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Quantitative analysis permits the isolation of invariant relations in the study of behavior.
The parameters of these relations can serve as higher-order dependent variables in more
extensive analyses. These points are illustrated by reference to quantitative descriptions of
performance maintained by concurrent schedules, multiple schedules, and signal-
detection procedures. Such quantitative descriptions of empirical data may be derived
from mathematical theories, which in turn can lead to novel empirical analyses so long as
their terms refer to behavioral and environmental events. Thus, quantitative analysis is an
integral aspect of the experimental analysis of behavior.
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The first quantitative, parametric analysis
of performance on concurrent variable-
interval schedules (VI VI) was published by
Findley in 1958. The study is most often
cited for its procedure: the use of an explicit
changeover response to alternate between
schedules. Findley varied one or both
schedules, and reported the proportions of
time spent by his pigeons working on one or
the other of the alternatives, in relation to
the scheduled interval between reinforcers
on each alternative (see his Figures 3 and 4).
When these data are reexpressed as ratios of
times spent working on the two alternatives
and are plotted in relation to the ratios of
scheduled reinforcement rates on double-
logarithmic axes, the linear functions por-
trayed in Figure 1 result. Since 1958, many
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studies of concurrent performances have
reported data in the form of Figure 1, and
the linearity of the relation between log
ratios of reinforcement rates and times or
responses has been confirmed repeatedly
with several species and procedural varia-
tions (Baum, 1979). This paper will argue
that the search for data transformations that
reveal simple and general functional rela-
tions of this sort, and that lend themselves to
mathematical expression, is an essential
component of the experimental analysis of
behavior now and for the future.

Analyses of concurrent performances and
related topics will be used to exemplify this
argument because of the extensive data base
and theoretical literature in that area. Other
kinds of experiments and quantitative form-
ulations could serve as well for the purpose,
and the present emphasis is in no way in-
tended to negate their value.

ON INVARIANCE

The principal business of behavior analy-
sis is to isolate and describe regularities in
the interaction of behavior and environ-
ment. In the first instance, this involves the
identification of variables that determine
some aspect of behavior in complex situa-
tions. Once such a variable has been iden-
tified, systematic manipulation often yields
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Fig. 1. Ratios of times spent responding on two

concurrent VI schedules as a function of the ratios of
scheduled reinforcement rates, for three pigeons in
Findley's (1958) switching-key experiment. Both axes
are logarithmic.

data with great regularity. If the numerical
data and the variables affecting them can be
transformed to provide summary accounts
that are invariant with respect to other fac-
tors in the situation, then we have in fact
achieved effective specifications of both
behavior and the controlling environment.

Stevens (1951) introduced his argument
for the centrality of the concept of invariance
in science with a quotation from Keyser: "In-
variance is changelessness in the midst of
change, permanence in a world of flux, the
persistence of configurations that remain the
same despite the swirl and stress of countless
hosts of curious transformations" (from
Stevens, 1951, p. 19). Behavior is particu-
larly beset by the swirl and stress of countless
hosts of variables, and its invariances are to
be cherished.

Invariances may be observed at several
levels. First, qualitative invariances may be
identified in patterns of responding. For ex-
ample, cumulative records of performance
on fixed-interval (FI) schedules of reinforce-
ment are substantially similar across tem-
poral parameters, reinforcers, and species,
including human infants (Lowe, Beasty, &

Bentall, 1983). Indeed, this invariance is so
pervasive that its failure to occur routinely in
adult humans has led to some intriguing
studies. For example, Matthews, Shimoff,
Catania, and Sagvolden (1977) attempted to
duplicate some aspects of research with non-
verbal organisms by omitting the usual in-
structions and arranging the equivalent of a
consummatory response for their adult hu-
man subjects. However, they obtained only
infrequent evidence of scalloping despite ef-
fective control by interval (as opposed to
ratio) contingencies. In a variation of this
approach, Buskist, Bennett, and Miller
(1981) employed food as the reinforcer
(rather than the usual points) and varied ex-
plicit instructional contingencies across

groups of subjects. They obtained moderate
scalloped patterns in some subjects under
one of their instructional constraints. Al-
though it is clear that much work is needed
to identify the determiners of Fl response
patterns in adult humans, the point here is
that the breakdown of an invariance can
serve as an effective occasion for such
research.
A second level of invariance involves

quantitative relations. With reference to the
example of Fl performance, it is often found
that the time of transition from pausing to
responding bears a simple proportional rela-
tion to the length of the interval when it is
varied within an experiment (e.g., Nevin,
1973; Schneider, 1969; but see Lowe, Har-
zem, & Spencer, 1979). This, then, is an ex-
ample of an invariant relation across interval
values within an experiment. Such a result
gains in importance to the extent that a
similar proportional relation describes the
data of systematic replications with other
species, responses, and reinforcers. If the
constant of proportionality is itself constant
across experiments, a quite high level of in-
variance - parameter invariance - is demon-
strated. A yet higher level, the invariance of
a parameter that enters into a number of dif-
ferent quantitative relations, has been
achieved in physics (for example, Planck's
constant and the speed of light), but for the
present we may have to be content with in-
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variances at the level illustrated in Figure 1.

THE GENERALIZED MATCHING LAW

By inspection, it appears that the func-
tions of Figure 1 do not deviate systemati-
cally from linearity. Therefore we can de-
scribe the data with the equation

B1 = CtA ' (1)
B2 V J

or, in the logarithmic form of Figure 1,

log -logog ()+ logc, (2)
~B2)2

where B1 and B2 refer to behavior allocation
to Alternatives 1 and 2 (measured, in this
case, as time), and r1 and r2 refer to the alter-
native rates of reinforcement. The parame-
ter a may be construed as the sensitivity of
behavior ratios to reinforcement ratios,
because reinforcement ratios have progres-
sively larger effects on behavior ratios as a
departs increasingly from 0. The parameter
c may be construed as bias toward one alter-
native or the other, because it captures
deviations of the behavior ratio from 1.0
when reinforcement ratios are equal (Baum,
1974). When both a and c are 1.0, Herrns-
tein's (1970) well known matching law
results. For the data of Figure 1, a is approx-
imately 0.7, 1.0, and 0.6 for Birds 2, 5, and
6, respectively, while c does not depart ap-
preciably from 1.0. When a is less than 1.0,
the result is termed undermatching, a fairly
common outcome in studies of this sort.

Several features of Equations 2-known
as the generalized matching law-deserve
comment. First, why express behavior and
reinforcement terms as log ratios? The
answers are based on both convenience and
logic. The logarithmic transformation yields
rough linearity, and it is always easier to
deal with linear than curvilinear relations
because the function is readily characterized
and systematic departures are easy to detect.
Moreover, log ratios range from plus to
minus infinity, so that relations between
these variables will not be distorted by floor
or ceiling effects. Finally, Prelec (1984),

extending on the arguments of Allen (1981,
1982) and Houston (1982), showed that
choice data must conform to Equation 2 if
two conditions are met. First, response
ratios must remain constant when reinforce-
ment rates are changed proportionally for all
alternatives; and second, ratios of responses
to two alternatives maintained by constant
schedules must remain constant when the
rate of reinforcement for a third alternative
is changed. Failure of the data to conform to
Equation 2 suggests that one or both of these
conditions are violated. Given that these
conditions are approximated in most studies
of choice, the logically forced nature of the
result may make it seem uninformative.
However, the values of the parameters a and
c are not forced, and thus may be infor-
mative.

This raises a second issue: In any real ex-
periment, how does one know that a and c
are not both affected by the reinforcement
ratio itself, or by other confounding factors,
varying simultaneously in opposite direc-
tions to cancel each other and produce spur-
ious linearity? The answer lies in the inter-
pretation of the parameters. If c is correctly
identified as response bias, then varying
some factor such as the relative effortfulness
of the two responses should affect c but leave
a constant. Conversely, varying some prop-
erty of the alternative schedules such as their
discriminability should affect a but leave c
invariant.

HIGHER-ORDER DEPENDENT
VARIABLES

Whatever the outcome of such experi-
ments, they illustrate an important role of
the parameters of mathematical expressions
such as Equation 2. These parameters not
only describe and summarize a given set of
data, but also provide higher-order depen-
dent variables, derived from data obtained
within each of several sets of conditions and
potentially related in an orderly way to some
specifiable aspect of those conditions. For
example, Todorov, Olveira Castro, Hanna,
Bittencourt de Sa, and Barreto (1983) have
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shown that a increases systematically with
the length of training on each pair of a series
of concurrent VI VI schedules, and decreases
systematically as the subjects are exposed to
more and more pairs of schedules. Miller,
Saunders, and Bourland (1980) have shown
that a decreases systematically as the stimuli
correlated with the alternative schedules are

made more similar, and Baum (1982a) has
shown that a increases as the length and ef-
fortfulness of travel between alternatives are

increased.
A further example of the potential value of

higher-order dependent variables arises in
the study of choice between qualitatively dif-
ferent reinforcers. Hursh (1978) studied
monkeys on concurrent VI schedules that
permitted them to obtain all their food and
water within the experiment, and found that
the ratio of responses on two food-producing
levers was related to the ratio of food rein-
forcers in much the same way as shown in
Figure 1, with a approximately 0.7
(estimated from Hursh's Figure 9). How-
ever, the ratio of food-lever responses to
water-lever responses was inversely related
to the ratio of food and water reinforcers,
with a approximately -10 (estimated from
Hursh's Figure 8). Rachlin, Kagel, and Bat-
talio (1980) have suggested that a may serve

as an index of the interchangeability or

substitutability of the reinforcers, approach-
ing 1.0 when they are completely substitut-
able and becoming strongly negative as they
are made increasingly nonsubstitutable.
Whether a will serve as an orderly index of
substitutability may itself depend on whether
the data are obtained in a closed or open

economy (for further discussion, see Hursh,
1978, and in this issue). Whatever the out-
come of these proposals, it will follow from
the study of the higher-order dependent
variable a (or a related analysis) in future
research.

EXTENSIONS TO RELATED AREAS

Multiple Schedules
In Findley's (1958) experiment, both VI

schedules were available simultaneously,

each correlated with a distinctive stimulus,
and the subjects could switch freely between
them. As Catania (1966) noted, multiple
schedules are similar to concurrent schedules
of this sort except that the experimenter,
rather than the subject, controls the alterna-
tion between components. Thus, Equation 2
might also fit multiple-schedule data.

Reynolds (1963b) used pigeons as subjects
in the first parametric study of multiple VI
VI schedules, with schedule components
alternating every 3 min. He reported rates of
key pecking in both components for 20 ex-
perimental conditions with various rates of
food reinforcement arranged independently
in the two components (see his Figures 1, 2,
and 4). When these data are reexpressed as
ratios of responses, averaged across subjects,
and plotted on double-logarithmic axes in
relation to the ratios of scheduled reinforce-
ment rates, a linear function results, as
shown in Figure 2. A number of subsequent
studies with pigeons as subjects and food as
the reinforcer have confirmed this relation
(e.g., Lander & Irwin, 1968; Lobb &
Davison, 1977). Data from other species and
with other reinforcers are needed to ensure
its generality, but at least provisionally it ap-
pears that the generalized matching law may
describe performance on multiple schedules
as well as that on concurrent schedules.
Although the value of a for multiple-

schedule data is typically about 0.3- de-
cidedly lower than is typical for concurrent
schedules-it is known that a depends on a
number of factors that may be varied in-
dependently of the reinforcement ratio. For
example, a has been shown to depend on the
similarity of the component stimuli (White,
Pipe, & McLean, 1984), as in concurrent
schedules (see above). However, study of
this higher-order dependent variable may
suggest some differences as well as similari-
ties between multiple and concurrent sched-
ules. For example, Charman and Davison
(1983) have shown that a increases system-
atically on multiple schedules as food depri-
vation is reduced, whereas McSweeney's
(1975) data show that response ratios on
concurrent schedules are unaffected by
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Fig. 2. Ratios of key-peck rates in two components
of a multiple VI VI schedule as a function of ratios of
scheduled reinforcement rates. The data are geometric
means for three pigeons, taken from Reynolds
(1963b). Both axes are logarithmic.

deprivation, and thus suggest that a is con-

stant. McLean and White (1983) varied the
rate of alternative reinforcement provided by
a third schedule running concurrently with
each of two multiple-schedule components,
and found that a for multiple-schedule per-

formance increased when the rate of concur-
rent reinforcement increased. By constrast,
Davison (1982), Davison and Hunter (1976),
and Reynolds (1963a) found that the rate of
reinforcement for a third alternative had no

effect on the relative distribution of re-

sponses between a pair of concurrent sched-
ules (as required by Prelec's 1984 argument
see above). In general, a increases as overall
levels of responding decrease in multiple
schedules, but is relatively constant when
overall levels of responding change in con-

current schedules. This difference may be
ascribed to the special properties of
simultaneous availability of concurrent
schedules, and thus help us to understand
the role of choice in schedule-controlled
behavior.

Signal Detection
Given that the generalized matching law

provides a good account of performance in
both multiple and concurrent schedules, it is
reasonable to consider its extension to their
combination. As I pointed out some time
ago (Nevin, 1969), the conventional yes-no

signal-detection paradigm is such a combi-

nation. In discrete trials, the experimenter
presents one of two stimuli, S1 or S2, as in
multiple schedules. In the presence of either
stimulus, two responses, B1 and B2, are
available simultaneously as in concurrent
schedules. Reinforcers are arranged for B1
given S1 and for B2 given S2. Varying the
ratio of these reinforcers with the S1-S2 dif-
ference constant generates the isosensitivity
curve, whereas varying the S1-S2 difference
with the reinforcement schedules constant
generates the isobias curve.
Davison and Tustin (1978) applied the

generalized matching law to signal-detection
performance by assuming that the behavior
ratio, B1/B2, depends on the ratio of rein-
forcers, rl/r2, with S, and S2 acting to bias
responding toward B1 and B2, respectively.
The resulting equations are:

On Si trials,
log (BlIB2) = a log (r1/r2) + log c + log d. (3a)

On S2 trials,
log (BlIB2) = a log (ri/r2) + log c - log d. (3b)

These are just like Equation 2 for concurrent
performance with the addition or subtrac-
tion of log d, the stimulus bias term. The
parameter d measures the discriminability of
Si and S2, and may be estimated directly
from the data by the expression:

d= B2IS,BIS2 (4)

which is readily derived by subtracting
Equation 3b from 3a and taking analogs.
Note that the reinforcement terms drop out
in the derivation of this expression, so d
should be invariant with respect to reinforce-
ment ratios. Therefore, the relation between
response ratios on SI and S2 trials is the
isosensitivity curve.
A comparable expression for overall

response bias, b, may be derived by adding
Equations 3a and 3b and taking analogs.

b = B2JS2 = c(ri/r2)a, (5)B21S1 Bi1S2

0

(0)
0

a._

(0)
it
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or, log b = a log (ri/r2) + log c. (6)

Note that the stimulus bias term is elimi-
nated from Equation 5 and this expression,
therefore, is the isobias curve (see McCarthy
& Davison, 1981, for full discussion). Its
logarithmic form, Equation 6, states that the
combined behavior ratio-the geometric
mean of the behavior ratios on Si and S2
trials-will be related to the overall ratio of
reinforcers according to the generalized
matching law.
To illustrate the independence of discrim-

inability (d) and overall bias (b), I reanalyzed
some data reported by Nevin, Olson,
Mandell, and Yarensky (1975, Experiment
1). Two rats were trained to press one lever
in the presence of a dim light (Si) and the
other lever in the presence of a bright light
(S2). Si and S2 were presented equally often
in discrete trials, and the probabilities of
water reinforcement for B1 given Si and for
B2 given S2 were varied while the S1-S2 in-
tensity difference was constant. The upper
left panel of Figure 3 shows that, as re-
quired, d was little affected over a two-log-
unit range of obtained reinforcer ratios. In a
second procedure, the S1-S2 difference was
varied while two constant pairs of reinforce-
ment probabilities were arranged. As shown
in the upper right panel of Figure 3, d varied
systematically with the S1-S2 difference. The
lower functions show that the relation be-
tween b and the obtained reinforcer ratio was
the same at all stimulus differences explored,
again as required by the Davison-Tustin ac-
count. These results have considerable gen-
erality across species and stimulus
modalities (e.g., see McCarthy & Davison,
1980, and summary in Nevin, 1981, Fig. 5).
This is the sort of analysis that is needed to
test the interpretation of the parameters in a
mathematical description of behavioral data
(see above).

Because of its ability to distinguish
stimulus discriminability (d), response bias
(c), and reinforcement effects (a), the signal-
detection paradigm lends itself to the
analysis of many complex cases. For exam-
ple, in social psychology, the analysis of
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Fig. 3. Upper panels: On the left, discriminability
(d) as a function of obtained reinforcement ratios when
stimulus differences were constant; on the right, d as
function of stimulus differences when reinforcement
probabilities were constant in a signal-detection pro-
cedure (Nevin et al., 1975, Experiment 1). Lower
panel: Bias (b) as a function of obtained reinforcement
ratios for the data in the upper panels. The axes are
logarithmic, and the right-hand set of functions has
been displaced downward by one log unit for clarity.

helping may be advanced by regarding an
observer's behavior as controlled jointly by
three separable events (cf. Latane & Darley,
1970): Does a person require aid or not (d)?
Does the situation make helping easy or dif-
ficult (c)? How important are the conse-
quences of helping, or of ignoring the situa-
tion (a)? There is no reason to expect
parameter invariance in such a setting: Dis-
crimination of the need for help might very
well depend on the consequences of helping
or ignoring, as in a mutual survival situa-
tion. The point is simply that such questions
could not be addressed unambiguously with-
out the quantitative, analytic framework
provided by Equations 3a and 3b, or similar
relations. (For a review of applications of the
signal-detection analysis in social psychol-
ogy, see Martin & Rovira, 1981. For a wide-
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ranging review of applications in areas from
recognition memory to military decisions,
see Hutchinson, 1981.)

Virtually all applications outside the
behavior-analytic literature have invoked
the theory of signal detectability advanced
by Swets, Tanner, and Birdsall (1961). Ac-
cording to this theory, sensory input (x)
varies continuously and randomly about one

mean value for the signal, and another for its
absence. The organism is assumed to estab-
lish a decision criterion, c, and a rule: "re-
spond B1 if x > c; respond B2 if x < c" such
that the expected value of each choice is
maximized. Equations 3a and 3b account
well for exactly the same data without invok-
ing hypothetical private, mediating pro-

cesses of this sort. Thus, the systematic ex-

tension of a simple quantitative formulation
of performance on concurrent and multiple
schedules permits contact with a wide range

of traditional psychological problems, with-
out the necessity of adopting a cognitive-
process account.

Finally, it should be noted that the signal-
detection paradigm is an instance of a condi-
tional discrimination: If Si, reinforcement is
available for B1, and if S2, for B2. This situa-
tion is very closely related to matching to
sample: If red sample, reinforcement is
available for pecking the red comparison,
and likewise for other colors. In this situa-
tion, the sample may be construed as having
a special instructional function, serving as a

selector of discriminations (Cumming &
Berryman, 1965). Carter and Werner (1978)
conceptualize this selective function as a

"rule" (e.g., if the sample is coded as red,
peck the red comparison), although other
cases suggest the acquisition of a matching
concept (e.g., pick the comparison that is the
same as the sample, for all possible samples).
The conditional discrimination procedure
has been used extensively by Sidman and his
colleagues (e.g., Sidman & Tailby, 1982) to
establish arbitrary stimulus-equivalence
relations that may serve as the basis for ex-

tended classes which can in turn enter into
more complex relations, approaching the
complexity of natural language. Thus, the

experimental analysis of behavior can make
quantitative advances into the study of rules,
concepts, and language-like relations- areas
often seen as the preserve of cognitive psy-
chology- in a way that is continuous with
simple stimulus and schedule control (cf.
Marr, Michael, and Shimp, in this issue).

FEEDBACK FUNCTIONS

The foregoing applications of the
generalized matching law involve descriptive
quantification at a level analogous to the gas
laws of classical thermodynamics. The rela-
tions between pressure (P), volume (V), and
temperature (7) may be summarized as
P V = k- T, where k is a gas-specific
parameter. Note that P, V, and Tmay serve
either as independent or as dependent
variables. The law specifies how they must
interact; it is not causal but descriptive of
orderly interdependence. In related fashion,
the generalized matching law describes the
orderly interdependence of behavior and
reinforcement, where neither is necessarily
causal because reinforcers depend on prior
behavior, and behavior is affected by prior
reinforcers. By this definition, operant
behavior is part of a continuous feedback
system: Changes in behavior lead to changes
in the environment, which produce further
changes in behavior, and so forth, until a
stable equilibrium is achieved. The general-
ized matching law describes such an equilib-
rium state and should be expressed as a rela-
tion between responses emitted and rein-
forcers obtained at equilibrium. Therefore,
a complete understanding of behavior allo-
cation must include the feedback process.

Neither Figures 1 nor 2 was based on ob-
tained reinforcers, because they were not
reported. However, in both cases the ob-
tained rates of reinforcement should have
been close to the scheduled rates. Findley's
(1958) VI schedules continued to run after a
reinforcer was scheduled, so that some delay
in obtaining one reinforcer (while respond-
ing on the alternative schedule, for example)
would not delay the availability of the next.
In Reynolds' (1963b) study, response rates
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were generally high enough so that rein-
forcers would have been obtained within a
second or so of their availability, which
would have a negligible impact on overall
rate of reinforcement. Thus, there is little if
any error in the reinforcement-rate ratios of
Figures 1 and 2. The overwhelming majority
of later studies have reported obtained rein-
forcers, and have confirmed the generalized
matching law.

It is clear that obtained reinforcers depend
both on the contingencies in force, as deter-
mined by the schedule of reinforcement, and
on the rates and patterns of responding. This
dependency may be captured by the feed-
back function, first proposed in quantitative
form by Baum (1973). Heyman and Luce
(1979), Nevin and Baum (1980), Prelec and
Herrnstein (1978), Rachlin (1978), and
Staddon and Motheral (1978) have explored
various forms of the feedback function for in-
terval schedules in simple and concurrent
situations, and Prelec (1982) has provided a
formal development of the topic.
Empirical feedback functions are typically

based on data obtained through a series of
conditions in which deprivation or alter-
native reinforcement is varied (e.g., Nevin
& Baum, 1980, Figures 3, 4, 5). Thus, the
schedule feedback function may not be rele-
vant to stable performance under constant
conditions. However, van Syckel (1983) has
shown that behavior actually comes into
contact with the feedback function during
steady-state performance on both interval
and ratio schedules. He divided each session
into short periods, computed local response
and reinforcement rates, and found that
even after extended training there was suffi-
cient variation in local response rates to
result in a wide range of local reinforcement
rates, and that the covariation of these rates
was orderly. Thus, the feedback function is
not merely a theoretical formality.
With the aid of modern computers it is

possible to program arbitrary feedback func-
tions interrelating any dimensions of
behavior and environment that are of in-
terest; we are no longer constrained to feed-
back relations derived from traditional inter-

val and ratio schedules and their combina-
tion. Moreover, the feedback function itself
can be changed in relation to shifts in behav-
ior or the passage of time, as in adjusting
schedules of reinforcement. Although it is
not easy to predict the insights into behav-
ioral processes that may follow from these
possibilities, it seems certain that careful
quantitative analyses will be required to
maximize their potential.

THEORETICAL DERIVATION

The achievement of a comprehensive
quantitative description and the demonstra-
tion of parameter invariance under certain
conditions are important advances in any
area, but they seem not to be an adequate
stopping point for many of us. Just as the gas
laws could be derived from statistical ther-
modynamics, our quantitative regularities
can be derived from assumptions about be-
havioral processes, stated in mathematical
terms. The advantage of a mathematical
theory, like a quantitative description, is
that its terms are unambiguous; and "though
it may be difficult to understand, it will not
be easily misunderstood," as Skinner (1950)
remarked of formal representations of
behavioral data.

In recent years, the matching law for con-
current performances has been shown to
follow from the assumption that reinforcers
inhibit as well as excite behavior (Catania,
1973); from a model relating arousal to rate
of reinforcement (Killeen, 1979); from a for-
mal statement of Premack's relational princi-
ple of reinforcement (Donahoe, 1977); from
an analogy to reversible chemical reactions
in the steady state (Staddon, 1977); from a
kinetic model of switches between alter-
natives (Myerson & Miezin, 1980); from the
machinery of linear systems analysis
(McDowell, 1980); from a momentary max-
imizing process that allocates each response
to that alternative with the currently greater
probability of reinforcement (Hinson &
Staddon, 1983; Shimp, 1966; Staddon, Hin-
son, & Kram, 1981); from a global maximiz-
ing process that allocates responses over time
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so as to achieve the greatest possible total
reinforcement (Baum, 1981; Rachlin, 1978;
Staddon & Motheral, 1978); from a melior-
izing process whereby choice allocation shifts
toward the alternative with the greater local
rate of reinforcement (Herrnstein &
Vaughan, 1980); and from difference equa-

tions adapted from the Rescorla-Wagner
(1972) model of classical conditioning
(Vaughan, 1982).
The generalized matching law (Equation

2) has been derived by assuming matching
and then allowing subjective transforma-
tions on the values of the alternatives (Allen,
1981; see also Allen, 1982; Houston, 1982;
Prelec, 1984), and by assuming imperfect
substitutability between reinforcers within a

global maximizing framework (Rachlin et
al., 1980). It has also been derived from
assumptions about maximizing the overall
rate of reinforcement under certain schedule
combinations (Houston & McNamara,
1981). A close approximation has been
derived from assumptions about the burst-
pause structure of behavior, together with a

failure of discrimination between alter-
natives (Wearden, 1983). Computer simula-
tion of a process based on all-or-none
associations with a short-term forgetting
function also generates simulation data that
are well described by the generalized match-
ing law (Shimp, 1984, and this issue), and
there may well be other models for matching
or generalized matching that I am not aware

of. It appears, as Hinson and Staddon
(1983) recently remarked, that "all roads
lead to [generalized] matching."

Interestingly, a similar situation holds for
the extension to signal detection discussed
above. Isosensitivity and isobias curves that
are empirically indistinguishable from Equa-
tions 3 and 4 may be derived from classical
Thurstone-type signal-detection theory
(Green & Swets, 1966); and expressions that
are formally identical to Equations 4 and 5
may be derived as the asymptotic outcome of
a linear learning process (Bush, Luce, &
Rose, 1964) or from a matching process with
stimulus generalization (Nevin, 1981). We
seem to have clear evidence in support of the

proposition that any description of data is
compatible with an indefinitely large num-
ber of theories. We can eliminate some
possibilities by careful reasoning and
analysis, but uncounted others remain. The
real question is whether this sort of exercise
in theory development will lead to new in-
sights into behavior.

I suggest that the answer to -this question
is yes. For example, Herrnstein's (1970)
theoretical account of single-schedule perfor-
mance in relation to rate of reinforcement
invoked unmeasured, extraneous reinforcers
in order to maintain consistency with the
matching law for concurrent performances.
Over a decade later, Davison (1982) arranged
concurrent fixed-ratio schedules as explicit
analogs to extraneous reinforcement, and
obtained data that forced him to argue for a
new version of the generalized matching
law, in which sensitivity depended on the
kind of schedule (ratio vs. interval) em-
ployed. McLean and White's (1983) study of
multiple-schedule performances also em-
ployed an alternative schedule as an analog
to extraneous reinforcement, and showed
that multiple-schedule sensitivity increased
with the rate of alternative reinforcement,
unlike concurrent-schedule sensitivity (see
above). As another example, Shimp's (1966)
exploration of momentary maximizing in
discrete-trial versions of concurrent VI VI
led him to employ interdependent schedules
and sequential data analyses not previously
used in the study of schedule-controlled
behavior. In a detailed theoretical analysis of
optimal choice, Staddon et al. (1981)
distinguished between discrete-trial and con-
tinuous choice procedures, and between in-
dependent and interdependent schedules in
relation to momentary and molar maximiz-
ing, elaborating on Shimp's earlier ap-
proach. As a result, they were led to a new
formulation of momentary maximizing in
"clock space," which in turn permitted the
identification and analysis of "hill-climbing"
as a form of optimal choice (Hinson & Stad-
don, 1983). A number of other examples
could be cited. Clearly, theoretical
treatments can generate novel empirical
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analyses so long as the theoretical terms can
be identified with aspects of behavior and
environment.

CURRENT PROBLEMS AND
FUTURE DEVELOPMENTS

Our field began with qualitative analyses
of rates and patterns of responding in rela-
tion to contingencies of reinforcement, and
the different effects of interval and ratio
schedules were discovered quite early (Skin-
ner, 1938). Nevertheless, Herrnstein's (1970)
widely accepted law of effect has no place for
this difference, and McDowell's (1980) in-
triguing linear-systems approach ignores
response-reinforcer contingencies altogether.
This is clearly an area in which these and
related formulations need work (e.g., see
Baum, 1981, and McLean & White, 1983,
for alternative ways to accommodate the ef-
fects of ratio and interval schedules within a
matching-law framework).
The different effects of ratio and interval

contingencies can be modeled adequately by
joining their respective feedback functions to
assumptions of optimization or minimum
deviation from a baseline condition (e.g.,
Baum, 1981; Rachlin, 1978; Staddon, 1979).
These feedback models in turn speak to one
of the most fundamental issues in our field:
the nature of the reinforcement process.
Should reinforcement be construed as
strengthening the response that precedes it
(or, more accurately, the class of which that
response is a member)? Or should the in-
creases in response rate that empirically
define the process of reinforcement be con-
strued instead as resulting from reallocation
of behavior under various constraints (e.g.,
conservation-Allison, 1976; value match-
ing-Mazur, 1975; or optimization-Rach-
lin, Battalio, Kagel, & Green, 1981)? My
own work on behavioral momentum, show-
ing that resistance to change is positively
related to the rate of reinforcement, inclines
me toward the traditional strengthening
view (Nevin, 1974, 1979), but the notion of
reallocation under constraint is a powerful
new alternative.
A single model of the basic reinforcement

process and of steady-state performance on
various schedules would be a major achieve-
ment, but in my opinion the best developed
of these attempts-Rachlin's optimality ac-
count-does not do well in predicting
choices between interval and ratio sched-
ules, or between terminal-link schedules in
concurrent chains, which are closely related
to concurrent schedules (see Baum & Nevin,
1981). The recent proliferation of models for
concurrent chained-schedule performance
(Davison, 1983; Fantino & Davison, 1983;
Killeen, 1982) has led Davison (1984) to call
for a halt in model-building and for renewed
efforts at experimental analysis. Interest-
ingly, his own analyses depend entirely on
the descriptive use of the generalized match-
ing law, and seek to identify conditions
under which some of its parameters remain
invariant-the analytic level at which the
present article began.

It appears that we have developed a num-
ber of quantitative accounts of schedule per-
formance, each of which does well with a
substantial data set, but fails when extended
to some related data. As an example, Herrn-
stein's (1970) insight that all action occurs in
a context of alternatives led from the match-
ing law for performance on concurrent sched-
ules to his powerful and widely accepted
statement of the quantitative law of effect for
single schedules. However, the extension of
his formulation to multiple schedules fails in
a number of areas (see Williams, 1983, and
Charman & Davison, 1983, for discussion),
and the generalized matching law may do
better. However, the latest application of the
generalized matching law to multiple sched-
ules, by McLean and White (1983), requires
some ad hoc assumptions to deal adequately
with behavioral contrast. My associates' and
my efforts to quantify changes in behavior
maintained by multiple schedules (Nevin,
Mandell, & Atak, 1983) have been fairly
successful in that area, but we have not been
able to derive major aspects of steady-state
performance from our formulation of resist-
ance to change, anid more work is needed
(see Marr, 1984, for a promising start along
these lines).
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For the future, I look forward to pro-
gressive refinements of our quantitative ac-
counts of steady-state performance, mergers
of models developed in related areas, and ex-
tensions to behavioral transitions including
acquisition and extinction. Integration of
models developed for operant performance in
the laboratory with those for foraging in the
wild (e.g., Baum, 1982b; Fantino, Abarca,
& Dunn, 1984; Lea, 1982; Staddon, 1980) is
an exciting prospect. We seem poised on the
brink of a major systematic unification, and
clearly the quantitative analysis of behavior
has brought us here.

COMMENT AND EVALUATION

An analysis of the contents of theJournal of
the Experimental Analysis of Behavior (EAB)
since its founding in 1958 reveals a clear
trend in the use of quantitative accounts.
Figure 4 presents the proportion of all arti-
cles (excluding book reviews and notes on
methodology or apparatus) that make use of
mathematical expressions to describe data,
or to derive predictions against which data
may be compared. The trend is monoton-
ically increasing and positively accelerated,
and seems likely to continue (although it will
surely reach an asymptote well below 1.0).
Some experimental analysts will regard

the increasing use of mathematical descrip-
tions with dismay. Postexperimental trans-
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Fig.4. The propotion of all articles in theJournal of
the Experimental Analysis of Behavior that employ quan-
titative descriptions of their data or that compare their
data against predictions of mathematical accounts, in
blocks of three years since the journal was founded.

formation of the data to reveal order seems
to be a different enterprise from laboratory
manipulation of a variable to demonstrate
control; a parameter of an equation, fitted to
summary data from several experimental
conditions conducted weeks or months apart,
seems very remote from actual, ongoing be-
havior; and a function based on transformed
data may conceal systematic effects that
would be evident in the raw data. But this is
nothing new in the analysis of behavior: The
definition of the operant as a class of
responses immediately obscures differences
among instances of the class, and the very
act of counting lever presses or key pecks
puts the experimenter at a distance from the
moment-to-moment actions of the organism.
Moreover, the calculation of response rate or
probability over any sample of time or trials
also obscures variations in the pattern of
responding within the sample under consid-
eration. The issue is an old one: What is the
appropriate level of analysis in the study of
behavior? We have yet to articulate a better
answer than that proposed by Skinner in
1938: We have found an appropriate level
when the results are orderly and repeatable.
The examples presented above show orderly
and repeatable relations between response
and reinforcement ratios, and higher-order
dependent variables derived from these rela-
tions also behave in an orderly way. The
possibility that molar relations of this sort
may prove to be derivative from more local
processes does nothing to dimish their value
as ways to summarize and integrate data.
A related concern arises from the prolifer-

ation of mathematical theories in our field
during recent years. Many JEAB readers
would be aghast at the appearance of an arti-
cle entitled, "Yet another way to derive the
matching law," but I believe there is value in
this sort of exercise so long as the theories
from which our quantitative descriptions
may be derived are themselves expressed in
terms of behavioral and environmental
events, as Skinner (1950) urged some time
ago. If the parameters of our formulatioms
are few relative to the number of data points
described, and are clearly interpretable in
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relation to experimental variables, quan-
titative description and theory become ways
of organizing and interrelating behavioral
observations and identifying invariances
that cut across diverse situations-the laws
of behavior that our field is dedicated to
finding.
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