, abstracting common
solutions into reusable code, and removing duplicate code. When code is re-factored, it should still pass all the unit test
cases in the code base.

Sustainable pace- This practice emphasizes working ‘only as many hours as you can to be productive and only as many
as you can sustain’. Work no more than 40 hours a week as a rule, no more than eight hours every day, without
working overtime a second week in a row. During crunch periods when overtime is worked, the artefacts produced are
of poor quality. Requirements should be selected for each iteration, such that developers do not need to put in overtime.

Simple design- The emphasis of this practice is on designing the simplest possible solution that is implementable at that
moment. Unnecessary complexity and extra code will be immediately removed. One should not add additional features
to one’s artefacts unless they are justifiable. Programmers should not try to predict future needs. The most cost-
effective development approach should focus on solving today’s problems rather than designing for future changes.

Coding standards- As developers code different system parts with various team members, coding standards are a must.
A coding standard makes the code easier to understand, increases readability and improves consistency among team
members. The standard should be easy to follow and to be voluntarily adopted. It is agreed upon by the team to ensure
that communication is made through code and lets developers easily understand each other’s code.

Whole team- Refers to the practice of including all the necessary skills and perspectives in the team for it to succeed,
emphasizing teamwork and the sense of all team members sharing the purpose and supporting each other. Customers,
end-users and other business stakeholders should have a direct involvement in the project, to understand system
behaviour early in its lifecycle.

Project visibility- Agile projects strive to provide immediate status and feedback to the teams. One can create project
dashboards on the Web that host, at any point in time, all status and measurements regarding the progress of the
project. A preview of the project in relation to the user stories that the teams have committed to deliver at the end of the
iterations should be included. Models should be made accessible for the entire teams.

Stand-up meetings- Quick meetings (approximately 15 minutes) set to keep track of project progress, highlight issues
and organize the daily activities. Each team member briefly states what he or she has been working on and what
progress has been made. The standing component of the meeting tended to ensure that everyone be alert and attentive,
besides intending not to go beyond the 15 minutes, and encouraging participants to conclude it quickly.

14

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

Open workspace- Developers work in a common workspace; a large room with small cubicles is preferred. Pair
programmers should be placed in the centre of the space. Workplace layouts should have common areas that facilitate
open communication. An alternative set with individual workstations at the fringe and common development machines
in the centre could be appropriate.

Product backlog- This practice includes the tasks for creating the Product Backlog list, and controlling it consistently
during the process by adding, removing, specifying, updating, and prioritizing items. Product Backlog defines
everything that is needed in the final product based on current knowledge. It comprises a prioritized and constantly
updated list of business and technical requirements for the system being built or enhanced.

From these, 12 practices have been addressed by technical papers published in at least 6 different years in the time
interval of the selected publications: test driven development, continuous integration, pair programming, planning
game, on-site customer, collective code ownership, small releases, metaphor, refactoring, sustainable pace, simple
design, and coding standards. Five other practices, making 17 that were approached in the papers more than once were:
whole team, project visibility, stand-up meetings, open workspace, and product backlog.

Among the 51 distinct practices identified in this secondary study, several of them were targets of interest to
researchers only occasionally, the vast majority before 2004. The proposal now is to continue this research work,
considering the aforementioned 17 agile practices. These results were already published in 2011 [71]. It is interesting to
keep in mind that the performance of all practices, in terms of agility, depends on the environment in which they are
applied, the project context, the way chosen to implement them in the process and the intensity with which they are
applied and upheld by the team.

4 Surveying Characteristics of Agility and Agile Practices

This Section presents the results of a primary study aimed at evaluating the characteristics of agility and agile practices
identified through the systematic reviews presented in Sections 2 and 3. First, the study planning is described. Then,
details about its execution are presented, followed by a discussion of the results of the study.

4.1 Survey Planning

The object of study includes two initial sets: the first one includes characteristics of agility identified through
systematic literature review, to support the insertion of agility into software processes; the second one includes agile
practices, also identified through systematic literature review. Both systematic reviews were held in 2010.

Using the GQM approach [72], the aim of this study was to analyze the characteristics of the agility set, with the
purpose of characterizing them as regards their pertinence and relevance to characterize a software process as agile, as
well as their corresponding relevance level as related to that characterization, from the point of view of researchers in
agile software processes, in the context of software projects which adopt agile development approaches. And also to
analyse the set of agile practices with the purpose of characterizing, as regards their pertinence and relevance in
achieving agility in software processes, from the point of view of researchers in agile software processes, in the context
of software projects which adopt agile development approaches.

The research questions and related metrics considered were:

e QIl: Are the characteristics of agility extracted from technical literature pertinent to characterize a
software process as agile?

e MI: number of characteristics of agility classified as pertinent to characterize an agile software process,
according to the opinion of the study participants.

e Q2: Are there any additional characteristics of agility which are pertinent to characterize an agile software
process which are not present in the original set?

e M2: the number of additional characteristics of agility to be included in the initial set, according to the
opinion of the study participants.

15

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

Q3: Is there any characteristic of agility in this initial set that is not pertinent to characterize an agile
software process?
M3: number of characteristics of agility to be removed from the initial set, according to the opinion of the
study participants.

Q4: What is the order of relevance of the characteristics of agility in the final set when considering an
agile approach for a software process to be applied in software projects?
Ma4: the order in a set of characteristics of agility sorted by relevance level.

Q5: Are the agile software practices, as extracted from technical literature, pertinent for agile approaches
to software processes?

MS5: number of agile practices classified as pertinent as regards agile approaches for software processes,
according to the opinion of the study participants.

Q6: Are there any additional agile practices which are pertinent to be adopted by an agile software
process which are not present in the original set?

M6: number of additional agile practices to be included in the initial set, according to the opinion of the
study participants.

Q7: Are there any agile practices in this initial set which are not pertinent in the context of agile
approaches for software process?

MT7: number of agile practices to be removed from the initial set, according to the opinion of the study
participants.

Q8: What is the order of relevance of the agile practices in the final set when considering their adoption in
agile software processes?
MS: order of each practice in a set of agile practices sorted by relevance level.

The following hypotheses were considered in this study:

Null Hypothesis 1 (HO 1):

The initial set of characteristics of agility is complete, all the characteristics of agility present in the initial
set are pertinent to the characterization of agile software processes, and there are no characteristics to be
included or removed.

Cr — characteristics classified as not pertinent and need to be removed from the initial set;

Ci — characteristics not present in the original set and classified as pertinent, which must be included in
the initial set of characteristics of agility;

(HO 1: |Cr| = [Ci| = 0).

Alternative Hypothesis (H1):

There are characteristics in the initial set of characteristics of agility which were classified as not
pertinent to the characterization of agile software processes. So, they should be removed from the initial
set of characteristics of agility.

(H1: |Ct| # 0).

Alternative Hypothesis (H2):

16

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

e There are characteristics that are not present in the initial set of characteristics of agility that were
classified as pertinent for the characterization of agile software processes. So, they should be included in
the initial set of characteristics of agility

(H2: |Ci| # 0).
Null Hypothesis 2 (HO 2):
e All the characteristics of agility have the same relevance level to support agility insertion in software
processes.
e CRLi — relevance level related to the agility characterization in software processes, for the characteristic
“i”, where i is a number between 1 and 7, and # is the total number of characteristics of agility considered
pertinent.

(HO 2: CRL1 = CRL2 = ... = CRLn).

Alternative Hypothesis (H3):
e There is at least one characteristic of agility with a relevance level different from the other characteristics
of agility related to the characterization of agile software processes.

(H3: 3 i,j | CRLi # CRLj, where “i” and “j” numbers between 1 and n, “i #j”).

Null Hypothesis 3 (HO 3):
e The initial set of agile practices is complete, all practices present in the original set are pertinent, as
regards agile approaches to software processes and there are no practices to be included or excluded.
e Pc—initial set of agile practices;
e Pr— practices classified as not pertinent which need to be removed from the initial set;
e Pi — practices not present in the original set, classified as pertinent and that need to be included in the
initial set of agile practices.

(HO 3: |Pr| = |Pi| = 0).
Alternative Hypothesis (H4):
e There are practices in the initial set of agile practices which were classified as not pertinent as regards
agile approaches for software processes. So, they should be removed from the initial set of agile practices.

(H4: |Pr| #0).
Alternative Hypothesis (H5):
e There are practices in the initial set of agile practices which were classified as pertinent as regards agile
approaches for software processes. So, they should be included in the initial set of agile practices.

(H5: [Pi| # 0).
Null Hypothesis 4 (HO 4):
e All the agile practices have the same relevance level in the context of agile approaches for software
processes.
e PRLi — The relevance level related to agile approaches for software processes, for practice “i”, where i is
a number between 1 and m, m is the total number of agile practices considered pertinent.

(HO 4: PRL1 =PRL2 =... =PRLm).
Alternative Hypothesis (H6):

e There is at least one practice with a relevance level different from the other agile practices related to agile
approaches context for software processes.

17

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

(H6: 3 i,j | PRLi # PRLj, where “i” and “}” are numbers between 1 and m, “i #j”).

The questions answered by the survey participants included:

Step 1: Are the characteristics presented pertinent or not pertinent to characterize a software process as being
agile? Are there new characteristics of agility to be included (with its meaning)?

Step 2:

After the definition of the final set of pertinent characteristics of agility, the goal is to set the level of relevance for
each characteristic, in the context of agile software processes, according to the perceptions of the participants. Four
relevance levels were established:

(0)

(M

2

3)

Not relevant (no relevance) Lowest level of relevance and it means the characteristic would not have any
influence on the characterization of a software process as being agile. The agility of a software process would
not be affected if this characteristic were absent in the software process, independently of particular scenarios
or development environments.

Little relevant (insignificant) Indicates that the characteristic would not affect significantly or that it has a
small influence on the characterization of a software process as being agile. The absence of the characteristic
would not seriously compromise the agility of a software process in all or in most of the scenarios or
development environments.

Highly relevant (high relevance) Indicates that the characteristic has strong influence on the characterization
of a software process as being agile. The absence of the characteristic would compromise the agility of a
software process in all or in most scenarios or development environments.

Absolutely relevant indicates that the characteristic is vital or imperative to characterize a software process as
being agile. The absence of the characteristic would prevent the characterization of a software process as an
agile one.

Step 3: Are the agile practices presented pertinent or not pertinent in the context of agile approaches for software
processes? Are there new agile practices to be included (with its meaning)?

Step 4:

After the definition of the final set of pertinent agile practices, the goal is to set the level of relevance for each
practice, in the context of agile software processes, according to the perceptions of the participants. Four relevance
levels were established:

(©)

(M

@

Not relevant (without relevance) Lowest level of relevance, it means the practice would not have any
influence on the adoption of an agile approach. The agile approach of a software process would not be
affected if the referenced practice is absent in the software process, independently from particular
scenarios or development environments.

Little relevant (insignificant) Indicates that the practice would not significantly affect it, or that it has little
influence on the adoption of an agile approach for a software process. The absence of the practice would
not seriously compromise the agile approach for the software process in all or in most of the scenarios or
development environments.

Highly relevant (very relevant) Indicates the practice has strong or considerable influence on the adoption
of an agile approach. The absence of the practice would compromise the agile approach for a software

process in all or in most of the scenarios or development environments.

18

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

3) Absolutely relevant: Indicates the practice is vital or imperative for the adoption of an agile approach. The
absence of the practice would prevent the agile approach for a software process.

The questionnaire was available in the Internet, divided into five parts: subject characterization, identification of
the pertinence for characteristics of agility, definition of the relevance level for characteristics of agility, identification
of the pertinence for agile practices, and definition of the relevance level for agile practices.

To make different considerations on the answers from subjects, a weight will be attributed for each subject
according to four perspectives: academic background of the subject, number of papers on agile processes published by
the subject, experience level in the use of agile approaches in software projects, and total number of software projects
using agile processes one has participated in. The formula used to define subject weight has been adapted from [73].

)
S@) = £+ pli) +e) +——

S(i) is the weight attributed to subject i;
f(i) is the academic background. The options for this field are:
0, if the subject holds an Undergraduate degree;
1, if the subject holds a Specialization degree;
2, if the subject holds a Master degree;
3, if the subject holds a PhD or DSc degree;
p(i) is the indicator for the number of papers on Agile Processes or Agile Methods published by the subject.
The options for this field are:
0, if the number of papers is between 1 or 2 papers;
1, if the number of papers is between 3 or 4 papers;
2, if the number of papers is between 5 or 6 papers;
3, if the number of papers is greater than 6 papers;
e(i) is the subject’s experience level in the use of Agile Approaches in software projects. The options for this
field are:
0, if the experience level is low;
1, if the experience level is medium,;
2, if the experience level is high;
3, if the experience level is very high;
t(i) is the estimated number of software projects using Agile Approaches one has participated in.
MedianTP is the median for the total number of software projects using Agile Approaches, considering the
answers of all subjects.

The values for indicator p(i) were defined after analyzing a sample of authors extracted from the papers that
contributed with at least one characteristic of agility in the first execution of the protocol of the systematic review
conducted by [74]. We considered a population of papers registered in the reference manager JabRef
(http://jabref.sourceforge.net/), totalling 897 references (ACM Digital Library references not included). From these, we
retrieved all the references on agile approaches published by each one in the sample of authors considered. This data
led to following measurements: median = 2; mean = 2.18; mode = 1; standard deviation = 1.62; maximum value = 7.

Once the set of subjects that assess the characteristics of agility and agile practices is the same, the calculations to
define what the characteristics of agility/agile practices are, and that are pertinent, are also the same, depending upon
the different participant responses to the sets of characteristics and practices.

To determine which characteristics of agility/agile practices are pertinent in the context of agile software
approaches, it is necessary to compute the responses of each participant and consider their respective weight for both
characteristics and practices. The answers, with their respective weights were computed using the formulas given
below, adapted from [73]:

Pertinence(j) = ZZI (Answer(i, j)* S(i))

19

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

Pertinence(j) is the total value of the answers from all subjects (multiplied by their weights) on the pertinence
of the characteristic/practice j in the agile software process context.

Answer(i,j) is the indicator of pertinence (1) or no pertinence (0) defined by subject i for the
characteristic/practice j

S(i) is the weight attributed to subject i;

m is the total of subjects who participated in the survey

The definition of whether a characteristic of agility/agile practice is pertinent or not pertinent to characterize an
agile software process should be based on a cut-off point, that is, a threshold indicating whether the
characteristic/practice is included in the final set (value greater than, or equal to, the threshold). The threshold adopted
is 50% of the maximum value that could be obtained for a characteristic/practice j in the variable Pertinence(j) if all
subjects answer “YES” regarding its pertinence in the agile software process context.

Threshold = 0,5* " S(i)

S(i) is the weight attributed to subject i;
m is the total number of subjects who participated of the survey

Thus, the criteria are:
if Pertinence(j) < Treshold, characteristic/practice j is classified as “not pertinent” and should be
removed from the set.
if Pertinence(j) > Treshold, characteristic/practice j is classified as “pertinent” and should be kept in
the set.

In the set obtained from the initial set of characteristics/practices, according to the threshold established, the
characteristics/practices indicated by the subjects to complete the initial set (characteristics/practices included by the
subjects will be considered as pertinent) should be added.

To define the relevance level of a characteristic of agility/agile practice previously classified as “pertinent”, it is
necessary to first sum the answer from each subject (multiplied by its respective weight).

RLevel(j) =" (Scale(i, j)* S(i))

RLevel(j) is the total value of the answers from all subjects (multiplied by their weights) for the
Characteristic/Practice j

m is the total number of subjects who participated in the survey

Scale(i,j) is the scale of relevance level (0-3) as defined by subject i for Characteristic/Practice j

S(i) is the weight attributed to subject i;

After this step, the characteristics/practices will be ordered by their RLevel(j). The most relevant
characteristics/practices will be those with the higher value for RLevel(j).

Each subject should fill the information regarding his/her characterization; after that, he/she should indicate the
pertinence of a set of characteristics of agility (presented in alphabetical order) to characterize a software process as an
agile one; in the sequence, he/she should define the relevance level of these characteristics; then he/she should indicate
the pertinence of a set of software practices (presented in alphabetical order) regarding the adoption of an agile
approach for software processes; and finally, he/she should define the relevance level of these practices.

The population of this survey is comprised by selected authors of scientific papers published in three years (2008-
2010) regarding agile approaches identified by, and referenced in, systematic reviews on characteristics of agility and
agile practices in software processes published by [71]. To avoid bias, authors of papers describing characteristics of
agility and/or agile software practices identified and considered in the systematic reviews were not invited to
participate. The subjects were contacted by email and could access a website with the questionnaire using a login and
password sent in the body of the contact email.

20

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

The independent variables in the study are the initial set of characteristics of agility and the initial set of agile
practices. Dependent variables are the final set of characteristics of agility, the relevance level for each characteristic of
agility included in the final set concerned to their relevance to characterize a software process as an agile one, the final
set of agile practices, and the relevance level for each agile practice included in the final set concerned to their
relevance to the adoption of an agile approach for a software process.

Concerned with validity conclusion, and attempting to avoid bias, the authors of papers describing characteristics
of agility and/or agile practices identified in the systematic reviews were not invited to participate. It is assumed that
the remaining authors constitute a population which is representative in the context of researchers on agile approaches,
and they answered the questionnaire using their background and experience in this field.

After running the survey, the confidence level (1-E;) of the data obtained was evaluated using the following
formula, adapted from [75]:

Eo=,(N—-n)/(N *n)

. Ey = Confidence Level (e.g.: 0.05 — 95%)
. N = Population Size
. n = Sample Size

The verification of the Null Hypothesis 1/Null Hypothesis 3 was done by simple verification of the number of
characteristics of agility/agile practices in the set of characteristics/practices to be included and in the set of
characteristics/practices to be removed from the initial set. The final set of characteristics/practices was defined as
follows: the initial set of characteristics/practices will be changed by adding the characteristics/practices present in the
set of characteristics/practices to be included and removing the characteristics/practices present in the set of
characteristics/practices to be removed. The result of these two operations will produce the final set of characteristics of
agility/agile practices.

The criteria used to define the items in each set (characteristics/practices to be included and characteristics to be
removed) were:

1. For the set of characteristics/practices to be removed, the pertinence for the characteristic/practice should be
lower than the established threshold previously described;

2. For inclusion in the set of characteristics/practices to be included, a characteristic/practice should be indicated
for inclusion at least by two subjects.

The verification of the Null Hypothesis 2/Null Hypothesis 4 was done by the simple observation of whether all the
characteristics of agility/agile practices have the same relevance level in the context of agile approaches for software
processes. If they have the same relevance level, in this sense there is no difference among them, and a
characteristic/practice more relevant than another cannot be indicated. The relevance level (Rlevel) of a characteristic
of agility/agile practice is calculated using the formula already described in this Section.

4.2 Survey Execution

The instrument was available from January 6, 2011 to March 6, 2011, at http://lens-ese.cos.uftj.br/surveyagile/. By
email, 117 subjects were invited. By the end of January 2011 there were 31 accesses, amongst which 21 subjects
recorded their responses. Among the respondents there were subjects from Austria, the US, Canada, Jordan, Denmark,
Finland, and Italy, amongst others. Unfortunately there are no mechanisms to check whether all messages sent by email
reached their recipients. Some may no longer be in use.

In Figure 8 and Figure 9 we show an idea for the login screen, with subject characterization and agreement screen.

21

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

3 COPPE/FRJ Experimental Software Engineering - Microsoft Internet Explorer

arquivo Edtar Exbir Favoritos Femomentas Ajuda

C-O0HNRG PO RERAE-LJE B

Endereco | &] http: flocalhost/survey.20agie] ~Br ok ?

Survey on Characteristics of Agility in Software Processes

This Survey is being accomplished by the Experimental Sottware Engineering Group at COPPE - Federal University of ~
Rio de Janeiro. It aims at validating characteristics of agility for software processes in general. It also intends to
validate software practices regarding agile approaches for a software process

The purpose is not to analyse individual answers., So the analysis will be done by grouping. The time estimated to fill
out the survey is of around 10 minutes. Your contribution is very important for our research

The execution of this survey can not be resumed, so if you started, please execute it until ending. It includes a total
of 5 steps: subject characterization; pertinence of the characteristics of agility; relevance of the characteristics of
agility; pertinence of the software practices and relevance of the software practices. Pertinence relates to whether you
think those characteristics and those software practices make sense in an agile approach for software developrent
processes

At the end of the table of characteristics you can ingert, if so desire, new characteristics you think are pertinent and
that were not included in this instrument. The same can be done in the table of practices. At the end of those screens
there is a button to register all the information you have entered. Please do not use the browser’'s Back and Forward
buttons, Use only the links available at the survey’'s page. Thanks,

José Fortuna Abrantes — DSc Candidate - jfa@cos.ufri.br
Guilherme Horta Travassos - Professor at COPPE/UFR] - ght@cos.ufrj.br

Login Procedure

Lagin:
Password |
v
&] Concluido 4 1ntranet local

Figure 8: Login Screen

2} COPPE/UFRJ Experimental Software Engineering - Microsoft Internet Explorer

frquivo Edfar Exbr Eavritos Ferramentas Ajuda

C- O HEG,LPhkeLRE-UES

Endereco (@] hitp: flocalhostfSurvey%20Agie/ v Br ks ?

Survey on Characteristics of Agility in Software Processes

Step 1 out of 5 steps: Subject Characterization
Fill all fields accordingly to your personal information

(* Required fields. Email is required only for access control) . -
Subject Characterization

Name

* Email

Affiliation:

country: [

* Higher Academic Degree: | |DSc/Phd Degree v|

* Number of papers published on Agile Processes or Agile Methods
* Experience Level on Agile Approaches Usage in Software Projects:

* Estimated number of software projects using Agile Approaches you have
participated in

* 1 agree to participate in this survey O ves O no

&) Conchido & Inkranet local

Figure 9:Subject Characterization and Agreement Screen

These screens were followed by more 4 screens: pertinence for characteristics of agility, relevance level for
characteristics of agility, pertinence for agile practices, and relevance level for agile practices. Figure 10 and Figure 11
give an idea of the screens: relevance level for characteristics of agility and pertinence for agile practices. The
relevance level screen for agile practices is similar to the relevance level screen for characteristics of agility. The
pertinence screen for characteristics of agility is similar to the pertinence screen for agile practices.

22

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

2 COPPE/UFRJ Experimental Software Eng oft Internet Explo

Arquvo Edtar Exbir Favortos Ferramentas Ajuda '
A S y 3 [fe

0-0 HRG ,PhE LR =E-LJK IS

Endereco [&] hetp: flocalhostsurvey % 20aglel | B ks >

Survey on Characteristics of Agility in Software Processes

Step 3 out of 5 steps: Definition of the Relevance Level for the Characteristics of Agility

How to proceed: for each characteristic, define its relevance level regarding agility in software processes.
(Move the mouse over the icon on the “Relevance Level" header of the Agility Characteristics Table for explanations on the relevance levels)
(Move the mouse over the icons on the left side of the table for 2 complete description of the characteristics)

You may compare this step with the following scenario: a car has many features (e.g.: power, fuel consumption,
number of passengers, optional items, max speed reached, acceleration, comfort level, among others). Which
characteristics do you consider more relevant when selecting a car to buy?

Agility Characteristics Table
(include all you considered as pertinent, as well as any characteristic you added in the previous sten)

Characteristics of Agility e :ﬁ
@ |Adaptability O Absolutely relevant O Highly relevant O Litte relevant O No relevant
@ Time-Boxing O absolutely relevant O Highly relevant O Little relevant O No relevant
| @ |A new characteristic added by the subjec ... O absolutely relevant O Highly relevant O Little relevant O No relevant

[Register and go to hext Step |

&) Concluida & Intranet local

Figure 10: Relevance Level Screen for Characteristics of Agility

{2 COPPE/UFR. Experimental Software Engineering - Windows Internet Explorer

@'\i/‘ < | = o e b v [B][%][x| [&r
Arguive Edt Exbir Faveritos Ferramentas Ajuda
T Favoritos | 55 @& - B ob Siice +
COPPEJLFR] Experimental Software Enginesring % v B [@m - pagna- Seguanca~ Feramentas~ @
Survey on Characteristics of Agility in Software Processes
L)
Step 4 out of 5 steps: Identification of the Pertinence in Agile Software Practices
How to proceed: for each software practice, state whether you think it is pertinent to an agile approach for software
processes.
{Move the mouse over the icons on the left side of the table for a complete description of the software practices)
Table of Agile Software Practices
Agile Software Practices Is it Pertinent?
@ | Coding standards Oves O No
@ | Collective Code Ownership O Yes O No
@ |Continuous integration O ves O No
@ |Metaphor Oves O No
@ |on-site customer OYes O Ne
@ |Open workspace O ves O No
@ |Pair programming O yes O No
@ |Planning Game Oves O No
@ |Product Backlog Qves O Ne v
Concluido Bl & Incemet 43~ ®ioow ~

Figure 11: Pertinence Screen for Agile Practices

The last effective screen was the Thank You screen, where the subject could freely place comments. This
screen is shown in Figure 12. The Thank You screen was followed be a final screen advising the subject the survey was
completed and that the instruments were being closed.

23

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

2 COPPE/UFR. Experimental Software Engineering - Microsoft [nternet Explorer

Aquive Edter Exbir Favortos Ferramentas Aluda a

C- O NRAG P @SR E-LJEIS

Endereco | €] htp:fflocalhost/Survey20igle] v Btk ?

survey on Characteristics of Agility in Software Processes

Survey Finished.
We would like to thank you for your collaboration 111
Results of this study will be used only for our research regarding agility in software processes. As soon as we whave

completed our technical report we will advise all participants. If you would like to receive more information or are
interested to help improve this research, please mail us.

José Fortuna Abrantes - DSc Candidate - ffa@cos ufribr
Guilherme Harta Travassos - Professor at COPPE/UFR] - aht@cos ufribr

If you deem it apportune, please place your comments here:

I Register the comments and close the instrument 1]

&] conchido @l & Intranet local

Figure 12: Thank You Screen

4.3 Survey Results and Discussion

Each subject had one’s characterization attributes tabulated and an individual weight computed. Answers were
weighted individually, according to subject experience levels and/or skills.

To invite the subjects, 117 emails were sent with presumably valid addresses. There were responses from 21
subjects, which led to a confidence level of around 80.23% for the collected data.

Once the subjects’ weight was computed, the analysis of the results from the evaluation of the pertinence of the
characteristics of agility could proceed, applying the criteria and procedures described in the survey plan. After
calculations for each characteristic of agility, a graph was obtained showing the individual levels of pertinence
achieved. Figure 13 presents a graphical representation of pertinence levels.

Pertinence of the Characteristics of Agility
100,0%
A m
T 800% -—ﬁ—;—::—j— —3—;—2 3
Se00w PUUUHUHNUUDAAN] L 7
8 40,0% HAA A H A A
oo UAOAGBAGGY A
3y o T |] 1A V¥ FlD Fd VT ¥l
S o AU KA ‘I’hN ‘I’N
=)
o .
. > > 2 . . S o
\tb\é&‘é‘@(‘\OQQ ‘bQ ¢ r!;.\\AQ) Q)&‘beé\\(\go_i}(\g‘ ;@@‘ \\QQ; ’§0:/§0}00®®,§0& Q}{\@» (@’i@z@ é\fe@{s\
F &P S ELE LS LRSS S O
LT E L F o SEREE D S P
S 0,0 BN <€ o 00\(\0 S o & I
K O é,&goo(\ e v
R P s
<% Characteristics

Figure 13: Pertinence for Characteristics of Agility

As the lower limit for a characteristic of agility to be considered relevant was 50%, we then have the
characteristics Convergence and Local Teams (pertinence levels 45.0% and 30.9% respectively) were not considered
pertinent and will not be part of the initial knowledge repository to be adopted for further studies in a broader research

24

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

context. It was observed that the participants did not suggest any new characteristics of agility with their respective
descriptions, differently from the initial set. The HO 1 presented in the survey plan was not observed. However there is
a risk in these findings, as the confidence level for the sample was of 80.23%.

Applying the same criteria and procedures, the calculations for agile practices were carried out. Figure 14 shows
the pertinence levels obtained for each agile practice.

Pertinence of Agile Practices
100,0% —
=
_800% {4 ﬁ—;—?—"‘ B
% s0% 1A VW AW A
= Yo AU At ‘mmm
S oo MU AU UNALY /a7E/u/u/m7)
s 0% U UUNAL /m/m/R/Rn
£ 00% & l ."./“ LA /VII/I : A
£ 0
(O]
o P . & SO ¢S ¢ & L& & PO
&P 5 o & Q,bé‘ & & S & S ’bv\\o & \o‘(& &
LS FFF TS L TSR EE S
QA@{\\\Q‘}\Q@\@&@\\\Q}.(@ AU RPN
& o o & @ oS R ¥ B
Q @\» o & '@o ‘\@ & S R o
< & &
N
Practices

Figure 14: Pertinence for Agile Practices

Two agile practices did not reach a minimum of 50% for pertinence level: open workspace and pair programming.
For this reason, these practices were removed from the initial knowledge repository knowledge repository to be
adopted for further studies in a broader research context.

There was no indication of new agile practices by the subjects. However, HO 2 was not observed, as two agile
practices were removed from the initial set. However, the same reservations already made in relation to risk in not
observing the HO 1, are valid now for the non-observation of HO 2 too (confidence level for the sample is around
80.23%).

Once the pertinence for each characteristic and for each practice is identified, their relevance level may be
computed, according to the procedure described in the survey plan. The results are shown in Table 5.

Table 5: Relevance Level for Characteristics of Agility and Agile Practices

Relevance Relevance

Characteristic Level Practice Level
People-orientation 89,1% Continuous integration 92.1%
Adaptability 88.7% Product backlog 82.7%
Being iterative 84.8% Short releases 82.4%
Being collaborative 84.7% Refactoring 80.2%
Constant testing 84.1% Project Visibility 75.8%
Feedback incorporation 84.1% Planning game 70.7%
Being incremental 83.3% Simple design 62.9%
Reflexion and introspection 80.8% Stand-up meetings 57.7%
Being cooperative 79.3% Coding standards 55.7%
Time-Boxing 63.5% Collective code ownership 51.7%
Transparency 62.8% Test driven development 46.2%
Emergence 57.7% Sustainable pace 42.3%
Self-organization 57.2% On site customer 37.3%
Leanness 56.5% Whole teams 34.9%
Modularity 54.0% Metaphor 34.6%
Small teams 43.2%

25

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

HO 3 was not observed, as the characteristics of agility did not present the same relevance level. The same caveats
already made in relation to risks related to not observing HO 1 and HO 2 also apply to HO 3.

HO 4 also was not observed, as the agile practices did not present the same relevance level. But the same risks
arise, due to the sample confidence level.

One of the characteristics of agility that had more than 90% for pertinence (being iterative) is considered a
commonplace amongst the most known agile methods.

Although in different order, the 10 characteristics of agility/agile practices that had higher pertinence also
presented higher relevance levels.

Based on results of this study, 16 characteristics of agility and 15 agile practices, recorded in Table 5 above will
proceed in the next steps of this research.

S Threats to Validity

This study was based on initial sets of characteristics of agility and agile practices identified based on what was found
in the technical literature, from the point-of-view of the researchers. This translates into a limitation of the study. One
cannot be sure that the same initial sets would be obtained if an attempt had been made to identify characteristics and
practices in agile software projects which employ real ideas of agility in software development. This could lead this
study to different results if a more ‘industrial’ view had been used to identify the initial sets of characteristics and
practices.

Also, limitations or threats to the validity of this study are associated with the criteria that led to the construction of
search strings used in both the systematic reviews that led to the initial set of characteristics of agility and agile
practices included in the study. On those opportunities, there was an attempt to avoid a loss of documents relevant to
the study. However, due to the choice of search terms, and also because of some difficulties with the search engine in
the ACM digital library (as described in Section 2.2), especially during the review of characteristics of agility, there is
the risk that relevant studies have been left out of the review.

In the case of the systematic review to identify characteristics of agility, the criteria established in the protocol
(deleting retrieved references to documents reporting characteristics of an agile method in particular), though avoiding
influences (biases), may have left out of the initial set some characteristic, differently from those identified with the
execution protocol planned for this systematic review.

The experience with agile projects was weighted with the weights associated to each participant. However, many
projects nowadays that are said or considered to be agile are actually not, which could skew the results. It was not
possible to evaluate the profile of the respondents in the study, to exclude those who do not have sufficient practical
experience to answer the questions.

It should also be considered that the confidence level obtained for the sample used in this study was of about
80.23%, which represents a risk, even considering that some messages might not have been received (because, for
example, of the possibility of emails that are no longer being used by the researchers invited to participate in the study).
Thus, the present results can be used, but with due caution.

As for constructo validity, this study is characterized by a supposed validity of two initial sets of characteristics of
agility and agile practices identified through systematic reviews of the technical literature. One purpose of the study is
to confirm the validation of the initial set of characteristics of agility, and enable its evolution, besides getting, at the
same time, a suitable set of agile practices related to the adoption of an agile approach to software processes.

Regarding the external validity of this study, participants are considered representative for the population of
researchers in agile approaches, as they were identified through systematic reviews of literature, including studies
published since 2008. Potential risks or threats to validity arising from the criteria used in systematic reviews are
partially reduced by not including, in the survey, authors of articles from which we extracted characteristics and
practices, once it could be some argument that the views of such researchers could eventually influence the results, as
they themselves have contributed to the identification of characteristics / practices in their papers. The objects used in
this study (initial set of characteristics of agility and agile practices) can be considered real and representative to the
problem being studied, as these objects have been defined using different scientific papers published in the technical
literature on agile approaches. Once he/she started filling out the survey instrument, each participant had the
opportunity to answer the questionnaire without a limitation of time.

26

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

The instrumentation used in this study was designed to be as simple as possible and require the least amount of
time from participants to answer questions. The language of the survey instrument was the English language, for being
the most accessible one and considering the various nationalities of the participants invited to join the study.

6 Conclusion and Future Works

From the participants' responses, two characteristics of agility originated by the systematic literature review were
excluded from the initial knowledge repository: Convergence and Local Teams. The same happened with two agile
practices originated from the systematic literature review: open workspace and pair programming. Sixteen
characteristics of agility and fifteen agile practices became part of an initial knowledge repository to support the
continuation of studies about agility in software processes. Out of sixteen characteristics of agility which became part
of the knowledge repository, only one (small teams) had its relevance level below 50%.

Out of fifteen agile practices which should be part of the knowledge repository, ten had a relevance level over
50%. Among these, Continuous Integration is the practice with the highest level of relevance, at 92%. The practices
with the lowest levels of relevance were: whole team and metaphor.

The use of the knowledge repository constructed from the initial results of this study has a confidence level of
80.23%, achieved from the sample and calculated according to the plan described in Section 4.1. The result of the study
steers to sixteen characteristics of agility and fifteen agile practices which initially can be part of a knowledge
repository to be used in the next phases of this research, aiming at inserting characteristics of agility in software
processes:

e 16 Characteristics of Agility: Being collaborative, being cooperative, being incremental, adaptability,
self-organization, being iterative, constant testing, emergency, feedback incorporation, leanness,
modularity, people orientation, reflection and introspection, small teams, time-boxing, and transparency.

e 15 Agile Practices: Coding standards, collective code ownership, continuous integration, metaphor, on-
site customer, planning game, product backlog, project visibility , refactoring, simple design, short
releases, daily meetings, and sustainable pace.

The descriptions of these characteristics of agility and agile practices have been consolidated and presented in
Sections 2.3 and 3.3. respectively.

Future work in the context of agile software processes may include aspects such as estimation of the degree of
agility achieved by methods or software processes, design and execution of experimental studies to detect and/or
implement agile practices related to software process activities, which can promote agility for a specific software
process in a given development environment.

The studies more closely related to this work are those identified through the systematic reviews conducted in
order to identify characteristics of agility and agile practices. Also, there are surveys about agile practices such as those
done by [31]. At a glance, what differentiates this work is its contribution, in the agile context, consolidating
characteristics of agility and agile practices, both identified and evaluated through studies planned and executed with
some level of formalism and rigour, towards the construction of an evidence-based knowledge repository.

This work is part of a research effort in a broader context [76], including other phases which contemplate
establishing a relationship between characteristics of agility and agile practices as well as between agile practices and
process activities, to support the selection of agile practices to be adopted in software processes. These relationships,
after evaluation, along with the information captured by the studies presented here, form a knowledge repository to
support an agility framework to guide teams on calibrating their processes according to their needs.

References
[1] B. Bohem, “Making a difference in the software century,” IEEE Computer, pp. 78-84, Mar. 2008.

[2] O. Ktata, G. Lévesque, “Agile development: Issues and avenues requiring a substantial enhancement of the
business perspective in large projects,” In: 2nd Canadian Conference on Computer Science and Software
Engineering, Montreal, 2009, pp. 59-66.

27

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

[3] B. Beizer, Software Testing Techniques, Boston: International Thomson Computer Press, 1990

[4] A.M.J. Hass, “Testing processes”. In: IEEE International Conference on Software Testing Verification and
Validation Workshop ICSTW, 2008.

[5] K. Vlaanderen, S. Jansen, S. Brinkkemper, E. Jaspers, “The agile requirements refinery: Applying SCRUM
principles to software product management,” Information and Software Technology, vol. 53, pp. 58-70, 2011.

[6] T.Dyba, T. Dingsoyr, “Empirical Studies of Agile Software Development: A Systematic Review,” Information
and Software Technology, vol. 50, pp. 833-859, 2008.

[7] H. Sharp, H. Robinson, M. Petre, “The role of physical artefacts in agile software development: Two
complementary perspectives,” Interacting with Computers, vol. 21, pp. 108—116, 2009.

[8] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell, A. Wesslén, Experimentation in Software
Engineering — An Introduction, Kluwer Academic Publishers, 2000.

[9] S.N. Mafra, R. F. Barcelos, G.H. Travassos, “Aplicando uma Metodologia Baseada em Evidéncia na Defini¢ao
de Novas Tecnologias de Software”, In: Proc. of the XX Simpdsio Brasileiro de Engenharia de Software (SBES),
Florianopolis, Brasil, 2006.

[10] R. O. Spinola, A. C. Dias-Neto, G. H. Travassos, "Abordagem para Desenvolver Tecnologia de Software com
Apoio de Estudos Secundarios e Primario," In: Experimental Software Engineering Latin American Workshop
(ESELAW), Salvador, Nov. 2008.

[11] M. Aoyama, “Agile Software Process and Its Experience,” In: International Conference on Software Engineering,
1998, pp. 3-12.

[12] M. A. Noor, R. Rabiser, P. Grunbacher, “Agile product line planning: A collaborative approach and a case study”.
Journal of Systems and Software vol. 81, pp. 868--882, 2008.

[13] D. Sato, D. Bassi, M. Bravo, A. Goldman, F. Kon, “Experiences Tracking Agile Projects: an Empirical Study”.
Journal of the Brazilian Computer Society, v1. 12, n.3, Dec. 2006.

[14] B. Boehm, R. Turner, “Observations on balancing discipline and agility”. In: Agile Development Conference,
2003.

[15] B. Boehm, R. Turner, “Balancing agility and discipline: Evaluating and integrating agile and plan-driven
methods”, Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331,
United States, vol.26, pp. 718—719, 2004.

[16] K. Conboy, B. Fitzgerald, “Toward a conceptual framework of agile methods: A study of agility in different
disciplines”. Association for Computing Machinery, New York, NY 10036-5701, United States, pp.37—44, 2004.

[17] S. Adolph, “What lessons can the agile community learn from a maverick fighter pilot?”, In: AGILE 2006
Conference, 2006, pp. 94--99.

[18] K. Conboy, “Agility from First Principles: Reconstructing the Concept of Agility in Information Systems
Development”. Information Systems Development, vol 20, n. 3, pp. 329-354, 2009.

[19] Agile Manifesto, 2001. http://agilemanifesto.org
[20
[21

M. Fowler, J. Highsmith, “The agile manifesto”. Sofiware Development, vol. 9, pp. 28-32, 2001.

]
]
1 J. Highsmith, Agile Software Development Ecosystems. Boston, MA: Pearson Education, 2002.
]

[22] M. Pai, M. McCulloch, J.D. Gorman, et al., “Systematic Reviews and meta-analyses: An illustrated, step-by-step
guide”, The National Medical Journal of India, vol. 17, n.2, 2004.

28

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

[23] G. H. Travassos, P. S. M. Santos, P. Mian, A.C. Dias Neto, J. Biolchini, “An Environment to Support Large
Scale Experimentation in Software Engineering”In: IEEE International Conference on Engineering of Complex
Computer Systems, Belfast, 2008.

[24] Miller, Granville G.: The Characteristics of Agile Software Processes. In: 39th Int’l Conf. and Exhibition on
Technology of Object-Oriented Languages and Systems (2001).

[25] P. Abrahamsson, O. Salo, J. Ronkainen, J. Warsta, “Agile Software Development Methods. Review and
Analysis”, Espoo. VIT Publications 478, 2002.

[26] M. Lindvall, V. Basili, ef al. “Empirical Findings in Agile Methods”. In: Extreme Programming and Agile
Methods — SP/Agile Universe, 2002, pp. 197—207.

[27] Capes BR Portal- Portal de Periodicos da CAPES, 2011. http://www.periodicos.capes.gov.br

[28] Abrahamsson, P.; Warsta, J.; Siponen, M.T. & Ronkainen, J.: New directions on agile methods: a comparative
analysis. [EEE Computer Society, pp. 244--254 (2003)

[29] Meso, Peter. Jain, Radhika.: Contemporary practices in systems development. Agile Software Development:
adaptive systems principles and best practices. Information Systems Management, summer. (2006)

[30] Holmstrom, Helena. Fitzgerald, Brian. et al.: Contemporary practices in systems development. Agile Practices
Reduce Distance in Global Software Development. Information Systems Management, summer. (2006)

[31] Ambler, S.W. (2009) "Agile Practices Survey Results: July 2009", available at
http://www.ambysoft.com/surveys/practices2009.html, accessed in 2010, Feb. 25.

[32] Coram, Michael. Bohner, Shawn.: The Impact of Agile Methods on Software Project Management. In: 12th IEEE
International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05). (2005)

[33] Hansson, C. Dittrich, Y. Gustafsson, B. Zarnak, S.: How agile are industrial software development practices?.
The Journal of Systems and Software 79, 1295--1311. (2006)

[34] Cockburn, A.: Agile Software Development Joins the “Would be’ Crowd. Cutter IT Journal, 15, 2. (2002)

[35] Taromirad, Masoumeh. Ramsin, Raman.: CEFAM: Comprehensive Evaluation Framework for Agile
Methodologies. In: 32nd Annual IEEE Software Engineering Workshop (2009)

[36] Rico, David F.: Effects of Agile Methods on Website Quality for Electronic Commerce. In: 41st Hawaii
International Conference on System Sciences (2008)

[37] Qumer, A. Henderson-Sellers, B.: A framework to support the evaluation, adoption and improvement of agile
methods in practice. The Journal of Systems and Software, 81, pp.1899--1919 (2008)

[38] Taromirad, Masoumeh. Ramsin, Raman.: An Appraisal of Existing Evaluation Frameworks for Agile
Methodologies. In: 15th Annual IEEE International Conference and Workshop on the Engineering of Computer
Based Systems. (2008)

[39] Larman, C.: Agile and iterative development: A manager’s guide. Boston, MA: Pearson Education. (2004)

[40] Kujala, S. User involvement: A review of the benefits and challenges. Behaviour and Information Technology,
22, 1, pp. 1--16. (2003)

[41] Guzzo, R. A. Dickson, M. W.: Teams in organizations: Recent research on performance and effectiveness. Annual
Review of Psychology, 47, 1, pp. 307--338. (1996)

[42] Institute of Electrical and Electronics Engineers.: IEEE standard glossary of software engineering terminology
(IEEE Std 610.12-1990). New York, NY (1990)

[43] Steindl, C.: From agile software development to agile businesses. In: 31st EUROMICRO Conference on Software
Engineering and Advanced Applications. (2005)

29

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

[44] Glazer, Hillel.: Love and Marriage: CMMI and Agile Need Each Other, CrossTalk: The Journal of Defense
Software Engineering. Volume 23, No. 1, Jan/Feb. (2010).

[45] Beck, K. Andres, Cynthia.: Extreme Programming Explained: Embrace Change, Second Edition, Addison Wesley
Professional (2004).

[46] Jiang, Li. Eberlein, Armin.: An Analysis of the History of Classical Software Development and Agile
Development, In: IEEE International Conference on Systems, Man, and Cybernetics San Antonio, TX, USA —
October (2009).

[47] Abbas, Noura. Gravell, Andrew M. Wills, Gary B.: Using Factor Analysis to Generate Clusters of Agile Practices,
In: AGILE Conference, August 9 - 13, Orlando, Florida (2010).

[48] Cohen, D. Lindvall, M. Costa, P.: An Introduction to Agile Methods, in: M.V. Zelkowitz (Ed.), Advances in
Computers, Advances in Software Engineering, vol. 62, Elsevier, Amsterdam (2004).

[49] Koehnemann, Harry. Coats, Mark. (2009), "Experiences Applying Agile Practices to Large Systems", In: 2009
Agile Conference.

[50] Fruhling, Ann. De Vreede, Gert-Jan. (2006) "Field Experiences with eXtreme Programming: Developing an
Emergency Response System", Journal of Management Information Systems / Spring Vol. 22, No. 4. pp. 39-68.

[51] Paige, Richard F. Brooke, Phillip J. (2005) “Agile Formal Method Engineering”, J. Romijn, G. Smith, and J. van
de Pol (Eds.): IFM 2005, LNCS 3771, pp. 109-128.

[52] Jureczko, Marian. (2008) "The Level of Agility in Testing Process in a Large Scale Financial Software Project",
In: Software engineering techniques in progress, Oficyna Wydawnicza Politechniki Wroc?awskiej, 139-152.

[53] Xu, Bin. (2009) "Towards High Quality Software Development with Extreme Programming Methodology:
Practices from Real Software Projects", College. of Computer Science & Information Engineering, Zhejiang
Gongshang University, Hangzhou China.

[54] Stolberg, Sean. (2009) "Enabling Agile Testing Through Continuous Integration", 2009 Agile Conference.

[55] Martin, Angela. Biddle, Robert. Noble, James. (2009) "XP Customer Practices: A Grounded Theory", 2009
Agile Conference.

[56] Zhou, Yinghua. (2009) "UniX Process, Merging Unified Process and Extreme Programming to Benefit Software
Development Practice", 2009 First International Workshop on Education Technology and Computer Science.

[57] Cannizzo, Fabrizio. Marcionetti, Gabriela. Moser, Paul. (2008) "The Toolbox Of A Successful Software
Craftsman", 15th Annual IEEE International Conference and Workshop on the Engineering of Computer Based
Systems.

[58] Huo, Ming. Verner, June. Zhu, Liming. Ali Babar, Muhammad. (2004) "Software Quality and Agile Methods",
Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC'04).

[59] Maurer, Frank. Martel, Sebastien. (2002) "Extreme Programming Rapid Development for Web-Based
Applications", IEEE Internet Computing, January - February.

[60] Paulk, Mark C. (2001) "Extreme Programming from a CMM Perspective", IEEE Software, November/December.

[61] Vejandla, Pavan K. Sherrell, Linda B. (2009) "Why an Al Research Team Adopted XP Practices", Proceedings of
the 47th Annual Southeast Regional Conference, ACM-SE 47, March 19-21, Clemson, SC, USA.

[62] Concas, Giulio. Francesco, Marco Di. Marchesi, Michele. Quaresima, Roberta. Pinna, Sandro. (2008) "Study of
the Evolution of an Agile Project Featuring a Web Application Using Software Metrics", A. Jedlitschka and O.
Salo (Eds.): PROFES 2008, LNCS 5089, pp. 386-399

[63] Hazzan, Orit. Tomayko, Jim. (2003) "The Reflective Practitioner Perspective in eXtreme Programming", Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

30

CLEI ELECTRONIC JOURNAL, VOLUME 16, NUMBER 1, PAPER 5, APRIL 2013

Bioinformatics), 2753, 51-61.

[64] Xiaohua?Wang. Zhi, Wu. Ming, Zhao. (2008) "The Relationship between Developers and Customers in Agile
Methodology", 2008 IEEE International Conference on Global Software Engineering.

[65] Aiello, G. Alessi, M. Bruccoleri, M. D'Onofrio C. Vella, G. (2007) "An Agile methodology for Manufacturing
Control Systems development", Engisud S.p.a., Palermo, Italy.

[66] Svensson, Harald. H ost, Martin. (2005) "Introducing an Agile Process in a Software Maintenance and Evolution
Organization", Proceedings of the Ninth European Conference on Software Maintenance and Reengineering
(CSMR'05).

[67] Mills, David. Sherrell, Linda. Boydstun, Jeff. Wei, Guoqing. (2005) "Experiences Using Agile Software
Development for a Marketing Simulation", Dept. of Comput. Sci., Memphis Univ., TN USA.

[68] McKinney, Dawn. Denton, Leo F. (2005) "Affective Assessment of Team Skills in Agile CS1 Labs: The Good,
the Bad, and the Ugly", SIGCSE '05, February 23-27, 2005, St. Louis, Missouri, USA.

[69] Ramachandran, Vinay. Shukla, Anuja. (2002) "Circle of Life, Spiral of Death: Are XP Teams Following the
Essential Practices?", Dept. of Comput. Sci., North Carolina State Univ., Raleigh NC USA

[70] Williams, Laurie. Upchurch, Richard. (2001) "Extreme Programming for Software Engineering Education?", 31st
ASEE/IEEE Frontiers in Education Conference, October 10 - 13, 2001 Reno, NV.

[71] J. F. Abrantes, G. H. Travassos, “Common Agile Practices in Software Processes”. In: 5" International
Symposium on Empirical Software Engineering and Measurement, Banff, Alberta, Canada, Sept. 2011, pp.355-
358.

[72] V.R. Basili, C. Caldiera, H. D. Rombach, “Goal/Question/Metric Paradigm”, Encyclopaedia of Software
Engineering, vol. 1, pp. 528-532. John Wiley & Sons, New York, 1994.

[73] L. D. Farias, “Planejamento de Riscos em Ambientes de Desenvolvimento de Software Orientados a
Organizacao”, Dissertacdo de M.Sc., COPPE/UFRJ, Rio de Janeiro, 2002.

[74] J. F. Abrantes, G. H. Travassos, “Caracterizacido de Métodos Ageis de Desenvolvimento de Software”. In:
Primeiro Workshop de Desenvolvimento Rapido de Aplicagoes — VI Simposio Brasileiro de Qualidade de
Software, Porto de Galinhas-PE, Brasil, 2007.

[75] M. Hamburg, “Basic Statistics: A Modern Approach”, Journal of the Royal Statistical Society, Series A
(General), vol. 143, n.1, 1980.

[76] J. F. Abrantes, “Estudos Experimentais sobre Agilidade no Desenvolvimento de Software e¢ sua Utilizagdo no
Processo de Teste”, Tese de Doutorado, Programa de Engenharia de Sistemas e Computagdo, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brasil, 2012.

31

