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Abstract: In many image-processing applications, image segmentation is an essential stage. In this stage, an image is partitioned into 

several regions according to the similarity of its pixels. In addition to the accuracy of the image segmentation, the speed is also very 

important for real-time image processing applications. Many computer applications take advantages of the multi-processor architecture to 

up to their running performance. However, to run an algorithm as parallel is very difficult in many cases. Due to using the same memory 

blocks, many conflicts might be happened between the processors. Moreover, each process of one processor may depend on those of 

another processor. For this reason, the algorithm to be parallelized must be suitable to parallel. In addition, the processing traffic that is 

pursued by the processors must be controlled within some parallel directives. In this paper, we provide a parallel implementation to a 

hierarchical graph-based image segmentation method by using its hierarchical processing steps. To achieve this goal, we utilize the 

OpenMP (Open Multi-Processing) Library to run the segmentation process as parallel on images of different sizes from the INRIA Holidays 

dataset. The experimental results show that the parallel implementation of the algorithm is more effective than the serial type according to 

processing time. 
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1. Introduction 

For many image processing application, the image segmentation is 

one of the low-level and mid-level image processing stages. 

During the image segmentation stage, the pixels of an image are 

grouped into regions according to the similarity in the regions and 

differences among the regions. This stage is one of the most 

difficult stages in the image processing applications [1]. The 

consequence of this stage affects all of the following stages and 

their results. Image segmentation reduces the large amounts of data 

for the analysis operations. In an image, the segmentation process 

inherently focuses on the homogeneous regions and the borders 

between them. It performs this task by using brightness, color, 

pattern (texture), or density differences, etc. [2,3]. 

Many pattern recognition and computer vision applications take 

advantage of the global features of the images for more accurate 

segmentation. However, in this way, the processing time exceeds 

the allocated time for the input frame periods of the used camera 

in many real-time computer visions system. Due to the 

computational complexity of the methods that take into account the 

global features of the images, those that consider local features are 

mostly preferred in real-time applications [2]. 

Graph-based methods are some of the segmentation methods. 

Because of their representation relevance and ease of retention of 

images, the graph theory tools are utilized as prominent tools in 

computer vision [2]. In graph-based segmentation methods, the 

nodes (or vertices) of the graph refer the pixels of the image and 

the edges define the connections between the adjacent (or 

neighboring) vertices. Each of these edges generally has a 

numerical value, which is called weight [4]. The weights of the 

edges are considered the difference of the gray level values or color 

values (if the segmentation is performed on a color image) of the 

vertices that exists at the ends of the edge. The difference is 

generally computed by using Euclidean distance measurement [5]. 

Spanning trees are sub-graphs of a graph; such that they do not 

contain any loop and it is easy to make process on the graph via 

the spanning tree structure. The spanning tree of a graph that has 

the least total edge weight among the other spanning trees of the 

graph is called minimum spanning tree (MST) [4]. Image 

segmentation algorithms based on minimum spanning tree take 

advantage of the features of the MST, because it takes no account 

of most of the edges on the image-graph. Therefore, the cost of the 

operation is reduced significantly [6]. 

The segmentation process in MST-based segmentation algorithms 

comes true in two ways. The first way is the cutting procedure in 

which the edges to be cut are removed on the MST that covers all 

of the pixels of the image. The edges to be cut represent the borders 

on the image. By this way, a tree is separated into several sub-trees. 

The sub-trees represent regions in the image [5,7-9]. The second 

way is the merging procedure in which the sub-trees that satisfies 

a homogeneity criterion are merged [10]. If two sub-trees do not 

satisfy the criterion, they are not merged, and in this case, the 

border between the two regions that the two sub-trees represent 

occurs. In this paper, we parallelize the merging procedure that is 

performed hierarchically. 

Efficient Graph-Based Image Segmentation algorithm, which is 

proposed by Felzenszwalb and Huttenlocher, defines a merging 

criterion [10]. The algorithm employs the Kruskal's algorithm [11], 

which is one of the most popular MST algorithms. In this 

algorithm, all of the edges of the graph structured an image is 

sorted in ascending order according to their weight. Then, the 

edges are added to the MST structure by starting the shortest edge, 

such that the MST is empty at first. If the trees that are at the ends 

of the edge to be added do not satisfy the merging criterion, the 

edge is not added. By the way, the MST may be divided into more 

than one sub-trees. Haxhimusa and Kropatsch [12] used this 

merging criterion on Boruvka's hierarchical MST algorithm [13]. 

In this algorithm, each node (vertex) assumed a sub-tree, and each 

merging process of these sub-trees actualizes independently from 

others. For this reason, this makes it suitable for parallelization. 
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Nowadays, the multi-core processors are prevalent; and therefore, 

the parallel programming has been a very popular issue. Scientific 

and engineering programs such as image-processing applications 

need to be fast to overcome the heavy processing load in limited 

times. In order to make use of this technology, parallelization of 

the applications reduces the process load. Obtaining the same or 

similar results with sequential execution and ensuring to not 

overlapping of the parallel operations is mostly important and 

difficult matters for parallel programming issue. In this paper, we 

organize the hierarchical graph-based image segmentation 

algorithm as appropriate for parallel execution [14]. 

2. The Hierarchical Graph-Based Image 
Segmentation 

Let the graph 𝐺 = (𝑉, 𝐸) be the image-graph that is constructed 

from an image. 𝑉 represents the set of the vertices in the graph 𝐺, 

such that each vertex refers a pixel in the image and 𝑉 contains all 

of the pixel-vertices. 𝐸 represents the set of the edges that connects 

each vertex to its neighboring vertices. In this paper, 8-connected 

neighborhood is used as a neighborhood system. The edges are 

generally weighted and undirected. The weight of each edge is a 

numerical and positive value that indicates the degree of similarity 

between two vertices at the ends of the edge. As the degree of 

similarity two vertices is lower, the weight value is higher. To 

figure out the similarity, the one-dimensional gray-scale values or 

multi-dimensional color values of the pixels can be used, and to 

compute the difference for both ways, the Euclidean distance 

measurement can be used. The edge (𝑢, 𝑣) connects the vertices 𝑢 

and 𝑣, and  𝑤(𝑢, 𝑣) is the weight value of the edge. Let 𝑥𝑢 be the 

one-level gray-scale value, and 𝑥𝑢,𝑖 be the 𝑖th value of the 𝑧-level 

color vector of the vertex 𝑢 where 𝑖 = {1,2,⋯ , 𝑧}. The Euclidean 

distance as the weight value of (𝑢, 𝑣) is computed as in Eq. 1. 

𝑤(𝑢, 𝑣) = (∑ (𝑥𝑢,𝑖 − 𝑥𝑣,𝑖)
2z

𝑖=1
)
1/2

 (1) 

2.1. Boruvka's Minimum Spanning Tree Algorithm 

Boruvka's MST algorithm constructs an MST structure from a 

graph, such that the graph must be a weighted, undirected, and 

complete graph (Fig. 1). According to the algorithm, each vertex 

is assumed as a tree at first stage and no one is connected to any 

other one. The union of multiple trees is called forest. At first, all 

of the vertices compose the forest 𝐹0, because each vertex is a tree 

such that 𝐹0 = 𝑇1 ∪ 𝑇2 ∪⋯∪ 𝑇𝑛, such that n refers to the number 

of the vertices on the graph 𝐺. 𝑇𝑖 refers to the 𝑖th tree (𝑇𝑖 equals to 

the 𝑖th vertex at first stage) and each tree 𝑇𝑖 chooses the smallest 

edge (𝑢, 𝑣) where 𝑢𝑇𝑖 and 𝑣𝑇𝑖, then the edge is added to the 

new forest 𝐹1 that is being composed for the next stage. At the 

begin of the next stage, the number of the trees will have been 

reduced by at least one-half, i.e.,  will have been decreased by at 

least one-half. If any edge is not added in the current stage, on the 

other words, the last forest 𝐹𝑙𝑎𝑠𝑡 has one tree, the algorithm ends.  

 

2.2. The Graph-Based Segmentation Algorithm 

In the MST of a graph representation of an image, the highest 

weighted edges represent the boundaries of the image (Fig. 1). 

Felzenszwalb and Huttenlocher have segmented the images by 

detecting the edges of the boundaries, which are called boundary 

edges [10,15]. For the purpose of to detect the boundary edges to 

be excluded from the MST, Felzenszwalb and Huttenlocher have 

used the merging criterion Eq. 2 in the Kruskal's MST algorithm. 

According to the Kruskal's algorithm, each vertex in the graph 𝐺 

that is representation of the image seems as a tree. Firstly, all of the 

edges in 𝐺 are sorted in order to their weight in ascending order. 

The two trees at the ends of the smallest weight edge in the sorted 

edge queue are merged if the two trees are not the same tree, and 

the edge is removed from the queue. At last, only one single tree 

remains such that it is called MST [11]. If the merging criterion in 

Eq. 2 is applied on the algorithm, more than one MSTs might 

remain at the end of this process [10], because the edges that does 

not satisfy the criterion are not added to the MST to be formed, and 

thus, the MST that covers all of the vertices might not be created. 

𝐷𝑖𝑓𝑓(𝑇1, 𝑇2) < 𝑚𝑖𝑛 (𝐼𝑛𝑡(𝑇1) +
𝑘

|𝑇1|
, 𝐼𝑛𝑡(𝑇2) +

𝑘

|𝑇2|
) (2) 

In Eq. 2, 𝑇1 and 𝑇2 are the sub-trees to be merged. 𝐷𝑖𝑓𝑓(𝑇1, 𝑇2) 

defines the weight value of the shortest weighted edge that 

connects the trees 𝑇1 and 𝑇2. 𝐼𝑛𝑡(𝑇1) and 𝐼𝑛𝑡(𝑇2) defines the 

internal difference of 𝑇1 and 𝑇2 respectively. An internal difference 

of a tree is the weight value of the highest weighted edge in the 

tree. 𝑇1 and 𝑇2 defines the number of vertices in the trees 𝑇1 and 𝑇2 

respectively. The constant value 𝑘 refers to a threshold value that 

controls how much greater 𝐷𝑖𝑓𝑓(𝑇1, 𝑇2) must be than the internal 

differences of the trees 𝑇1 and 𝑇2. 

In this paper, Eq. 2 is utilized as a merging criterion in the 

Boruvka's algorithm, because the Boruvka's algorithm progresses  

(a) (b) (c) 

Figure 1. (a) A simple black and white image , (b) the graph representation of the image according to 4-connection neighborhood, (c) the MST of the 

image extracted from its graph representation and an example of boundary edge in the MST 
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 in a hierarchical order. Due to this reason, this algorithm is more 

suitable for parallelization than the other popular MST algorithms 

[16]. The hierarchical graph-based image segmentation algorithm 

is sketched in Fig. 2. 

 In Fig. 2, the constructed graph 𝐺 = (𝑉, 𝐸) is obtained from the 

image used, and then it is taken to the process as an input data. 

Firstly, each vertex seems as a tree. The number of trees 𝑡 is equal 

to the number of vertices 𝑉 initially. For each tree 𝑇𝑖, the smallest 

edge (𝑢, 𝑣), where 𝑢𝑇𝑖 and 𝑣𝑇𝑖, is found. If the weight value 

𝑤(𝑢, 𝑣) satisfies the criterion in Eq. 2, the tree 𝑇𝑢 to which the 

vertex 𝑢 belongs and the tree 𝑇𝑣 to which the vertex 𝑣 belongs are 

merged, and thus, the number of tree is reduced to one. After these 

processes are complete for each tree, this cycle is repeated 

iteratively. If no merging is happened, the algorithm ends. 

3. The Parallel Implementation of The Algorithm 

3.1. OpenMP 

Multi-core processors have become quite prevalent nowadays. 

Scientific and engineering programs such as image-processing 

applications need to be fast to overcome the high processing load 

in limited times. In order to make use of the multi-core processor 

technology, such applications need to be parallelized. Therefore, 

some libraries and tools, which are developed to take advantage of 

the multi-core processor architecture, should be used and the 

programs that will be parallelized must be coded suitable for 

parallelization. OpenMP (Open Multi-Processing) is a run-time 

program library that has routines and environment variables and 

includes a set of compiler directives. The directives can be 

embedded into C/C++ and Fortran programming languages using 

shared-memory platforms to run codes on more processors [17]. 

On the platforms like these, OpenMP provides an easier 

programming model. However, getting high performance from 

OpenMP sometimes might be a very difficult task. The 

acceleration rate of the program that use OpenMP directives 

depends on many factors, including the problem how the variables 

are used in the code, data layout, workload balancing and so on. 

OpenMP is especially useful for partitioning a loop and running 

the iterations of the loop on more processors simultaneously. For 

that, the loop dependencies need to be configured in accordance to 

parallelism [17]. 

3.2. Implementation of The Parallel Directives 

The parallel computation is put into practice in three ways: 

general-purpose computing on graphics processing units, via a 

message processing interface, or using shared memory architecture 

(OpenMP) [18]. In a shared memory model system, threads, which 

are processes such that each runs as parallel, are communicated 

each other by reading and writing directly to the same memory. 

Since the OpenMP specification was introduced as a standard 

shared-memory programming model in 1998, there have been 

many studies to implement the OpenMP directives to their 

programs to run as parallel [19]. By using the OpenMP 

instructions, it is easy to solve the high processing load problems 

of the classic single pipeline program model, because OpenMP 

execute some calibrations automatically, and we do not need to 

consider which core should run in which part of the calculation 

[20]. 

 

OpenMP uses a fork-join model, which is a standard way to 

execute a parallel program on shared-memory systems (Fig. 3). 

Firstly, a parallel program begins to run on a single thread called 

master thread. Once the process flow encounters a parallel block, 

the process flow is separated to several threads (known as the fork) 

to run on additional processor cores [21]. 

OpenMP provides several mechanisms to run the code as parallel. 

Additionally, OpenMP provides an extra translator that analyzes 

the parallel loop and generate executor code before the OpenMP 

translation [19]. The translator determines the number of cores to 

run, separates the loop into sub-loops automatically according to 

the number of the cores, and employs each sub-loops to different 

threats. The example of its use is as below: 

 

#pragma omp parallel for 

for(i=0;i<1000;i++) 

{ 

 x[i] = y[i]; 

} 

 

OpenMP provides some directives as private and shared to define 

how the parallel regions use the data values. In parallel 

programming, synchronization is used to impose some order 

constraints and to organize to access to shared data. OpenMP also 

provides several mechanisms to synchronize the parallel threads, 

with critical, atomic, lock, ordered, flush, and barrier [14,22]. 

To synchronize the parallel graph-based algorithm, we used the 

lock directive. In the block for merging clusters, if we embed the 

locking mechanism in the processes, the threads  that each works 

on a different cluster will also wait to each other [23]. In this way, 

the flow would not be parallel. Therefore, we restricted to the 

threads that own the same index of lock array so that the index is 

the cluster number at the same time. The example of its use is as 

below: 

 

 

Figure 2. The steps of the hierarchical segmentation algorithm. 

 

Figure 3. A simple presentation of a shared memory architecture. 
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mylock = new omp_lock_t(); 

omp_init_lock(&(mylock)); 

 

lock_array = new omp_lock_t[size]; 

 

for (i = 0; i < size; i++) 

{ 

 omp_init_lock(&(lock_array[i])); 

} 

 

If a lock is set with the expression omp_set_lock by a processor, 

other processors that wants to set this lock must be waiting the 

processor until the lock is unset with the expression 

omp_unset_lock by the processor that has set the lock. 

Another problem for synchronizing the processes is the mutual 

exclusion problem. In cases when two clusters chose each other as 

nearest cluster on different threads simultaneously, a crash may 

happen. To solve this problem, we get the related code into a 

critical block by the directive critical. By this way, only one 

processor employs the codes that are in the critical block as seen 

below:  

 

#pragma_omp_critical  

{ 

 omp_set_lock(mylock1); 

 omp_set_lock(mylock2); 

} 

 

There is also another directive for getting the code into a critical 

block, which is called atomic such that it is used for only one 

variable to perform faster processing [17]. For example: 

 

#pragma_omp_atomic  

 a = a - 1; 

 

The parallel implemented version of the algorithm in Fig. 2 is 

sketched in Fig. 4. 

4. Experimental Results and Discussion 

The system that has been used for the values in Table I has 32 bit 

Intel i5-2400 3.10-GHz Quad Core processor with 4 GB RAM. We 

used C++ programming language. To import and  illustrate the 

images, we used OpenCV (Open Source Computer Vision) library 

[24]. 

In Fig. 5, the original versions of some images from INRIA 

Holidays dataset [25], their segmentation results and which 

processor has performed on which segments of the images in last 

iteration are presented. 

We applied the algorithm on some images from INRIA Holidays 

dataset [25] in the different versions of the images as the sizes of 

128×96, 256×192, 512×384, and 1024×768. We executed the 

program five times for each elapsed time value in Table 1, and put 

the smallest one of the five values to the table. The time unit is 

given as seconds (s) in Table 1. 

5. Conclusion 

As seen in the results, parallel programming provides an important 

acceleration in processing speed. However, the processing time 

Table 1. The elapsed times (s) of some images from the dataset with the different image sizes and the number of cores 

Image Sizes 12896 256  192 512 384 1024 768 

 Number of Cores 

Image 

Names 
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

200200 0.036 0.031 0.028 0.029 0.172 0.135 0.123 0.123 0.745 0.583 0.543 0.518 3.171 2.427 2.203 2.133 

203600 0.036 0.030 0.028 0.028 0.179 0.138 0.127 0.123 0.781 0.602 0.550 0.526 3.308 2.492 2.317 2.168 

203900 0.035 0.029 0.027 0.029 0.179 0.137 0.128 0.123 0.776 0.572 0.519 0.510 3.074 2.337 2.118 2.099 

206400 0.038 0.031 0.029 0.029 0.179 0.140 0.129 0.126 0.753 0.581 0.536 0.524 3.200 2.460 2.310 2.195 

207000 0.037 0.031 0.029 0.031 0.178 0.138 0.131 0.127 0.773 0.576 0.525 0.544 3.157 2.407 2.233 2.143 

207600 0.038 0.031 0.029 0.029 0.185 0.150 0.132 0.129 0.754 0.594 0.541 0.536 3.162 2.402 2.272 2.154 

211100 0.036 0.031 0.029 0.029 0.186 0.146 0.132 0.131 0.723 0.584 0.519 0.535 3.152 2.408 2.210 2.154 

213700 0.036 0.031 0.029 0.030 0.180 0.144 0.131 0.132 0.756 0.593 0.539 0.533 3.196 2.481 2.221 2.209 

 

Figure 4. Parallel implementation of the algorithm in Fig. 2. 
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decreases no more in all cases, as the number of cores increases. 

The speedup of the execution relies on many factors, including 

compiler optimizations, runtime support, data layout, operating 

system noise, workload balancing and so on. Additionally, it may 

be depend on the regions to merge in the structure of the graph of 

the image. In a parallel loop, even if the threads complete their 

process except one, they will have to wait for it. In these cases, the 

operating system might have executed another task on the thread 

in the meantime. Nevertheless, the parallelization saved a 

noticeable time for us. 
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