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VIOLATIONS OF TRANSITIVITY: IMPLICATIONS FOR A
THEORY OF CONTEXTUAL CHOICE

RANDOLPH C. GRACE
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Violations of strong stochastic transitivity in concurrent-chains choice were first reported by Navarick
and Fantino. In a series of articles, Navarick and Fantino concluded that neither a unidimensional
model capable of predicting exact choice probabilities nor a fixed-variable equivalence rule was possible
for the concurrent-chains procedure. I show that when choice is modeled contextually (i.e., when
preference for a schedule is affected by factors other than the schedule itself, e.g., aspects of the
alternative schedule), a unidimensional, exact-choice probability model is possible that both predicts
the intransitivities reported by Navarick and Fantino and provides a fixed-variable equivalence rule
for the concurrent-chains procedure. The contextual model is an extension of the generalized matching
law and violates a key assumption underlying traditional choice models—simple scalability—because
of (a) schedule interdependence and (b) bias from procedural contingencies. Therefore, strong stochastic
transitivity cannot be expected to hold. Contextual scalability is analyzed to reveal a hierarchy of
context effects in choice. Navarick and Fantino’s intransitivities can be satisfactorily explained by bias.
If attribute sensitivity is context dependent, however, and if there are similarity structures among
choice alternatives, the contextual model is shown to be able to predict violations of ordinal preference.
Therefore, it may be possible to formulate a deterministic, general psychophysical model of choice as
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a behavioral alternative to probabilistic, multidimensional choice theories.
Key words: transitivity, context of reinforcement, fixed-variable equivalence rule, simple scalability,
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In a series of articles, Navarick and Fantino
(1972,1974, 1975, 1976; Fantino & Navarick,
1974) argued, on the basis of observed choice
intransitivity, that neither a unidimensional
model capable of predicting exact choice prob-
abilities nor a general equivalence rule for
fixed-interval and variable-interval schedules
(VI-FI transformation rule) was possible for
concurrent-chains choice behavior. Violations
of transitivity pose a serious and possibly in-
tractable problem because they contradict as-
sumptions basic to many choice models.

Theories of choice in concurrent chains that
predict exact choice probabilities must make
two basic assumptions: (a) An interval scale
for stimulus utility exists, and (b) initial-link
behavior allocation reflects terminal-link
utility!. From measurement theory we know
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! It should be stressed that the notion of “utility” does
not represent a hypothetical internal construct. Although
an economist might use the term to refer to a state within
an organism or a quality possessed by a commodity bundle,

that an interval scale requires certain strong
forms of transitivity relations to be satisfied
that an ordinal scale does not (Luce & Suppes,
1965). Violations of transitivity indicate, ac-
cording to Navarick and Fantino (1974), that
an interval utility scale cannot exist and, there-
fore, prediction of exact choice probabilities is
impossible; thus, an ordinal choice model rep-
resents a more realistic goal. It should also be
noted that without an interval utility scale a
VI-FI transformation rule is not possible, be-
cause such a rule must represent VI and FI
schedules on a common interval scale.
Recently, interest has been rekindled in the
questions of transitivity and VI-FI transfor-
mation. Mazur (1984, 1986; Mazur & Coe,
1987) has suggested that a VI-FI transfor-
mation rule might be possible if the concur-
rent-chains procedure were simplified, and
Houston (1991) has provided examples of uni-
dimensional, exact-choice probability models
capable of predicting transitivity violations.
Both Mazur (1984) and Houston (1991) sug-

“utility” translated into behavior-analytic terms designates
the interval scale over which the functional relationship
between reinforcement and behavior is characterized. For
better or worse, “utility” is a traditional term and is used
here to make contact with relevant literature in other areas
of psychology and in"economics.
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gest that intransitivity may be an expected re-
sult in concurrent chains because initial-link
allocation may not accurately reflect terminal-
link preference. Essentially, Mazur (1984) and
Houston (1991) concede that the second as-
sumption listed above is at least partially in-
correct.

There is another possibility. Empirically
observed intransitivities may relate to the first
assumption—the existence of an interval scale
for stimulus utility. Navarick and Fantino’s
(1972) results demonstrated that interval util-
ity scales cannot exist for the set of conditions
known as simple scalability (Krantz, 1964,
1967; Suppes, Krantz, Luce, & Tversky, 1989).
However, when choice is modeled contextu-
ally, that is, when schedule utility is affected
by factors other than the schedule itself, the
conditions under which interval utility scales
exist are changed. I will show that (a) Na-
varick and Fantino’s (1974) conclusion, that
observed intransitivity in choice renders im-
possible a unidimensional model capable of
predicting exact choice probabilities and a
fixed-variable equivalence rule, is incorrect be-
cause of their assumption that unidimensional
models must satisfy simple scalability. (b) A
multiattribute, unidimensional model that does
not satisfy simple scalability can both predict
the intransitivities reported by Navarick and
Fantino (1972) and provide a contextual fixed-
variable equivalence rule for the concurrent-
chains procedure (Killeen, 1968). The model,
which is an extension of the generalized
matching law (Baum, 1974) that incorporates
relative temporal variability of terminal-link
reinforcement, can be said to satisfy “contex-
tual scalability.” (c) Assumptions underlying
simple scalability can be relaxed in a system-
atic way so as to yield a hierarchy of context
effects in choice. Ultimately a fully contextual,
behavioral model of choice may be possible as
a deterministic alternative to probabilistic,
multidimensional choice theories (e.g., Tver-
sky, 1972).

The organization of the article is as follows.
First, background material on the concurrent-
chains procedure relevant to choice and VI-FI
transformation is presented. Next, mathemat-
ical concepts underlying choice models and
transitivity are reviewed. Navarick and Fan-
tino’s (1972) experimentally observed intran-
sitivities are discussed, and Mazur’s (1984,
1986; Mazur & Coe, 1987) and Houston’s
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(1991) interpretations of Navarick and Fan-
tino’s (1972) results are considered in detail.
A framework for a multiattribute, unidimen-
sional, contextual choice model is presented.
Relative temporal variability is introduced as
an extension of the generalized matching law
(Baum, 1974) and is shown to be able to pre-
dict the intransitivities reported by Navarick
and Fantino (1972) and to provide a fixed-
variable equivalence rule for the concurrent-
chains procedure (Killeen, 1968). Finally, a
hierarchy of contextual scalability beyond sim-
ple scalability is defined, which results in a
straightforward, essentially unidimensional
model that is capable of predicting violations
of ordinal preference when choice alternatives
possess a similarity structure.

CONCURRENT CHAINS, CHOICE,
AND VI-FI TRANSFORMATION

Since its introduction by Autor (1960, 1969),
the concurrent-chains procedure has been one
of the most widely employed experimental
paradigms for the study of choice. Separate
initial and terminal links allow preference for
a terminal-link schedule, as operationalized by
corresponding relative initial-link allocation,
to be separated from terminal-link schedule
response-rate effects. As a result, the concur-
rent-chains procedure has been used to inves-
tigate differential schedule effects as well as
choice. Two lines of research of interest here
have employed the concurrent-chains proce-
dure.

First, Herrnstein’s discovery (1964a) of pi-
geons’ preference for aperiodic rather than pe-
riodic schedules with the same mean reinforce-
ment rate inspired a series of attempts (e.g.,
Davison, 1969, 1972; Duncan & Fantino,
1970; Fantino, 1967; Killeen, 1968) to find an
appropriate averaging method through which
VI and FI schedules could be scaled on a com-
mon dimension. The averaging hypothesis (Na-
varick & Fantino, 1974) maintains that when
organisms are confronted with variability, re-
inforcer parameters can be aggregated over
time to produce a value on a single dimension
that determines preference.

Herrnstein’s report of matching of relative
rates of initial-link responding and terminal-
link reinforcement (1964b) inaugurated a sec-
ond line of research, which attempted, through
generalizations of the original matching law,
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to formulate unidimensional models of choice
for the concurrent-chains procedure. The dis-
tinction between unidimensional and multi-
dimensional models has been nicely stated by
Houston (1991, p. 324): If alternatives can
vary in more than one attribute, a unidimen-
sional model combines the attributes into a
single quantity, whereas a multidimensional
model keeps the attributes separate.

Since Herrnstein’s initial formulation
(1964b), unidimensional choice models have
proliferated, often driven by anomalous data
obtained in the concurrent-chains procedure.
The delay-reduction hypothesis (Fantino,
1969; Squires & Fantino, 1971), incentive the-
ory (Killeen, 1982), melioration (Vaughan,
1985), and Davison’s (1988) extension of the
hyperbolic-decay model (Mazur, 1984, 1987)
represent competing models of concurrent-
chains choice. It should be noted that all of
these models are vulnerable to the arguments
made by Navarick and Fantino (1972, 1974)
against the viability of unidimensional, exact-
choice probability models.

MATHEMATICAL CONCEPTS:
CHOICE MODELS AND
TRANSITIVITY

Since Luce’s pioneering work (1959), uni-
dimensional choice models have typically as-
sumed that in a choice situation, a quantity on
a single dimension may be assigned to each
alternative. This quantity, which may combine
several attributes, is often referred to as the
utility or subjective value of the alternative (Luce
& Suppes, 1965). A common paradigm for
such utility theories is simple scalability: Each
item in a set of choice alternatives can be as-
signed a utility that is invariant with respect
to context (Krantz, 1964, 1967; Suppes et al.,
1989, p. 410). Then for a two-alternative, or
binary, choice situation, the probability of
choosing one alternative over another is as-
sumed to be a monotonic function of their re-
spective utilities:

P(4, B) = Flu(4), u(B)], (1

where P(A, B) represents the probability that
A will be chosen over B, u(A4) is the utility of
A, and u(B) is the utility of B. F is a monotonic
function, strictly increasing in the first argu-
ment and strictly decreasing in the second,
which means that P(A4, B) increases as u(B)
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is held constant and u(A) increases and P(4,
B) decreases as u(A) is held constant and u(B)
increases. Also, u is a function, an important
assumption to which we shall return.

Subsequent theoretical work, primarily in
decision theory and economics, has identified
simple scalability as a member of a class of
constant utility models (Edwards & Tversky,
1967), meaning that each stimulus has a fixed
location on a single utility scale. One particular
form of simple scalability, strict utility (Luce
& Suppes, 1965), has found wide application
for binary choice:

u(4)
u(d) + u(B)’

Preference for an alternative is assumed to be
proportional to the percentage of total utility
available to the organism represented by that
alternative. This equation is Luce’s choice ax-
iom (1959, 1977) for two-alternative choice.
It implies the so-called “independence from
irrelevant alternatives” condition: The addi-
tion of an alternative C does not alter the ratio
of preference between alternatives A and B
(Luce, 1959, 1977). Note that the form of this
equation is identical to that of the original
matching law (Herrnstein, 1961).

The twin assumptions of unidimensionality
and monotonicity guarantee that ordinal pref-
erence is preserved transitively; this is also
called weak stochastic transitivity (WST) (Luce
& Suppes, 1965):

P(4, B) and P(B, C) = 0.50
=P(4, C) = 0.50. 3)

When it is further assumed that choice alter-
natives can be represented on a single, context-
invariant interval scale, simple scalability
(Equation 1) is obtained. Tversky and Russo
(1969) have shown this to be mathematically
equivalent to the conditions they designate as
strong stochastic transitivity, independence, and
substitutability. Stated formally, strong sto-
chastic transitivity (SST) is

P(4, B) = 0.50 and P(B, C) = 0.50
—P(4, C) = max[P(4, B), P(B, C)].
4)

Not only must ordinal preference hold (WST),
but P(4, C) must be greater than or equal to
the maximum choice probability obtained when
A and C are each paired with B. Thus relative

P4, B) = 2)
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preference is preserved transitively. The dif-
ference between WST and SST is qualita-
tively similar to the difference between an or-
dinal and an interval scale. Independence is
defined as

P(4, C) = P(B, C) & P(4, D) = P(B, D).
©)

If two choices are ordered according to a given
standard, then that ordering must be main-
tained for an arbitrary standard. Substitut-
ability is the last condition discussed by Tver-
sky and Russo (1969); Navarick and Fantino
(1974) called it functional equivalence:

P(4, C) > P(B, C)
— P(4, B) > 0.50
and P(4, C) = P(B, C)
= P(4, B) = 0.50. (6)

In other words, two schedules for which an
organism is indifferent can substitute for each
other in different contexts.

VIOLATIONS OF STOCHASTIC
TRANSITIVITY

Although the delay-reduction model (Fan-
tino, 1969; Squires & Fantino, 1971) and Kil-
leen’s harmonic mean (1968) initially ap-
peared to solve, respectively, the problems of
choice in concurrent chains and VI-FI trans-
formation (the averaging hypothesis), these
findings were cast into serious doubt by the
reports of intransitivity in choice behavior in
the series of articles by Navarick and Fantino
(1972, 1974, 1975, 1976; Fantino & Navarick,
1974). Navarick and Fantino (1972) explicitly
tested the functional equivalence of FI and VI
schedules in the concurrent-chains procedure.
(Functional equivalence, a condition essen-
tially equivalent to SST [see Navarick & Fan-
tino, 1972, p. 401}, is more convenient to test
than SST because a violation of an expected
equality is easier to detect than a violation of
an expected inequality.) In the first condition,
two schedules (A and B), one variable and one
fixed, were arranged such that the subject was
approximately indifferent between them
(choice probability ~ .50). In the next two
conditions, A and B were each paired with a
third schedule, C. For functional equivalence
to hold, A and B should be equally preferred
to C. Choice probability was operationalized
as number of pecks to the appropriate initial
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link divided by total initial-link pecks. Na-
varick and Fantino (1972) obtained several
sets of schedules for which functional equiv-
alence (hence SST) did not hold.

Navarick and Fantino (1972) rejected the
null hypothesis—that concurrent-chains choice
satisfies functional equivalence—although they
could not give a precise confidence interval.
Their procedure in cases of intransitivity was
as follows. When a deviation of at least 0.05
from expected transitivity was obtained in the
third pairing, they replicated the first pairing
of the test. If the deviation from transitivity
obtained in the third pairing minus the dif-
ference between the first pairing and its rep-
lication exceeded 0.05, they judged it a vio-
lation of transitivity. We can therefore be
reasonably confident that, of the four func-
tional equivalence violations (out of the total
of 14 tests, for Procedure I) reported by Na-
varick and Fantino (1972) comparing VI and
FI schedules, some represent actual violations
and not experimental error. Although the
“variability and inconsistency” (Mazur &
Coe, 1987, p. 288) of some of Navarick and
Fantino’s data have raised doubts for some
researchers, Safar (1982) successfully repli-
cated Navarick and Fantino’s (1972) results.
Navarick and Fantino (1974) concluded, after
analyzing their observed intransitivities, that
a unidimensional model capable of predicting
exact choice probabilities is impossible. Na-
varick and Fantino’s criticisms were so com-
pelling that issues of choice transitivity and
VI-FI schedule transformation virtually dis-
appeared from the literature for 10 years.

By 1984, however, researchers were begin-
ning to question whether Navarick and Fan-
tino had been too pessimistic in their call for
ordinal choice theories. (It should be noted that
no comprehensive ordinal choice theory ap-
peared in the literature between 1974 and 1984
to supplant the exact-choice probability mod-
els.) Mazur (1984), although conceding that
Navarick and Fantino’s conclusions were
“probably correct for experiments employing
the concurrent-chains procedure” (p. 427),
used an adjusting-delay procedure in which
initial-link duration was very short. With this
procedure, Mazur (1984, 1986) obtained data
supporting a fixed-variable equivalence rule.
Using the same procedure, and employing
variable-time versus fixed-time (VT-FT)
rather than VI-FI terminal links, Mazur and
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Coe (1987) found no consistent evidence of the
type of intransitivity reported by Navarick and
Fantino (1972). Mazur (1984) suggested that
Navarick and Fantino’s observed intransitiv-
ities may have resulted from the complex con-
tingencies of the concurrent-chains procedure.
Mazur (1986) went one step further and as-
serted that although Navarick and Fantino’s
criticisms were true in the strictest sense, “that
it is not possible to find a single, parameter-
free equation for choice between fixed and
variable schedules that is applicable for all
subjects,” a potential fixed-variable equiva-
lence rule may be possible if it has “parameters
that can be adjusted for any specific experi-
mental situation and group of subjects” (1986,
p. 123).

Mazur and Coe (1987) briefly sketched an
extension to concurrent chains of Mazur’s
(1984) FT-VT equivalence rule, and showed
that the resulting unidimensional model could
predict intransitivities similar to those ob-
served by Navarick and Fantino (1972). Ma-
zur’s (1984) FT-VT equivalence rule is

X A
v=2r1vxD %

=1

where V is the value of a particular reinforce-
ment schedule, p; is the probability that the
ith delay D; will be presented, 4 is a parameter
related to reinforcement magnitude, and X is
a free parameter. To extend the model to con-
current chains, Mazur and Coe (1987) let D,
represent the duration of a given terminal-link
schedule plus the average time spent respond-
ing on the initial-link key associated with that
terminal link (operationalized as percentage of
key-peck allocation times initial-link value).
The organism is assumed to adjust its initial-
link allocation until the values, V, of the two
terminal-link schedules are equal. With these
assumptions, Mazur and Coe (1987) demon-
strated that their model could predict more
extreme initial-link allocation for FT-FT than
mixed-time versus fixed-time (MT-FT)
schedules, which could produce intransitivities
similar to those reported by Navarick and Fan-
tino (1972).

Houston, Sumida, and McNamara (1987)
showed that substitutability, a condition math-
ematically equivalent to SST (Tversky &
Russo, 1969), could be violated if organisms
were assumed to maximize overall reinforce-
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ment rate in a concurrent-chains procedure
with independent VI initial links. Houston
(1991) allowed reinforcement magnitudeto dif-
fer between the terminal links, and demon-
strated that simple extensions of three com-
peting choice models—melioration (Vaughan,
1985), incentive theory (Killeen, 1982), and
delay reduction (Fantino, 1969; Squires &
Fantino, 1971)—could predict intransitivity.
Houston’s modification of the delay-reduction
hypothesis is as follows:

1 + AB(DB - dA)
2+ AB(DB - dA) + )\A(DA - dB) ’
(8)

where A, and A; are initial-link reinforcement
rates, D, and Dy are terminal-link delays to
reinforcement, d, = MyD,/M, and dy =
M Dy/Mjy are reductions in delay per unit
magnitude associated with each terminal link,
and M, and Mj are reinforcement magnitudes.
The basic idea is that reduction in delay to
reinforcement becomes reduction in delay per
unit magnitude of reinforcement. With these
assumptions, Houston (1991) demonstrated
that functional equivalence (and therefore SST)
may be violated. However, the models dis-
cussed by Houston, which involve relative re-
inforcement magnitude, cannot explain the in-
transitivitiesreported by Navarick and Fantino,
as Houston acknowledges (1991, p. 331). Na-
varick and Fantino’s (1972) intransitivities are
apparently due to within-schedule variability
in terminal-link delay of reinforcement.

Mazur (1984, 1986; Mazur & Coe, 1987)
and Houston (1991; Houston et al., 1987) pre-
sented examples of unidimensional models ca-
pable of predicting violations of transitivity.
As Houston (1991, p. 332) noted, models that
can predict transitivity violations cannot satisfy
simple scalability, because the mathematical
definition of SST is based on the assumption
of simple scalability (Tversky & Russo, 1969).
It is important to emphasize this point, because
if a model does not satisfy simple scalability,
SST cannot be expected to hold, and it is not
obvious what alternative forms of transitivity
might hold. As I shall show, the abandonment
of simple scalability is a necessary requirement
of accurately modeling the complexities of con-
current-chains choice.

Both Mazur’s (1984, 1986; Mazur & Coe
1987) and Houston’s (1991) reassessments of

P(4, B) =



190

Navarick and Fantino’s (1972, 1974) pessi-
mistic conclusions regarding the viability of
unidimensional, exact-choice probability mod-
els depend on the incorporation of schedule
interdependence in the utility function. Mazur
and Coe (1987) included schedule interde-
pendence in the definition of D;: A peck to
initial-link a both increases D, and decreases
D,. Houston (1991) includes schedule inter-
dependence explicitly through a term for rel-
ative reinforcement magnitude. Although it
might seem reasonable that the utility or sub-
jective value of a schedule is not determined
in isolation but rather in the context of the
alternative choices available to the organism,
this determination violates simple scalability
(Krantz, 1964, 1967; Suppes et al., 1989).

To see this violation, note that simple scal-
ability (Equation 1) contains two assumptions:
(a) that F is a monotonic function that is strictly
increasing in u(A4) and strictly decreasing in
u(B), and (b) that u is a function. Herrnstein’s
strict matching law (1961) is an example of a
choice model that satisfies these assumptions.
If, however, there is schedule interdependence
in choice—that is, if parameters of A and B
interact to determine u(4) and u(B)—then as-
sumption (b) is violated. For each value of 4
or B there is not a corresponding unique value
of u(A) or u(B) (i.e., u is not a function).

Schedule interdependence is related to con-
text of reinforcement, which has been inves-
tigated as an independent variable in studies
of contrast effects in multiple schedules (de
Villiers, 1977; Herrnstein, 1970; Williams,
1979; Williams & Wixted, 1986). Recently,
McLean found that local contrast in behavior
allocation in multiple-schedule components
varied as a function of the two schedules to-
gether, not individually: “These results ...
showed clear evidence of direct interaction
among reinforcer ratios from the two compo-
nents in determining behavior allocation”
(McLean, 1991, p. 90). Because there is a
consensus that “reinforcement is inherently
relativistic” (Williams, 1988, p. 215), it is re-
markable that context of reinforcement has not
been thoroughly considered in the analysis of
concurrent-chains choice.

CONTEXTUAL CHOICE

It is important to analyze the consequences
of Navarick and Fantino’s (1972) observed
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choice intransitivities carefully. First of all, as
Navarick and Fantino make clear, SST was
violated but WST was not. If WST is satisfied,
meaning that ordinal preference relationships
are preserved, then a unidimensional model is
still possible, but not one that meets the re-
quirements of simple scalability. In their call
for ordinal choice theories, Navarick and Fan-
tino (1974) therefore equate simple scalability
(and SST, substitutability, and functional
equivalence) with the ability to predict exact
choice probabilities. This conclusion is too
strong; as Houston (1991) demonstrated, uni-
dimensional models can predict transitivity vi-
olations and exact choice probabilities. So, if
simple scalability does not hold experimen-
tally, we need to reconsider the assumptions
underlying simple scalability before abandon-
ing the goal of a unidimensional, exact-choice
probability model.

One possibility is that choice may be mul-
tidimensional. Tversky (1969) showed that
when choice is multidimensional, WST as well
as SST may be violated. Sets of alternatives,
which differed on several dimensions, were
presented pairwise to human subjects for
choice. Tversky found that when two alter-
natives were difficult to discriminate on one
dimension, preference was often determined
by values on a second, less important dimen-
sion, producing violations of WST and SST.
A set of choice alternatives like these, that can
be broken into subsets with overlapping fea-
tures, is said to possess a “similarity structure”
(see Luce & Krumhansl, 1988, pp. 28-29;
Tversky, 1977).

A famous gedankenexperiment illustrating
multidimensional choice is discussed by Tver-
sky (1972): Suppose a human subject is offered
either a free trip to Paris or a free trip to Rome,
and is indifferent between them. Now if the
same subject is offered either a free trip to Paris
or a free trip to Paris plus one dollar, he or
she will prefer the trip to Paris plus one dollar.
For SST to be satisfied, however, the subject
must now prefer the trip to Paris plus one
dollar to the trip to Rome, which is contrary
to intuition. In Tversky’s “elimination by as-
pects” model (1972), a probabilistic, multi-
dimensional model designed explicitly to be
able to account for intransitivity, the subject
compares alternatives on dimensions selected
through a Markovian elimination process until
a difference is found. In the example above, if
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no difference is detected in destination, pref-
erence can be determined by differences in
money. Much recent work in decision theory
has concentrated on different types of proba-
bilistic, multidimensional choice models (see
Carroll & De Soete, 1991). However, because
the models contain a large number of estimated
parameters and new dimensions can be arbi-
trarily added to account for anomalous data,
probabilistic, multidimensional models are dif-
ficult to falsify (a problem that plagues eco-
nomics in general). Because no ordinal pref-
erence violations have been reported in the
concurrent-chains literature, parsimony re-
quires us to exhaust unidimensional models
before introducing the complexity of more than
one choice dimension.

A second possibility, the one that I will de-
velop, is, while continuing to assume F in
Equation 1 to be a monotonic function, to as-
sume no longer that u is a context-invariant
function. For u(x) to be a function, it must
represent a mapping of the numbers from x
in the function’s domain to a unique u(x) in
the function’s range. For a utility function,
every stimulus x must be associated with a
unique utility «(x). This assumption requires
that the utility of a given stimulus be invariant
across the set of all possible alternative stimuli
in a choice situation. To reiterate: If there are
contextual effects in choice, this assumption is
incorrect. If the utility of a terminal-link
schedule depends on factors other than the
schedule itself, its utility will not be invariant
across the set of alternatives. Two examples
of contextual effects are schedule interdepend-
ence, for which the utility of a schedule de-
pends on the schedule it is paired with, and
bias, for which position preference or other
procedural contingencies may affect utility
scaling separate from comparison of terminal-
link parameters. Modeling choice as contex-
tual therefore violates a key assumption un-
derlying simple scalability (Krantz, 1964, 1967;
Suppes et al., 1989)—that the utility of a stim-
ulus is invariant with respect to context.

Assuming that the utility of a schedule de-
pends on the choice context, the most general
form of the choice probability function be-
comes

P(4, B) = Flup(4),us(B)], ©

where up(A4) is the utility function of 4 in the
context of B, u,(B) is the utility function of B
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in the context of 4, and Fis a strictly increasing
monotonic function. To distinguish it from
simple scalability, Equation 9 can be referred
to as contextual scalability.

Although Equation 9 is more complex than
simple scalability, it still assumes that choice
probability, F, is a monotonic function, and
that an interval scale of utility exists for each
alternative. In a later section I shall show how
the assumptions underlying simple scalability
(Equation 1) can be relaxed in a systematic
fashion to yield Equation 9. The analysis will
demonstrate that a hierarchy of contextual ef-
fects is possible beyond simple scalability, a
result that is directly relevant to the “complex
contingencies of the concurrent-chains proce-
dure” (Houston, 1991, p. 323).

As an example of a contextual, unidimen-
sional approach to modeling choice, I will in-
troduce a model based on an extension of the
generalized matching law (Baum, 1974) in-
corporating relative temporal variability of re-
inforcement. My purpose is not to claim that
the specific model solves all the problems of
concurrent-chains choice (see Davison, 1987),
but rather to illustrate the value of a contextual
approach: Through the abandonment of sim-
ple scalability, a contextual model can both
predict the intransitivities reported by Navar-
ick and Fantino (1972) and choice between
fixed and variable alternatives in concurrent
chains (Killeen, 1968). A brief historical re-
view of the search for a VI-FI transformation
rule will be presented first.

“RELATIVE TEMPORAL
VARIABILITY”: A FIXED-
VARIABLE EQUIVALENCE
RULE

Herrnstein (1964a) demonstrated that pi-
geons preferred VI to FI schedules when the
schedules provided equal mean reinforcement
rates. Initial links in Herrnstein’s (1964a) ex-
periment were equal VI 60 s, and terminal
links were VI 15 s and FI 15 s. All subjects
demonstrated substantial preference (80% of
initial link responses) for the VI 15-s initial
link. Herrnstein stated that the arithmetic mean
of the terminal-link interreinforcement inter-
vals could not explain his results, and neither
could the geometric mean, which might have
been successful if pigeons had been sensitive
to the logarithm of the intervals and not their
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actual values. Herrnstein concluded, “unhap-
pily, the task of discovering the correct prin-
ciple of (VI-FI) transformation, while cer-
tainly worthwhile, seems forbidding” (1964a,
p. 181). Killeen (1968) presented pigeons with
a concurrent-chains situation in which one ter-
minal link was FI and the other was VI. Kil-
leen searched for schedule values that would
result in equal preference, reasoning that
“whenever an organism is indifferent between
different schedules of reinforcement, appro-
priate measures of reinforcement frequency for
these schedules will be equal” (Killeen, 1968,
p- 264). Killeen fit equations of the following
form to his data:

12 1/r
M, = [; 2 y.-’] :

=1

(10)

Equation 10 represents a class of generalized
means (Hardy, Littlewood, & Polya, 1934).
Measures of central tendency, such as the root-
mean-square, arithmetic mean, and harmonic
mean, are obtained by setting » = 2, 1, and
—1, respectively. The geometric mean is ob-
tained in the limit as r approaches zero. Killeen
(1968) found that an exponent of —1 fit his
data, and suggested the harmonic mean, which
weights shorter intervals more heavily than the
arithmetic mean, as an appropriate VI-FI
transformation rule.

After such an auspicious beginning, the
search for a simple VI-FI transformation rule
soon became considerably more complicated.
Davison (1969) used mixed- and fixed-interval
schedules in concurrent chains and found that
an exponent of —3 was needed (instead of —1)
to explain pigeons’ preferences. Duncan and
Fantino (1970) suggested that the exponent
might need to be a free parameter depending
on the length of the shortest interreinforcement
interval, but Davison (1972) found that this
rule did not hold generally. As Mazur put it,
“the search for a transformation rule to com-
pare fixed and variable schedules became pro-
gressively more confused” (1984, p. 427).

Navarick and Fantino’s (1972) report of in-
transitive choice between fixed and variable
schedules cast serious doubt on the viability of
VI-FI transformation. Their conclusions were
clear and unambiguous: “The empirical fact
of intransitivity across aperiodic and periodic
schedules argues against the possibility of dis-
covering a single appropriate transform for
determining periodic equivalents” (1972, p.
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400). Navarick and Fantino reiterated this po-
sition in a series of articles (1974, 1975, 1976;
Fantino & Navarick, 1974), and VI-FI trans-
formation essentially disappeared from the lit-
erature for 10 years, as did choice transitivity.
It is natural that questions of choice transitivity
and VI-FI schedule transformation should go
hand in hand, because unidimensional choice
models that satisfy simple scalability must rep-
resent fixed and variable schedules on a com-
mon scale. If VI and FI schedules are not
functionally equivalent, as Navarick and Fan-
tino (1974) concluded, then it appears to be
impossible to discover a general VI-FI trans-
formation rule, which is necessary for a model
that can predict choice between fixed and vari-
able delays.

Recall that SST cannot be expected to hold
when choice is modeled contextually, because
an assumption underlying SST, that u is a
context-invariant function, is violated. If we
allow, as in Equation 9, the utility functions
to be uz(A) and u,(B), then VI and FI sched-
ules can be represented on a common scale.
But the scale is not invariant with respect to
context. It depends upon the particular choices
presented to the organism.

It is an empirical fact that behavior is sen-
sitive to temporal variability of reinforcement
(Davison, 1969; Duncan & Fantino, 1970;
Herrnstein, 1964a; Killeen, 1968). It is an
empirical question whether behavior is sen-
sitive to absolute or relative temporal vari-
ability of reinforcement. Given that “rein-
forcement is inherently relativistic’” (Williams,
1988, p. 215), it is a reasonable conjecture that
relative rather than absolute temporal vari-
ability is likely to influence behavior.

I shall now derive a simple, generalized
measure of the effect of relative within-sched-
ule temporal variability of reinforcement. The
measure results in a natural extension of the
generalized matching law (Baum, 1974), which
will then be applied to archival data of choice
between fixed and variable delays. Specifically,
I shall demonstrate that the model can predict
the transitivity violations reported by Navarick
and Fantino (1972) and choice between fixed
and variable delays in concurrent chains (Kil-
leen, 1968).

Scalar timing theory (Gibbon, 1977, 1991;
Gibbon, Church, Fairhurst, and Kacelnik,
1988) maintains that the functional relation-
ship between temporal intervals and behavior
is invariant with respect to scale. One impli-
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cation of the scalar property of timing is that
the ratio of standard deviation to mean latency,
called the coefficient of variation, remains con-
stant over a range of absolute latencies. Rec-
ognizing the scalar quality of timing, it is rea-
sonable to assume that the effect on behavior
due to within-schedule temporal variability of
reinforcement will be related to the schedule’s
coefficient of variation:

B=Z. (11)
Assume that as the coefficient of variation in-
creases, preference for that schedule should
increase. We are interested in a measure of
relative temporal variability, which is given by
the ratio of the coefficients of variation of the
left and right schedules in question:

é& ~ ou/kL
Br  or/mx

There is a potential difficulty with Equation
12 in that the theoretical o of a fixed schedule
is zero. However, for obtained o to equal zero,
the subject’s first peck after a reinforcer is
scheduled must have a constant latency from
when the reinforcer is scheduled (in the case
of FI schedules) and a constant time to rein-
forcer delivery (in the case of FT and FI sched-
ules), which is impossible except as a limiting
case. Therefore, the obtained ¢ can be ap-
proximated by adding a small constant: ¢ +
e. For our purposes we will set e equal to one.
After simple algebraic manipulation, the rel-
ative temporal variability becomes

By, _ (pe)\foL t+ 1
BR ML 0R+1.

Equation 13 indicates that there will be two
components to relative temporal variability—
a term related to the ratio of the schedule means
and a term related to the ratio of the schedule
standard deviations—and that these terms will
combine multiplicatively. Because we do not

(12)

(13)

know how sensitive behavior is to Equation .

13, analogous to Baum’s (1974) generalized
matching law, we will use the generalized tem-
poral variability ratio

By _, (mx)" (ot 1Y
By ML or +1 ’

where b equals the bias and a1 and a2 are the
sensitivity of the mean and standard deviation

(14)
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of terminal-link delay to reinforcement ratios,
respectively.

Relative temporal variability is consistent
with a scalar timing analysis (Gibbon, 1977,
1991). In fact, relative temporal variability ex-
tends scalar timing from the perception of in-
tervals to the perception of variability of in-
tervals. Although we have used the normalized
second moment about the mean (coefficient of
variation), in theory any normalized moment
will serve equally well. As Gibbon notes, “the
strongest form of the scalar property requires
that the nth root of the nth moment be pro-
portional to the mean for all n” (1991, p. 13).

Equation 14 can be rewritten in choice pro-
portion form:

B, _ bug?' (o, + 1)
By + By bug(op +1)2 + p(og + 1)
(15)
Note that Equation 15 is of the form
P4, B) = —224) (16)

up(d) + uu(B)’

Equation 16, which is analogous to the strict
utility model (Equation 2), satisfies contextual
scalability (Equation 9) rather than simple
scalability (Equation 1). Therefore, Equation
16 can be referred to as a contextual utility
model. For the moment it is important to rec-
ognize only that Equation 16 satisfies the def-
inition of contextual scalability and not simple
scalability; however, later I will show that de-
pending on features of the set of choice alter-
natives—that is, the set of alternatives from
which pairs are selected for presentation to the
organism and over which utility is to be
scaled—Equation 16 may deviate from simple
scalability in a more predictable and systematic
fashion. (Note that Houston’s, 1991, modified
delay-reduction model, Equation 8, which in-
corporated schedule interdependence and could
predict intransitivity, is also the same form as
Equation 16.)

I shall now apply Equation 15 to archival
data from Navarick and Fantino (1972) and
Killeen (1968), in order to demonstrate that
the relative temporal variability model can
predict transitivity violations and choice be-
tween fixed and variable alternatives. As pre-
sented here, Equation 15 is not intended as a
complete model of choice in concurrent chains,
because it includes no term for initial-link ef-
fects. Because Navarick and Fantino (1972)
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Fig. 1. Obtained choice versus predicted choice. Rel-

ative temporal variability model, Equation 15, fitted to
data for VI-FI functional equivalence tests for Birds 1, 2,
and 3 in Navarick and Fantino (1972). Estimated model
parameters and percentage of variance explained for each
bird are given in Table 1.

and Killeen (1968) arranged equal VI 56-s
initial links, however, Equation 15 may be
able to account for their data using only ter-
minal-link parameters. These data sets were
chosen for reanalysis for this model because
Killeen (1968) reported discrete interrein-
forcement intervals (IRIs) for the terminal-
link VI schedules; therefore, standard devia-
tions can be calculated. The VI 54-s and VI
23-s schedules arranged by Navarick and Fan-
tino (1972) were identical to those used by
Killeen (1968).

Equation 15 was fitted to all the data for
VI versus FI schedules reported by Navarick
and Fantino (1972). The procedure was as
follows: Initially, the sensitivity exponent for
mean delay, al, was set equal to one and b
and a2 were fitted using least squares regres-
sion. This provided an adequate account of the
data for 4 of 6 subjects. For the remaining 2
subjects, al was allowed to vary and all three
parameters were estimated using a nonlinear
optimization procedure (MathWorks, Inc.,
1990).

As can be seen from Figures 1 and 2 and
Table 1, Equation 15 provided an adequate
account of the data from Navarick and Fan-
tino’s (1972) conditions comparing FI and VI
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Fig. 2. Obtained choice versus predicted choice. Rel-
ative temporal variability model, Equation 15, fitted to
data for VI-FI functional equivalence tests for Birds 4, 5,
and 6 in Navarick and Fantino (1972). Estimated model
parameters and percentage of variance explained for each
bird are given in Table 1. Table 2 lists obtained and
predicted choice probabilities from a transitivity violation
for Bird 5.

schedules. Although only 63% of the variance
was accounted for (VAC) in Bird 5, this may
have been because obtained preference had a
more restricted range for Bird 5 than for the
other subjects. There were 10 data points for
Bird 1, eight for Bird 5, seven for Bird 3, six
for Bird 4, and four for Birds 2 and 6. There
appear to be no systematic deviations from
predicted values in Figures 1 and 2. All in all,
Equation 15 provides an acceptable fit to these
data: Averaged across the 6 subjects, VAC =
84%.

Table 2 lists obtained and predicted choice

Table 1

Estimated parameters obtained and percentage of variance
explained (VAC) by Equation 15 when fitted to data from
Navarick and Fantino (1972).

Number of
VAC free

Subject b al a2 (%) parameters
Bird1 120 1 0.34 89 2
Bird 2 1.88 1 0.39 99 2
Bird3 178 1 0.32 84 2
Bird4 157 047 0.15 77 3
Bird5 163 1 0.50 63 2
Bird6 150 2 0.77 90 3
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Table 2

Obtained and predicted choice values comprising a functional equivalence violation in the study
of Navarick and Fantino for Bird 5, Conditions 1, 2, and 3 (1972, p. 398).

Condition Schedule pairing Obtained Predicted
1 VI 54 s (A) FI 4 s (B) 0.49 (A) 0.51 (A)
2 FI 4 s (B) VI 23 5 (C) 0.59 (C) 0.58 (C)
3 VI 54 s (A) VI 235 (C) 0.44 (C) 0.45 (C)

Deviation from transitivity (2 — 3) 0.15 0.13

probabilities for a functional equivalence vi-
olation from the data for Bird 5 (Navarick &
Fantino, 1972, p. 3982). Table 2 demonstrates
that Equation 15 is able to predict the exact
type of intransitivity reported by Navarick and
Fantino (1972).

Equation 15 was next fitted to data from
Killeen (1968). The estimation procedure was
the same as that used for data from Navarick
and Fantino (1972). Figure 3 and Table 3
demonstrate that Equation 15 provided an ad-
equate account of Killeen’s data. Three of the
4 subjects’ data required two free parameters;
1 subject’s data required three free parameters.
There were six data points per subject. Av-
eraged across the 4 subjects, VAC = 81%. Note
that the values of the bias parameter, 5, were
significantly higher for 3 of the 4 subjects than
any of the estimated bias values obtained from
Navarick and Fantino (1972). This makes
sense because whereas Navarick and Fantino
varied the location of the fixed and variable
schedules (left or right key) in an attempt to
control for position preference, Killeen always
arranged the variable schedule on the right key
and the fixed schedule on the left key. Because
Killeen did not control for position preference,
key bias may have developed.

Taken together, the fits of the data from
Navarick and Fantino (1972) and Killeen
(1968) provide strong evidence that Equation
15 can account for preference for FI versus VI
schedules in the concurrent-chains procedure,
at least when initial links are equal and con-
stant across conditions. Equation 15 may
therefore represent a contextual fixed-variable
equivalence rule for concurrent chains.

2 There is a typographical error in Table 4, page 398,
Navarick and Fantino (1972). Bird 5, Condition 7, should
read “VI 23 (C)” instead of “FI 23 (C).” This has been
confirmed by D. J. Navarick (personal communication).

If Equation 15 can be extended to include
initial-link effects, it may provide an accept-
able account of results across the full concur-
rent-chains procedure. As Davison (1987)
noted, a candidate model for concurrent chains
should reduce to concurrent VI VI for 0-s
delays in both terminal links, and should han-
dle reinforcer frequency effects in the case of
unequal initial links. Because Equation 15 is
based on the generalized matching law (Baum,
1974), an extension of it may be able to meet
these criteria.

To sum up to this point, I have demon-
strated that an extension of the generalized
matching law incorporating relative temporal
variability (Equation 15) is capable of pre-
dicting transitivity violations and choice be-
tween fixed and variable delays in concurrent
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Fig. 3. Obtained choice versus predicted choice. Rel-
ative temporal variability model, Equation 15, fitted to
data from Killeen (1968) comparing VI and FI terminal
links. Estimated model parameters and percentage of vari-
ance explained for each bird are given in Table 3.
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Table 3

Estimated parameters obtained and percentage of variance
explained (VAC) by Equation 15 when fitted to data from
Killeen (1968).

Number

of free

VAC  para-

Subject b al a2 (%) meters
Bird 239 4.71 1 0.76 85 2
Bird 276 1.59 1 0.51 82 2
Bird 277 7.50 1.25 0.93 83 3
Bird 321 5.91 1 0.86 75 2

chains. I now consider some of the broader
implications of these results for theories of
choice.

First, the conclusions Houston (1991) draws,
after his analysis of unidimensional models
capable of predicting intransitivity, should be
noted. Citing Houston et al. (1987), who
showed that substitutability (Equation 6) can
be violated because “the optimal allocation of
initial links does not involve a comparison of
the terminal links, but a comparison of all
possible allocations” (p. 139), Houston (1991)
argues that initial-link allocation in concurrent
chains may not be an appropriate operation-
alization for preference. “[Initial-link] allo-
cation does not give us some sort of relative
value of the terminal links” (Houston, 1991,
P. 332). “Violations of SST enable us to elim-
inate models of the form [of Equation 2, strict
utility]. This indicates that it is not possible to
treat the links in isolation, but this could be a
consequence of the chains procedure” (p. 332).
Houston concludes by quoting Davison’s call
for caution in working with the concurrent-
chains procedure: “Because of the complex in-
teractions within concurrent chains, a more
gentle movement is required away from the
known (e.g., concurrent VI VI schedules) into
the still relatively unknown concurrent-chains
procedure” (Davison, 1987, p. 234).

I have shown that when assumptions un-
derlying simple scalability (Krantz, 1964, 1967;
Suppes et al., 1989) are changed, a contextual
model can predict intransitivity in choice be-
tween fixed and variable delays. Strong sto-
chastic transitivity (Tversky & Russo, 1969)
and functional equivalence (Navarick & Fan-
tino, 1972) can no longer be expected to hold.
Rather than assume that initial-link allocation
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does not accurately reflect terminal-link pref-
erence in concurrent chains, as Houston (1991;
Houston et al., 1987) argued, we can, through
changing our underlying assumptions, model
concurrent-chains choice as contextual. Al-
though Navarick and Fantino’s (1972) ob-
served intransitivities require elimination of
models of the form of Equation 2 (strict util-
ity), they do not require elimination of models
of the form of Equation 16 (contextual utility).
A mathematical analysis of the consequences
of our changed assumptions is needed in order
to discover what forms of choice transitivity
might be expected to hold given contextual
scalability.

Although SST, as defined by Tversky and
Russo (1969), is not applicable to a contextual
utility model, other forms of transitivity can
be tested, appropriate for the assumptions in
the model. Because the model assumes utility
to be unidimensional and multiattribute, in-
tuitively SST should hold for two schedules
that differ only on a single attribute. For ex-
ample, given two schedules B and C, each pos-
sessing several attributes, let P(B, C) > .50.
Then let schedule 4 be found by setting all
attributes equal to B and varying only one
attribute so that P(4, B) > .50. SST is then
expected to hold (Equation 4).

Therefore, the violations of transitivity re-
ported by Navarick and Fantino (1972) do not
render impossible a unidimensional choice
model, but instead require us to change our
underlying assumptions. Rather than eschew
the full complexity of the concurrent-chains
procedure, as Davison (1987) and Houston
(1991) recommended, it is a natural general-
ization to move from a model satisfying simple
scalability (Equation 1) to a model satisfying
contextual scalability (Equation 9). Mathe-
matical work needs to be done to put the con-
textual model on a firm axiomatic foundation
and to derive appropriate empirically testable
transitivity hypotheses. The concurrent-chains
procedure is an excellent choice for experi-
mental research on such a model because of
the many independent variables the researcher
can manipulate. Consistency of obtained pa-
rameters and accuracy of prediction across or-
ganisms and schedules will ultimately deter-
mine the theoretical validity of the assumptions
behind relative temporal variability and con-
textual choice in general.
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BEYOND SIMPLE SCALABILITY

In this final section I shall demonstrate how
the assumptions underlying simple scalability
can be relaxed in a systematic fashion to yield
a hierarchy of contextual effects in choice. Two
main classes of context effects will be identi-
fied: bias from procedural contingencies and
schedule interdependence effects on attribute
sensitivity. The analysis will reveal that Na-
varick and Fantino’s (1972) transitivity vio-
lations can be satisfactorily explained by bias
from procedural contingencies. If attribute
sensitivity is context dependent, however, a
model capable of predicting violations of or-
dinal preference is possible. A behavioral al-
ternative to probabilistic, multidimensional
choice theories may therefore be feasible, be-
cause it was empirical violations of ordinal
preference (and SST) that convinced many
psychologists to abandon deterministic, psy-
chophysical models (e.g., Luce, 1959) in favor
of probabilistic, multidimensional models
(Tversky, 1972; see also Luce, 1977; Marley,
1991).

Simple scalability (Suppes et al., 1989) can
be considered as a particular relationship be-
tween two scaling procedures. Let us rewrite
Equation 1 as

P(4, B) = Flu'(4), w"(B)]  (17)

where P is defined for all 4, B C S (ie., 4
and B are a given pair of alternatives presented
to an organism from a set of alternatives, ),
and P(4, B) is the probability that 4 will be
chosen when paired with B. Simple scalability
is satisfied if and only if v’ = u” for all 4, B
C S. If we relax this assumption (i.e., assume
u' #* u” for at least some 4, B C S), because
u' and u” are interval scales the relationship
between ' and »” must fall into one of three
classes:

Class 1, ratio invariance: u’ = mu” for all
A, BCS.

Class 2, interval invariance: u' = mu” + n
for all A, B C §.

Class 3, no invariance: Class 2 does not hold
for at least some 4, B C S.

Classes 1 and 3 are of particular interest. (Note
that Class 2 will be subsumed in Class 1 if '
and u” are assumed to be ratio scales.) The
relative temporal variability model, Equation
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15, demonstrates Class 1 (ratio) invariance.
To see that this is so, we can rearrange Equa-
tion 15 to become:

_B
B, + By

_ bl(o, + 1%/ ]
blor + 1%/ + [(on + D2/x]
(18)

Note that Equation 18 satisfies Equation 17,
Class 1 invariance, with m = b and u” = (¢
+ 1)°2/u*!. Expressed this way, coefficient of
variation becomes the independent variable.
The coefficient of variation is an interaction of
parameters within a given schedule, so Equa-
tion 18 does not violate simple scalability un-
less there is an effect from bias. Therefore,
although Equation 15 appears fully contextual
(i.e., utility is the mean delay of one alternative
multiplied by the standard deviation of the
other), whenever it is possible to separate the
attributes of the two alternatives algebraically,
simple scalability can be satisfied.

In general, for a model of the form of the
concatenated generalized matching law rep-
resenting binary choice between alternatives
possessing n attributes:

BL - xL]ai
—_ = b —_ s
Br xI-:!: [xk,.

simple scalability will hold whenever b = 1,
and Class 1 invariance will hold when 6 # 1.

Within the framework of the generalized
matching law, violations of SST can occur if
the effect from bias is large enough. This makes
intuitive sense because bias has an effect on
the dependent variable separate from any of
the attributes of the choice alternatives. There-
fore, because Equation 15 was able to provide
an acceptable fit to the data from Navarick
and Fantino (1972), their transitivity viola-
tions can be explained as the result of bias.
Certainly, some of the effects on choice of the
“complex contingencies of the concurrent-
chains procedure” (Houston, 1991, p. 323) can
be construed as bias. Position preference may
develop, and if obtained reinforcement rates
are not equal to programmed rates in the initial
links, relative initial-link rate may be affected
by factors other than terminal-link parame-
ters. As represented in Equation 15, bias can

(19)
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be viewed as a second-order ratio scaling of
schedule utility, where a first-order scaling im-
plies a comparison of only terminal-link pa-
rameters.

Whether contextual effects in concurrent-
chains choice (i.e., deviations from simple scal-
ability) can be limited to bias resulting from
procedural contingencies is an empirical ques-
tion, and is still an open one. The fact that
Equation 15 was able to predict Navarick and
Fantino’s (1972) SST violations employing
only a bias term does not rule out the possi-
bility that other context effects were present
in their procedure.

More interesting and provocative, perhaps,
is Class 3 (no invariance transformation). This
can occur when there is schedule interdepend-
ence in determining utility—for example, if
the set of alternatives § possesses a similarity
structure (Luce & Krumhansl, 1988). The ex-
ample cited earlier from Tversky (1972), “trip
to Paris versus trip to Rome,” has such a sim-
ilarity structure. Attributes of alternatives in-
teract to determine how sensitive the subject’s
behavior is to difference on a particular at-
tribute: If the difference in destination is small,
preference is more sensitive to differences in
money; if the difference in destination is large,
preference is less sensitive to differences in
money. As mentioned above, empirical results
of this nature (which included so-called “cir-
cular triads” or violations of ordinal prefer-
ence) convinced many psychologists to aban-
don deterministic, psychophysical approaches
to choice (Luce, 1959) in favor of probabilistic,
multidimensional models (Tversky, 1972).

However, if we allow sensitivity to a par-
ticular attribute to be determined by the choice
context, then an “essentially unidimensional”
(see below) model of the form of Equation 14,
incorporating also relative magnitude of re-
inforcement, can predict violations of ordinal
preference. There is evidence that stimulus
sensitivity is influenced by context. McLean
(1991) analyzed local contrast in multiple
schedules using the generalized matching law
and found that the sensitivity to relative re-
inforcement rate varied as a function of the
particular schedule components. Davison and
Jenkins (1985) advanced a model of contin-
gency discriminability, a kind of signal-detec-
tion equivalent of the generalized matching
law (Baum, 1974), in which discriminability
is analogous to sensitivity. Employing this
model, Davison and McCarthy (1989) ana-
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lyzed the effect of relative reinforcement on
color detection by pigeons and found interac-
tions between reinforcement and stimulus pa-
rameters in determining discriminability.

The general form of a model capable of
predicting violations of ordinal preference will
be Equation 19, where a; = f,(x1,,Xg15- - »XLns
xgr,). The sensitivity exponents are now con-
textually determined.

Consider the following example. Three
schedules are presented pairwise to a pigeon:
a VI 50 s with ¢ = 40 and reinforcement of
3-s access to grain (magnitude M = 1) (Sched-
ule A), an FI 18 s with ¢ = 0 and reinforce-
ment of 3-s access to grain (M = 1) (Schedule
B), and an FI 30 s with ¢ = 0 and reinforce-
ment of 4-s access to grain (M = 1.33) (Sched-
ule C). For simplicity, assume bias and sen-
sitivity to relative mean delay and relative
magnitude to be equal to one. Assume, how-
ever, that sensitivity to variability in delay is
context dependent: Preference is more sensitive
to differences in variability when the rein-
forcement magnitudes are equal and less sen-
sitive to differences in variability when the
reinforcement magnitudes are unequal. Spe-
cifically, let a2 = .33 when M = My, and let

a2 = .15 when M; # Mjg. Then the function
for preference becomes

B,
Bg
+1\’°(M
Br)[OL L
— —], for M, =M
(#L) (UR + ) (MR) - *
15 .
pr\foL + 1 M,
= — #
(#L)(O’R T 1) (MR ) for ML MR

(20)

—

Calculating the choice probabilities for each
of the three pairings gives P(4, B) = .55, P(B,
C) = .56, and P(4, C) = .44. In other words,
A is preferred to B and B is preferred to C,
but C is preferred to A: a “circular triad,” a
clear violation of ordinal preference. In gen-
eral, a reversal of expected ordinal preference
between 4 and C can be obtained when 4 and
B share one attribute, B and C share another,
and the sensitivity to at least one of those at-
tributes is context dependent.

This result shows that weak stochastic tran-
sitivity (WST; Equation 3) was violated by
Equation 20. Previously, I referred to Equa-
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tion 20 as an “essentially unidimensional”
model. Luce and Suppes (1965) have shown
that the assumptions of monotonicity and uni-
dimensionality are sufficient to guarantee
WST. Because Equation 20 is monotonic and
violates WST, it cannot satisfy Luce and
Suppes’ (1965) definition of unidimensional-
ity. But Equation 20 combines choice alter-
native attributes into a single quantity that
determines preference, hence its essentially
unidimensional nature. Formally, Equation
20 does not admit the existence of a context-
invariant ordinal utility scale, assumed by Luce
and Suppes in their definition of a weak utility
model (1965, p. 333).

The preceding analysis shows that it may
be possible to formulate a deterministic model
of choice, based only on observable parameters
and postulating no intraorganism source of
variability, to explain data that heretofore have
required probabilistic, multidimensional mod-
els (e.g., Tversky, 1972). Luce and Krum-
hansl, in a recent survey of scaling and axio-
matic measurement, noted that the “class of
[multidimensional, probabilistic] models de-
viates rather markedly from the measurement
models with which we began, which associated
a single number with each alternative. At pres-
ent it is not clear how, within the measurement
framework, to deal with the phenomenon of
choice among a set of alternatives that has a
similarity structure” (1988, pp. 28-29). Equa-
tion 20 may point towards a solution to this
problem.

The crucial empirical question will be
whether the context dependence of the sensi-
tivity exponents is predictable. Through care-
ful experimental analysis, invariances may
emerge. For example, differences in relative
magnitude of reinforcement may have a pre-
dictable effect on sensitivity to relative vari-
ability of reinforcement. If such invariances
can be found, perhaps even a functional anal-
ysis of complex human choice behavior might
be possible: a deterministic, general, psycho-
physical model of choice based on the matching
law.

CONCLUSION

Navarick and Fantino’s (1972) discovery of
intransitivity in concurrent-chains choice pre-
sented major difficulties for unidimensional
choice models and the search for a fixed-vari-
able equivalence rule. Although Navarick and
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Fantino (1974) recommended that a unidi-
mensional model capable of predicting exact
choice probabilities be abandoned in favor of
an ordinal choice model, researchers have be-
gun to realize that intransitivity may be a nat-
ural result in concurrent chains (Mazur &
Coe, 1987; Houston, 1991). I have shown that
when choice is modeled contextually, an as-
sumption underlying traditional models—sim-
ple scalability—is violated. SST cannot be ex-
pected to hold for a model that does not satisfy
simple scalability, because simple scalability is
assumed in the mathematical definition of SST
(Tversky & Russo, 1969).

A contextual scalablllty (Equation 9) has
been defined that generalizes simple scalability
(Equation 1) by allowing preference for a
schedule to be determined by factors other than
the schedule itself. As an example of a con-
textual utility model, relative temporal vari-
ability has been proposed as an extension of
the generalized matching law (Baum, 1974).
The model can predict both the transitivity
violations reported by Navarick and Fantino
(1972) and choice between fixed and variable
delays in the concurrent-chains procedure
(Killeen, 1968).

The relative temporal variability model de-
parts from simple scalability in one of two
ways. Bias, perhaps due to complex procedural
contingencies, may affect scaling of terminal-
link parameters. This departure from simple
scalability is sufficient to predict Navarick and
Fantino’s (1972) transitivity violations. But
contextual effects in choice may be more pro-
found. Similarity structures among choice al-
ternatives may systematically affect sensitivity
to various attributes. An extension of the gen-
eralized matching law that incorporates rela-
tive temporal variability and relative reinforce-
ment magnitude has been shown to be able to
predict ordinal preference violations in pigeons
when such a similarity structure is present. It
may be possible eventually to extend this model
to complex human choice behavior.

Contextual choice, construed as an exten-
sion of the generalized matching law, offers a
natural framework for the incremental incor-
poration of additional parameters into the
choice model. This can be accomplished by
varying the parameter in question (e.g., rela-
tive reinforcement magnitude) and experi-
mentally determining the control the param-
eter exhibits over choice. The parameter can
then be incorporated into the model, and should



200

continue to demonstrate similar control over
behavior when other attributes are varied. A
unidimensional, multiattribute model is in-
trinsically additive, because an arbitrary num-
ber of parameters (attributes) can be added to
account for observed behavior without sacri-
ficing unidimensionality.

A unidimensional, multiattribute, contex-
tual model of concurrent-chains choice seems
to be a logical, parsimonious, and necessary
next step. Davison (1987) concluded in a re-
cent review that of three competing models
(Davison & Temple, 1973; Killeen, 1982;
Squires & Fantino, 1971) tested for fit with
10 archival data sets, “all three described ini-
tial-link response allocation poorly” (p. 239).
Rather than eschewing the complexities of the
concurrent-chains procedure, as Davison
(1987) recommended, perhaps through ex-
plicitly modeling choice as contextual, a com-
plete functional analysis of behavior in the
concurrent-chains procedure can be obtained.

But beyond an acceptable, comprehensive
model of choice on concurrent chains, an ex-
perimental analysis of context effects may ul-
timately lead to a deterministic, general, psy-
chophysical model of human choice that can
stand as a behavioral alternative to probabi-
listic, multidimensional choice models.
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