

International Journal of

Applied Mathematics,

Electronics and Computers

Advanced Technology and Science

ISSN: 2147-82282147-6799 http://ijamec.atscience.org Original Research Paper

This journal is © Advanced Technology & Science 2013 IJAMEC, 2016, 4(Special Issue), 6–11 | 6

Parallelization of a Hierarchical Graph-Based Image Segmentation

using OpenMP

Ali Saglam *1, Nurdan Akhan Baykan 1

Accepted 3rd September 2016

Abstract: In many image-processing applications, image segmentation is an essential stage. In this stage, an image is partitioned into

several regions according to the similarity of its pixels. In addition to the accuracy of the image segmentation, the speed is also very

important for real-time image processing applications. Many computer applications take advantages of the multi-processor architecture to

up to their running performance. However, to run an algorithm as parallel is very difficult in many cases. Due to using the same memory

blocks, many conflicts might be happened between the processors. Moreover, each process of one processor may depend on those of

another processor. For this reason, the algorithm to be parallelized must be suitable to parallel. In addition, the processing traffic that is

pursued by the processors must be controlled within some parallel directives. In this paper, we provide a parallel implementation to a

hierarchical graph-based image segmentation method by using its hierarchical processing steps. To achieve this goal, we utilize the

OpenMP (Open Multi-Processing) Library to run the segmentation process as parallel on images of different sizes from the INRIA Holidays

dataset. The experimental results show that the parallel implementation of the algorithm is more effective than the serial type according to

processing time.

Keywords: Parallel programming, Image segmentation, Graph, OpenMP.

1. Introduction

For many image processing application, the image segmentation is

one of the low-level and mid-level image processing stages.

During the image segmentation stage, the pixels of an image are

grouped into regions according to the similarity in the regions and

differences among the regions. This stage is one of the most

difficult stages in the image processing applications [1]. The

consequence of this stage affects all of the following stages and

their results. Image segmentation reduces the large amounts of data

for the analysis operations. In an image, the segmentation process

inherently focuses on the homogeneous regions and the borders

between them. It performs this task by using brightness, color,

pattern (texture), or density differences, etc. [2,3].

Many pattern recognition and computer vision applications take

advantage of the global features of the images for more accurate

segmentation. However, in this way, the processing time exceeds

the allocated time for the input frame periods of the used camera

in many real-time computer visions system. Due to the

computational complexity of the methods that take into account the

global features of the images, those that consider local features are

mostly preferred in real-time applications [2].

Graph-based methods are some of the segmentation methods.

Because of their representation relevance and ease of retention of

images, the graph theory tools are utilized as prominent tools in

computer vision [2]. In graph-based segmentation methods, the

nodes (or vertices) of the graph refer the pixels of the image and

the edges define the connections between the adjacent (or

neighboring) vertices. Each of these edges generally has a

numerical value, which is called weight [4]. The weights of the

edges are considered the difference of the gray level values or color

values (if the segmentation is performed on a color image) of the

vertices that exists at the ends of the edge. The difference is

generally computed by using Euclidean distance measurement [5].

Spanning trees are sub-graphs of a graph; such that they do not

contain any loop and it is easy to make process on the graph via

the spanning tree structure. The spanning tree of a graph that has

the least total edge weight among the other spanning trees of the

graph is called minimum spanning tree (MST) [4]. Image

segmentation algorithms based on minimum spanning tree take

advantage of the features of the MST, because it takes no account

of most of the edges on the image-graph. Therefore, the cost of the

operation is reduced significantly [6].

The segmentation process in MST-based segmentation algorithms

comes true in two ways. The first way is the cutting procedure in

which the edges to be cut are removed on the MST that covers all

of the pixels of the image. The edges to be cut represent the borders

on the image. By this way, a tree is separated into several sub-trees.

The sub-trees represent regions in the image [5,7-9]. The second

way is the merging procedure in which the sub-trees that satisfies

a homogeneity criterion are merged [10]. If two sub-trees do not

satisfy the criterion, they are not merged, and in this case, the

border between the two regions that the two sub-trees represent

occurs. In this paper, we parallelize the merging procedure that is

performed hierarchically.

Efficient Graph-Based Image Segmentation algorithm, which is

proposed by Felzenszwalb and Huttenlocher, defines a merging

criterion [10]. The algorithm employs the Kruskal's algorithm [11],

which is one of the most popular MST algorithms. In this

algorithm, all of the edges of the graph structured an image is

sorted in ascending order according to their weight. Then, the

edges are added to the MST structure by starting the shortest edge,

such that the MST is empty at first. If the trees that are at the ends

of the edge to be added do not satisfy the merging criterion, the

edge is not added. By the way, the MST may be divided into more

than one sub-trees. Haxhimusa and Kropatsch [12] used this

merging criterion on Boruvka's hierarchical MST algorithm [13].

In this algorithm, each node (vertex) assumed a sub-tree, and each

merging process of these sub-trees actualizes independently from

others. For this reason, this makes it suitable for parallelization.

1 Selcuk University Konya/Turkey

* Corresponding Author: Email: alisaglam666@gmail.com

Note: This paper has been presented at the 3rd International Conference

on Advanced Technology & Sciences (ICAT'16) held in Konya (Turkey),

September 01-03, 2016.

This journal is © Advanced Technology & Science 2013 IJAMEC, 2016, 4(Special Issue), 6-11 | 7

Nowadays, the multi-core processors are prevalent; and therefore,

the parallel programming has been a very popular issue. Scientific

and engineering programs such as image-processing applications

need to be fast to overcome the heavy processing load in limited

times. In order to make use of this technology, parallelization of

the applications reduces the process load. Obtaining the same or

similar results with sequential execution and ensuring to not

overlapping of the parallel operations is mostly important and

difficult matters for parallel programming issue. In this paper, we

organize the hierarchical graph-based image segmentation

algorithm as appropriate for parallel execution [14].

2. The Hierarchical Graph-Based Image
Segmentation

Let the graph 𝐺 = (𝑉, 𝐸) be the image-graph that is constructed

from an image. 𝑉 represents the set of the vertices in the graph 𝐺,

such that each vertex refers a pixel in the image and 𝑉 contains all

of the pixel-vertices. 𝐸 represents the set of the edges that connects

each vertex to its neighboring vertices. In this paper, 8-connected

neighborhood is used as a neighborhood system. The edges are

generally weighted and undirected. The weight of each edge is a

numerical and positive value that indicates the degree of similarity

between two vertices at the ends of the edge. As the degree of

similarity two vertices is lower, the weight value is higher. To

figure out the similarity, the one-dimensional gray-scale values or

multi-dimensional color values of the pixels can be used, and to

compute the difference for both ways, the Euclidean distance

measurement can be used. The edge (𝑢, 𝑣) connects the vertices 𝑢

and 𝑣, and 𝑤(𝑢, 𝑣) is the weight value of the edge. Let 𝑥𝑢 be the

one-level gray-scale value, and 𝑥𝑢,𝑖 be the 𝑖th value of the 𝑧-level

color vector of the vertex 𝑢 where 𝑖 = {1,2,⋯ , 𝑧}. The Euclidean

distance as the weight value of (𝑢, 𝑣) is computed as in Eq. 1.

𝑤(𝑢, 𝑣) = (∑ (𝑥𝑢,𝑖 − 𝑥𝑣,𝑖)
2z

𝑖=1
)
1/2

 (1)

2.1. Boruvka's Minimum Spanning Tree Algorithm

Boruvka's MST algorithm constructs an MST structure from a

graph, such that the graph must be a weighted, undirected, and

complete graph (Fig. 1). According to the algorithm, each vertex

is assumed as a tree at first stage and no one is connected to any

other one. The union of multiple trees is called forest. At first, all

of the vertices compose the forest 𝐹0, because each vertex is a tree

such that 𝐹0 = 𝑇1 ∪ 𝑇2 ∪⋯∪ 𝑇𝑛, such that n refers to the number

of the vertices on the graph 𝐺. 𝑇𝑖 refers to the 𝑖th tree (𝑇𝑖 equals to

the 𝑖th vertex at first stage) and each tree 𝑇𝑖 chooses the smallest

edge (𝑢, 𝑣) where 𝑢𝑇𝑖 and 𝑣𝑇𝑖, then the edge is added to the

new forest 𝐹1 that is being composed for the next stage. At the

begin of the next stage, the number of the trees will have been

reduced by at least one-half, i.e., will have been decreased by at

least one-half. If any edge is not added in the current stage, on the

other words, the last forest 𝐹𝑙𝑎𝑠𝑡 has one tree, the algorithm ends.

2.2. The Graph-Based Segmentation Algorithm

In the MST of a graph representation of an image, the highest

weighted edges represent the boundaries of the image (Fig. 1).

Felzenszwalb and Huttenlocher have segmented the images by

detecting the edges of the boundaries, which are called boundary

edges [10,15]. For the purpose of to detect the boundary edges to

be excluded from the MST, Felzenszwalb and Huttenlocher have

used the merging criterion Eq. 2 in the Kruskal's MST algorithm.

According to the Kruskal's algorithm, each vertex in the graph 𝐺

that is representation of the image seems as a tree. Firstly, all of the

edges in 𝐺 are sorted in order to their weight in ascending order.

The two trees at the ends of the smallest weight edge in the sorted

edge queue are merged if the two trees are not the same tree, and

the edge is removed from the queue. At last, only one single tree

remains such that it is called MST [11]. If the merging criterion in

Eq. 2 is applied on the algorithm, more than one MSTs might

remain at the end of this process [10], because the edges that does

not satisfy the criterion are not added to the MST to be formed, and

thus, the MST that covers all of the vertices might not be created.

𝐷𝑖𝑓𝑓(𝑇1, 𝑇2) < 𝑚𝑖𝑛 (𝐼𝑛𝑡(𝑇1) +
𝑘

|𝑇1|
, 𝐼𝑛𝑡(𝑇2) +

𝑘

|𝑇2|
) (2)

In Eq. 2, 𝑇1 and 𝑇2 are the sub-trees to be merged. 𝐷𝑖𝑓𝑓(𝑇1, 𝑇2)

defines the weight value of the shortest weighted edge that

connects the trees 𝑇1 and 𝑇2. 𝐼𝑛𝑡(𝑇1) and 𝐼𝑛𝑡(𝑇2) defines the

internal difference of 𝑇1 and 𝑇2 respectively. An internal difference

of a tree is the weight value of the highest weighted edge in the

tree. 𝑇1 and 𝑇2 defines the number of vertices in the trees 𝑇1 and 𝑇2

respectively. The constant value 𝑘 refers to a threshold value that

controls how much greater 𝐷𝑖𝑓𝑓(𝑇1, 𝑇2) must be than the internal

differences of the trees 𝑇1 and 𝑇2.

In this paper, Eq. 2 is utilized as a merging criterion in the

Boruvka's algorithm, because the Boruvka's algorithm progresses

(a) (b) (c)

Figure 1. (a) A simple black and white image , (b) the graph representation of the image according to 4-connection neighborhood, (c) the MST of the

image extracted from its graph representation and an example of boundary edge in the MST

8 | IJAMEC, 2016, 4(Special Issue), 6-11 This journal is © Advanced Technology & Science 2013

 in a hierarchical order. Due to this reason, this algorithm is more

suitable for parallelization than the other popular MST algorithms

[16]. The hierarchical graph-based image segmentation algorithm

is sketched in Fig. 2.

 In Fig. 2, the constructed graph 𝐺 = (𝑉, 𝐸) is obtained from the

image used, and then it is taken to the process as an input data.

Firstly, each vertex seems as a tree. The number of trees 𝑡 is equal

to the number of vertices 𝑉 initially. For each tree 𝑇𝑖, the smallest

edge (𝑢, 𝑣), where 𝑢𝑇𝑖 and 𝑣𝑇𝑖, is found. If the weight value

𝑤(𝑢, 𝑣) satisfies the criterion in Eq. 2, the tree 𝑇𝑢 to which the

vertex 𝑢 belongs and the tree 𝑇𝑣 to which the vertex 𝑣 belongs are

merged, and thus, the number of tree is reduced to one. After these

processes are complete for each tree, this cycle is repeated

iteratively. If no merging is happened, the algorithm ends.

3. The Parallel Implementation of The Algorithm

3.1. OpenMP

Multi-core processors have become quite prevalent nowadays.

Scientific and engineering programs such as image-processing

applications need to be fast to overcome the high processing load

in limited times. In order to make use of the multi-core processor

technology, such applications need to be parallelized. Therefore,

some libraries and tools, which are developed to take advantage of

the multi-core processor architecture, should be used and the

programs that will be parallelized must be coded suitable for

parallelization. OpenMP (Open Multi-Processing) is a run-time

program library that has routines and environment variables and

includes a set of compiler directives. The directives can be

embedded into C/C++ and Fortran programming languages using

shared-memory platforms to run codes on more processors [17].

On the platforms like these, OpenMP provides an easier

programming model. However, getting high performance from

OpenMP sometimes might be a very difficult task. The

acceleration rate of the program that use OpenMP directives

depends on many factors, including the problem how the variables

are used in the code, data layout, workload balancing and so on.

OpenMP is especially useful for partitioning a loop and running

the iterations of the loop on more processors simultaneously. For

that, the loop dependencies need to be configured in accordance to

parallelism [17].

3.2. Implementation of The Parallel Directives

The parallel computation is put into practice in three ways:

general-purpose computing on graphics processing units, via a

message processing interface, or using shared memory architecture

(OpenMP) [18]. In a shared memory model system, threads, which

are processes such that each runs as parallel, are communicated

each other by reading and writing directly to the same memory.

Since the OpenMP specification was introduced as a standard

shared-memory programming model in 1998, there have been

many studies to implement the OpenMP directives to their

programs to run as parallel [19]. By using the OpenMP

instructions, it is easy to solve the high processing load problems

of the classic single pipeline program model, because OpenMP

execute some calibrations automatically, and we do not need to

consider which core should run in which part of the calculation

[20].

OpenMP uses a fork-join model, which is a standard way to

execute a parallel program on shared-memory systems (Fig. 3).

Firstly, a parallel program begins to run on a single thread called

master thread. Once the process flow encounters a parallel block,

the process flow is separated to several threads (known as the fork)

to run on additional processor cores [21].

OpenMP provides several mechanisms to run the code as parallel.

Additionally, OpenMP provides an extra translator that analyzes

the parallel loop and generate executor code before the OpenMP

translation [19]. The translator determines the number of cores to

run, separates the loop into sub-loops automatically according to

the number of the cores, and employs each sub-loops to different

threats. The example of its use is as below:

#pragma omp parallel for

for(i=0;i<1000;i++)

{

 x[i] = y[i];

}

OpenMP provides some directives as private and shared to define

how the parallel regions use the data values. In parallel

programming, synchronization is used to impose some order

constraints and to organize to access to shared data. OpenMP also

provides several mechanisms to synchronize the parallel threads,

with critical, atomic, lock, ordered, flush, and barrier [14,22].

To synchronize the parallel graph-based algorithm, we used the

lock directive. In the block for merging clusters, if we embed the

locking mechanism in the processes, the threads that each works

on a different cluster will also wait to each other [23]. In this way,

the flow would not be parallel. Therefore, we restricted to the

threads that own the same index of lock array so that the index is

the cluster number at the same time. The example of its use is as

below:

Figure 2. The steps of the hierarchical segmentation algorithm.

Figure 3. A simple presentation of a shared memory architecture.

This journal is © Advanced Technology & Science 2013 IJAMEC, 2016, 4(Special Issue), 6-11 | 9

mylock = new omp_lock_t();

omp_init_lock(&(mylock));

lock_array = new omp_lock_t[size];

for (i = 0; i < size; i++)

{

 omp_init_lock(&(lock_array[i]));

}

If a lock is set with the expression omp_set_lock by a processor,

other processors that wants to set this lock must be waiting the

processor until the lock is unset with the expression

omp_unset_lock by the processor that has set the lock.

Another problem for synchronizing the processes is the mutual

exclusion problem. In cases when two clusters chose each other as

nearest cluster on different threads simultaneously, a crash may

happen. To solve this problem, we get the related code into a

critical block by the directive critical. By this way, only one

processor employs the codes that are in the critical block as seen

below:

#pragma_omp_critical

{

 omp_set_lock(mylock1);

 omp_set_lock(mylock2);

}

There is also another directive for getting the code into a critical

block, which is called atomic such that it is used for only one

variable to perform faster processing [17]. For example:

#pragma_omp_atomic

 a = a - 1;

The parallel implemented version of the algorithm in Fig. 2 is

sketched in Fig. 4.

4. Experimental Results and Discussion

The system that has been used for the values in Table I has 32 bit

Intel i5-2400 3.10-GHz Quad Core processor with 4 GB RAM. We

used C++ programming language. To import and illustrate the

images, we used OpenCV (Open Source Computer Vision) library

[24].

In Fig. 5, the original versions of some images from INRIA

Holidays dataset [25], their segmentation results and which

processor has performed on which segments of the images in last

iteration are presented.

We applied the algorithm on some images from INRIA Holidays

dataset [25] in the different versions of the images as the sizes of

128×96, 256×192, 512×384, and 1024×768. We executed the

program five times for each elapsed time value in Table 1, and put

the smallest one of the five values to the table. The time unit is

given as seconds (s) in Table 1.

5. Conclusion

As seen in the results, parallel programming provides an important

acceleration in processing speed. However, the processing time

Table 1. The elapsed times (s) of some images from the dataset with the different image sizes and the number of cores

Image Sizes 12896 256 192 512 384 1024 768

 Number of Cores

Image

Names
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

200200 0.036 0.031 0.028 0.029 0.172 0.135 0.123 0.123 0.745 0.583 0.543 0.518 3.171 2.427 2.203 2.133

203600 0.036 0.030 0.028 0.028 0.179 0.138 0.127 0.123 0.781 0.602 0.550 0.526 3.308 2.492 2.317 2.168

203900 0.035 0.029 0.027 0.029 0.179 0.137 0.128 0.123 0.776 0.572 0.519 0.510 3.074 2.337 2.118 2.099

206400 0.038 0.031 0.029 0.029 0.179 0.140 0.129 0.126 0.753 0.581 0.536 0.524 3.200 2.460 2.310 2.195

207000 0.037 0.031 0.029 0.031 0.178 0.138 0.131 0.127 0.773 0.576 0.525 0.544 3.157 2.407 2.233 2.143

207600 0.038 0.031 0.029 0.029 0.185 0.150 0.132 0.129 0.754 0.594 0.541 0.536 3.162 2.402 2.272 2.154

211100 0.036 0.031 0.029 0.029 0.186 0.146 0.132 0.131 0.723 0.584 0.519 0.535 3.152 2.408 2.210 2.154

213700 0.036 0.031 0.029 0.030 0.180 0.144 0.131 0.132 0.756 0.593 0.539 0.533 3.196 2.481 2.221 2.209

Figure 4. Parallel implementation of the algorithm in Fig. 2.

10 | IJAMEC, 2016, 4(Special Issue), 6-11 This journal is © Advanced Technology & Science 2013

decreases no more in all cases, as the number of cores increases.

The speedup of the execution relies on many factors, including

compiler optimizations, runtime support, data layout, operating

system noise, workload balancing and so on. Additionally, it may

be depend on the regions to merge in the structure of the graph of

the image. In a parallel loop, even if the threads complete their

process except one, they will have to wait for it. In these cases, the

operating system might have executed another task on the thread

in the meantime. Nevertheless, the parallelization saved a

noticeable time for us.

Acknowledgements

This study has been presented as an oral presentation at ICAT’16

conference held in Konya (Turkey), 1-3 September 2016 and

selected for the journal of IJAMEC (International Journal of

Applied Mathematics, Electronics and Computers).

References

[1] R. Nikhil and K. Scansar, “A review on image segmentation

 techniques,” Pattern Recognition, vol. 26, no. 9. pp.

 12771294, 1993.

[2] B. Peng, L. Zhang, and D. Zhang, “A survey of graph

 theoretical approaches to image segmentation,” Pattern

 Recognit., vol. 46, no. 3, pp. 10201038, 2013.

[3] W. Tao, H. Jin, and Y. Zhang, “Color image segmentation

 based on mean shift and normalized cuts.,” IEEE Trans. Syst.

Figure 5. Visualization of the segmentation results and the task sharing of the processors for some images.

This journal is © Advanced Technology & Science 2013 IJAMEC, 2016, 4(Special Issue), 6-11 | 11

Man. Cybern. B. Cybern., vol. 37, no. 5, pp. 13821389,

2007.

[4] J. A. Bondy, Graph Theory With Applications. Oxford, UK,

UK: Elsevier Science Ltd., 1976.

[5] C. T. Zahn, “Graph-Theoretical Methods for Detecting and

Describing Gestalt Clusters,” IEEE Trans. Comput., vol. C$-

$20, no. 1, pp. 6886, 1971.

[6] O. J. Morris, M. D. J. Lee, and A. G. Constantinides, “Graph

Theory for Image Analysis : An Approach Based on The

Shortest Spanning Tree,” Commun. Radar Signal Process.

IEE Proc. F, vol. 133, no. 2, pp. 146152, 1986.

[7] Y. X. V. Olman, D. Xu, “Solving data clustering problem as

a string search problem,” in Proc. Conf. Stat. Data Mining

Know. Dis., Chapman \& Hall CRC, 2003, pp. 417434.

[8] J. Shi and J. Malik, “Normalized Cuts and Image

Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol.

22, no. 8, pp. 888905, 2000.

[9] A. Saglam and N. A. Baykan, “Sequential image

segmentation based on minimum spanning tree

representation,” Pattern Recognit. Lett., Available online 16

June 2016, ISSN 0167-8655,

http://dx.doi.org/10.1016/j.patrec.2016.06.001.

[10] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-

based image segmentation,” Int. J. Comput. Vis., vol. 59, no.

2, pp. 167181, 2004.

[11] J. B. Kruskal, “On the shortest spanning subtree of a graph

and the traveling salesman problem,” Proc. Am. Math. Soc.,

vol. 7, no. 1, pp. 4848, 1956.

[12] Y. Haxhimusa and W. Kropatsch, “Segmentation graph

hierarchies,” Lect. Notes Comput. Sci. 3138, pp. 343351,

2004.

[13] O. Borůvka, “O jistém problému minimálním,” Práce

Morav. přírodovědecké společnosti, no. 3, pp. 3758, 1926.

[14] A. Marongiu, P. Burgio, and L. Benini, “Supporting

OpenMP on a multi-cluster embedded MPSoC,” in

Microprocessors and Microsystems, 2011, vol. 35, no. 8, pp.

668682.

[15] A. Saglam, Minimum Yayilan Agac Tabanli Sirali Goruntu

Bolutleme (Minimum Spanning Tree-based Sequential

Image Segmentation), Master thesis, Selcuk University,

Turkey, 2016.

[16] M. Tepper, P. Musé, A. Almansa, and M. Mejail, “Boruvka

meets nearest neighbors,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2013, vol.

8259 LNCS, no. PART 2, pp. 560567.

[17] L. Dagum, E. Rameshm, and R. Menon, “OpenMP: An

Industry- Standard API for Shared- Memory Programming,”

Comput. Sci. {\&} Eng. IEEE, vol. 5, no. 1, pp. 4655, 1998.

[18] S. Zhang, Z. Xia, R. Yuan, and X. Jiang, “Parallel

computation of a dam-break flow model using OpenMP on

a multi-core computer,” J. Hydrol., vol. 512, pp. 126133,

2014.

[19] W. Jeun, Y. Kee, and S. Ha, “Improving performance of

OpenMP for SMP clusters through overlapped page

migrations,” in International Workshop on OpenMP

(IWOMP’06, 2006.

[20] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP:

Portable Shared Memory Parallel Programming, vol. 10.

2008.

[21] Vikas, N. Giacaman, and O. Sinnen, “Multiprocessing with

GUI-awareness using OpenMP-like directives in Java,”

Parallel Comput., vol. 40, no. 2, pp. 6989, 2014.

[22] R. Van Der Pas, “An Introduction Into OpenMP,” Eur. J.

Surg., vol. 160, no. 3, pp. 145151, 2005.

[23] E. Ayguad, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F.

Massaioli, X. Teruel, P. Unnikrishnan, and G. Zhang, “The

design of OpenMP tasks,” IEEE Trans. Parallel Distrib.

Syst., vol. 20, no. 3, pp. 404418, 2009.

[24] G. Bradski, “The OpenCV Library,” Dr Dobbs J. Softw.

Tools, vol. 25, pp. 120125, 2000.

[25] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding

and weak geometric consistency for large scale image

search,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 2008, vol. 5302 LNCS, no. PART

1, pp. 304317.

