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ABSTRACT:   

Planck-Einstein’s  E   and de Broglie’s  kp    are two fundamental equations of 

quantum physics. But vacuum Cherenkov radiation (VCR) is convincing evidence that the 

momentum of a single photon should be  βp    where the phase constant  β   takes the place of 

the wave vector k . Apart from the momentum, the operator  i   is associated to  cm0 . The 

acousto-optic effect and anomalous VCR can be applied to test this conjecture. 
 

 

PACS:     03.65.Ta;   42.50.Pq;   41.60.Bq;   84.40.Fe;   14.80.Bn 

 

 
 

1. INTRODUCTION  

 The key of quantum mechanics is the Hamiltonian in terms of the momentum operator  ip̂   

which associated with de Broglie formula kp  . There are lots of experimental verifications for 

kp    [1] 

   Traveling waves                                                            Stationary waves 

   Compton effect, 1923                                                     Density of states 

   Davisson and Germer 1927, Thomson 1928                  Bohr-Sommerfeld quantization 

   Estermann and Stern, 1930                                              

In de Broglie’s theory, the phase velocity is  k
Vp




  and group velocity is dk

d
Vg




. Nevertheless, 

they are  


pV

 and 



d

d
Vg 

 in microwave electronics where the phase constant     is a 

component of k  and the phase is changed merely in this direction.  The wave with a phase velocity  

c




  is called slow wave [2][3]  and  

c




   [4][5] is fast wave. Concretely,    

                       Dispersion relation                                                             Phase velocity                       

 Free space     kc                                                                                           c
k



 

 Slow wave    ccckc   2222   ( -transverse eigenvalue) [2][3]      c



    

 Fast wave      cckc c   222     ( c -cutoff frequency)         [4][5]       c



                 

 

 

            Then whether the momentum should be  p   under the circumstances?  
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2. CASIMIR EFFECT 

The ratio of the Poynting vector(energy flux density) HES    to momentum density   

BEg  0    of an electromagnetic field in vacuum is a constant  [6][7]   

. 2

000

1
c






 BE

HE

g

S
 (1) 

An EM field consists of  photons so the relation between the energy and momentum of a 

single photon should be  

 
eV

c

w

S

c

w

S

g

S

g

w

N

g

N

w
22

  (2) 

where w  is the energy density, N  is the number density of photons and  
w

S
Ve    is the 

energy velocity of this field. In a hollow waveguide, the energy velocity is   cc c 
2

2

1



 [8]  and 

the ratio of energy to momentum equals   

 














 


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cce

V
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2

2

2

2

22

11

 (3) 

In the Casimir effect [9]~[12], two metal plates can be regarded as a one-dimensional 

rectangular waveguide and experiments demonstrate the Planck-Einstein relation E  in this 

structure. Consequently, the momentum of a photon in the waveguide should be     rather than 

k .   

 

3. NORMAL VCR 

Cherenkov radiation is generally emitted by charged particles pass through the dielectric 

medium at a speed  V  faster than the phase velocity  c


1
. Owing to wave-particle duality, this 

effect can also be deduced from quantum mechanics [13]. Moreover, it occurs in vacuum 

(
00

1






k
 ) provided that the phase velocity is decreased by slow wave systems [14] and we use 

the quantum theory to study too. Consider charged particles moving near the surface of a periodic 

structure [2][3] (Fig.1)    
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Figure 1.  Corrugated planar conductor 

 

Assume the momentum of a photon is k  (Fig.2), 

 
Figure 2.  Parallelogram law 

 

Momentum conservation (Fig.2): 

 'pkp    (4) 

 2222 'cos 2 pkkpp     (5) 

 
kp

pkp





2

'
cos

2222 
  (6) 

Energy conservation: 

 'EE    (7) 

The energy of a charged particle is 42

0

22 cmcp  , 

  42

0

22 cmcp
42

0

22' cmcp   (8) 

 42

0

222242

0

22 '2 cmcpEcmcp     (9) 

 2

2

22

2

2 '
2

p
cc

E
p 

 
 (10) 

Substituting Eq.(10) into Eq.(6), 

 

E

pc

k

kp

c

E

kp

k
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E
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2

22

2
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2

2

2

 2

2
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 (11) 
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Since  42

0

22 cmcpE 

2

2

2

0

1
c

V

cm



   and 

2

2

0

1
c

V

Vm
p



  of the charged particle, 

 V
E

pc


2

 (12) 

 1cos 
V

c

V

k



  (13) 

VCR is forbidden because of  c
k



  in free space, fast wave structures [4][5]  and slow 

wave systems [2][3] . However, people utilize slow wave devices in vacuum to generate VCR [14]. 

To explain this phenomenon, the momentum of a photon must be β . Hence 

 'pβp    (14) 

 









p

pp

2

'
cos

2222 
  (15) 

  42

0

22 cmcp
42

0

22' cmcp   (8) 
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





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2

p
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


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
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)(
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c
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

  (16) 

The rightmost term including a reduced Planck constant   has no counter part in classical 

physics. In the main, it has negligible effect on the trajectory because     of a photon is much less 

than the momentum p  of the charged particle, i.e. 

 
V

E

pc









 
2

cos  (17) 

 1
'2

'

'2

'
cos

222222








pp

pp

pp

pp 



,     0        (Fig.2) (18) 

Now we interpret why VCR merely exists in a slow wave device under conditions of  

cV 



  and cannot be found in free space or fast-wave systems ( c




). Besides mentioned 

periodic structures, VCR can be excited by a smooth surface such as the dielectric waveguide [15] 

and Sommerfeld wire [16]~[18]. They’re useful to obtain THz waves. 

 

4. ANOMALOUS VCR 

In addition to normal VCR observed long ago[14], there should be anomalous VCR when the 

quantum correction plays a major role. For instance, the phase constant of a corrugated plane 

surface is [2][3] 

 
c

d
c

c

d
cc






 

cos

tan1 2                (d   corrugation depth) (19) 

In event of  
2


d

c
,  

c


   is of the same order of magnitude of  p   and  Eq.(16) 

is now 
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pV 2

cos







  (20) 

Meanwhile, the phase velocity  



  is very low and  0

V





. Thus, 

 
p2

cos





  (21) 

Namely radiation whose angular frequency is about  
d

c

2

 
  has an enormous phase constant  







cos2p
  and 

                              
'2

'
cos

2222

pp

pp 





'2

)cos2(' 222

pp

ppp 
  (22) 

 On the other hand, it is  pp '   due to Eq.(8) and  42

0

22

2

 
cmcp

d

c



  .  Accordingly, 

 


 2

2

22

cos21
2

)cos2(2
cos 




p

pp
2cos  (23) 

 i.e.     2  (24) 

That is to say, a small portion of charged particles are deflected through a large angle  

 2  (Fig.3) 

 

 
Figure 3.  Anomalous VCR 

 

In particular, the particle will be defected backwards (   ) if 0 . Anomalous radiation 

is a purely quantum effect and cannot be predicted by classical electrodynamics. 
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5. ACOUSTO-OPTIC INTERACTION 

The light can be diffracted by sound waves through acousto-optic devices [19] (Fig.4). 

 

 . 

Figure 4.  Bragg Diffraction 

 

The momentum sP  of a phonon is much less that of the incident photon ip   and diffracted 

photon dp  (Fig.5). 

 
Figure 5.   Momentum conservation 

 is pP   (25) 

 di pp   (26) 

 Bragg angle  
i

s
i

p

P

2
sin              (27) 

In unbonuded acousto-optic materials, 

             
i

s

i

s

i

s
i

k

K

k

K

p

P

222
sin 




        [19]  (28) 

As bounded materials in different structures, there may be sss KP     and 

iii kp     for sound waves and  EM waves. 

 

6. PHYSICAL MEANING 

The rectangular waveguide [4][5] can be regarded as an infinite square well [20] of photons 

and the wave function is 

 0),,(  zyx             (
2

a
x  , 

2

b
y  ) (29) 

Stationary wave equation: 

 022  k  (30) 

Waves propagate along the z -axis, 

 zi

yxzyx e  

),(),,(

             ( 1i , zk ) (31) 

Separation of variables 

 02

2

2

 Xk
dx

Xd
x  (32) 

 02

2

2

 YkY
dy

d
y  (33) 
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 On account of the boundary condition (29), 

  
a

lk xx


         ( ......3,2,1,0xl ) (34) 

 
b

lk yy


       ( ......3,2,1,0yl ) (35) 

  
2

2

2

2

2

2
222

cb

l

a

l
kk cyx
yx


 














       [4][5] (36) 

Transverse components of the momentum of a single photon are not 

 
xx kp   (37) 

 
yy kp   (38) 

  
c

kkpp c
yxyx


  22222   (39) 

otherwise the total momentum of this photon should be 

  22222222

yxyxz kkppp    k
c

c  
2

2
2 

  (40) 

Ratio of energy to momentum 

 c
kk







 (41) 

Eqs.(37)~(39) are inconsistent with the result of classical electrodynamics that transverse 

components of the Poynting vector and momentum density are zero [21].To resolve this question,  

xp   and  yp  have to be zero although  xk   and  yk  could be non-zero. Therefore, 

 Wave number             


 
cc

kkk c
yx 2

2
2222  (42) 

 Momentum        0022222  zyx pppp k    (43) 

Ratio of energy to momentum 

 cVp 











 (44) 

Operators  
x

i



    and  

y
i



    result in rest mass multiplied by c . 

 cm
a

lk xxx 0 


  (45) 

 cm
b

lk yyy 0 


  (46) 

 0xl   and 0yl                       — modes TM      [22] (47) 

   0xl , 0yl   or  0xl , 0yl   — modes TE     [22] (48) 

 


2

0

2

2

2

2
22 cm

b

l

a

l
cckk

yx
yxc                    [23] (49) 

A non-zero rest mass  of TE  and TM  wave is not surprising, if  we think of longitudinal 

oscillations 0zB  and 0zE  in the direction of wave propagation. The quantity 
20
c

m c   

derives from massless Maxwell’s equations and the value is zero in an infinitely large waveguide 

( a , b ) equivalent to free space. This has nothing to do with massive Proca’s equations 

[24] whose rest mass of a photon is still nonzero even in free space and does not violate any 

fundamental physical law such as gauge invariance and Coulomb's inverse square law [25]. 
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In sum, the dispersion relation of electromagnetic waves in a hollow waveguide  

 

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2222
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cc    (50) 

corresponds to the relativistic mechanical equation 
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Total energy 
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Momentum 
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Phase velocity 
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Group velocity 
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
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g c

d
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Energy velocity [8] 

 ccV c
e 

2

2

1



 (60) 

 2cVVVVVV gpepp   (61) 

 

By comparison, the dispersion relation of high frequency EM waves in plasma is [26] 

 2222

pck             (
*

2

m

NZe

o

p


   plasma frequency) (62) 

  Obviously, it is a good model to study de Broglie's theory because  E   and  kp   

are both valid. 

Total energy 

 E  (52) 

Momentum 

 kp   (63) 
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Rest mass 
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Phase velocity 
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Energy velocity [27]  
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 2cVVVVVV gpepp   (71) 

           The opinion is wrong that the frequency of de Broglie’s matter wave has no physical effects 

[28][29] and only the frequency difference is important [30]. 

 

 

7. CONCLUSION 

de Broglie’s  kp    is a special case of  βp  .    













q
iq ,   equals  i   indeed but the 

canonical commutation relation   ipq ˆ,   is invalid  because the operator  
q

i



    is not always a 

momentum. 
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