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In this article we study simple integral-type estimator of distribution function under random right censored

observations at fixed covariate values, where the dependence between a life time and a censoring variable

may expressed by a given Archimedean copula. We prove an almost sure asymptotic representation which

provides a key tool for obtaining weak convergence result for estimator.
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Introduction

In such research areas as bio-medicine, engineering, insurance, social sciences, . . ., researchers

are interested in positive variables, which are expressed as a time until a certain event. For

example, in medicine the survival time of individual, while in industrial trials, time until break-

down of a machine are non-negative random variables (r.v.-s) of interest. But in such practical

situations, the observed data may be incomplete, that is censored. This is the case, for example,

in medicine when the event of interest-death due to a given cause and the censoring event is

death due to other cause. In industrial study, it may occur that some piece of equipment is taken

away (that is censored) because it shows some sign of future failure. Moreover, the r.v.-s of

interest (lifetimes, failure times) and censoring r.v.-s usually can be influenced by other variable,

often called prognostic factor or covariate. In medicine, dose of a drug and in engineering some

environmental conditions (temperature, pressure, . . .) are influenced to the observed variables.

The basic problem consist in estimation of distribution of lifetime by such censored dependent

data. The aim of paper is considering this problem in the case of right random censoring model

in the presence of covariable.

Let’s consider the case when the support of covariate C is the interval [0, 1] and we describe our

results on fixed design points 0 6 x1 6 x2 6 . . . 6 xn 6 1 at which we consider responses (survival
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or failure times) X1, . . . ,Xn and censoring times Y1, . . . , Yn of identical objects, which are under

study. These responses are independent and nonnegative r.v.-s with conditional distribution

function (d.f.) at xi, Fxi
(t) = P (Xi 6 t/Ci = xi). They are subjected to random right censoring,

that is for Xi there is a censoring variable Yi with conditional d.f. Gxi
(t) = P (Yi 6 t/Ci = xi)

and at n-th stage of experiment the observed data is

S(n) = {(Zi, δi, Ci), 1 6 i 6 n},

where Zi = min(Xi, Yi), δi = I(Xi 6 Yi) with I(A) denoting the indicator of event A. Note that

in sample S(n) r.v. Xi is observed only when δi = 1. Commonly, in survival analysis to assume

independence between the r.v.-s Xi and Yi conditional on the covariate Ci. But, in some practical

situations, this assumption does not hold. Therefore, in this article we consider a dependence

model in which dependence structure is described through copula function. So let

Sx(t1, t2) = P (Xx > t1, Yx > t2), t1, t2 > 0,

the joint survival function of the response Xx and the censoring variable Yx at x. Then the

marginal survival functions are SX
x (t) = 1 − Fx(t) = Sx(t, 0) and SY

x (t) = 1 − Gx(t) = Sx(0, t),

t > 0. We suppose that the marginal d.f.-s Fx and Gx are continuous. Then according to the

Theorem of Sclar (see, [1]), the joint survival function Sx(t1, t2) can be expressed as

Sx(t1, t2) = Cx(SX
x (t1), S

Y
x (t2)), t1, t2 > 0, (1)

where Cx(u, v) is a known copula function depending on x, SX
x and SY

x in a general way. It

is necessary to note that in the case of no covariates, this idea first was considered by Zeng

and Klein [2] and proposed copula-graphic estimator. Rivest and Wells [3] investigated copula-

graphic estimator and derived a closed form expression for estimator when the joint survival

function (1) is modeled an Archimedean copula. The copula-graphic estimator is then shown

to be uniformly consistent and asymptotically normal. Note that the copula-graphic estimator

is equivalent to the product-limit estimator of Kaplan and Meier [4] when the survival and

censoring times are assumed to be independent. Braekers and Veraverbeke [5] extend copula-

graphic estimator to the fixed design regression case and show that estimator has an asymptotic

representation and a Gaussian limit. We consider other estimator of d.f. Fx which had a simpler

form than copula-graphic estimator and it is also equivalent to the usual exponential-hazard

estimator under independent censoring case. We study the large sample properties of estimator

proposed and present result of uniform normality with the same limiting Gaussian process as for

copula-graphic estimator.

1. Construction of estimator and asymptotic results

Assume that at the fixed design value x ∈ (0, 1), Cx in (1) is Archimedean copula, i.e.

Sx(t1, t2) = ϕ[−1]
x

(

ϕx

(

SX
x (t1)

)

+ ϕx

(

SY
x (t2)

)

)

, t1, t2 > 0, (2)

where, for each x, ϕx : [0, 1] → [0,+∞] is a known continuous, convex, strictly decreasing

function with ϕx(1) = 0. ϕ
[−1]
x is a pseudo-inverse of ϕx (see, Nelsen [1]) and given by

ϕ[−1]
x (s) =

{

ϕ−1
x (s), 0 6 s 6 ϕx(0),

0, ϕx(0) 6 s 6 ∞.
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We assume that copula generator function ϕx is strict, i.e. ϕx(0) = ∞ and hence ϕ
[−1]
x = ϕ−1

x .

From (2), it follows that

P (Zx > t) = 1−Hx(t) = Hx(t) = SZ
x (t) = Sx(t, t) = ϕ−1

x

(

ϕx

(

SX
x (t)

)

+ϕx

(

SY
x (t)

))

, t > 0, (3)

Let H
(1)
x (t) = P (Zx 6 t, δx = 1) be a subdistribution function and Λx(t) is crude hazard function

of r.v. Xx subjecting to censoring by Yx,

Λx(dt) =
P (Xx ∈ dt,Xx 6 Yx)

P (Xx > t, Yx > t)
=

H
(1)
x (dt)

SZ
x (t−)

. (4)

From (4) one can obtain following expression of survival function SX
x :

SX
x (t) = ϕ−1

x

[

−

∫ t

0

SZ
x (u−)ϕ′

x

(

SZ
x (u)

)

dΛx(u)

]

= ϕ−1
x

[

−

∫ t

0

ϕ′

x

(

SZ
x (u)

)

dH(1)
x (u)

]

, t > 0,

(5)

(see, for example, [3, 5]). In order to constructing the estimator of SX
x according to representa-

tion (5), we introduce some smoothed estimators of SZ
x ,H

(1)
x and regularity conditions for them.

Similarly to Breakers and Veraverbeke [5], we will also use the Gasser-Müller weights

ωni(x, hn) =
1

qn(x, hn)

∫ xi

xi−1

1

hn
π

(

x − z

hn

)

dz, i = 1, ..., n, (6)

with

qn(x, hn) =

∫ xn

0

1

hn
π

(

x − z

hn

)

dz,

where x0 = 0, π is a known probability density function(kernel) and {hn, n > 1} is a sequence

of positive constants, tending to zero as n → ∞, called bandwidth sequence. Let’s introduce the

weighted estimators of Hx, SZ
x and H

(1)
x respectively as

Hxh(t) =

n
∑

i=1

ωni(x, hn)I(Zi 6 t),

SZ
xh(t) = 1 − Hxh(t),

H
(1)
xh (t) =

n
∑

i=1

ωni(x, hn)I(Zi 6 t, δi = 1).

(7)

Then pluggin in (5) estimators (7) we get corresponding estimator of SX
x (t) as

SX
xh(t) = 1 − Fxh(t) = ϕ−1

x

[

−

∫ t

0

ϕ′

x(SZ
xh(u))dH

(1)
xh (u)

]

, t > 0, (8)

Remark that in the case of no covariate, estimator (8) reduces to estimator first obtained by Zeng

and Klein [2]. In the case of the independent copula ϕ(y) = − log y, Zeng and Klein estimate

reduces to a exponential-hazard estimate (see, [8, 9]). Also it is well-known that under indepen-

dent censoring case Kaplan-Meier’s product-limit estimator and exponential-hazard estimators

are asymptotical equivalent. Therefore, we will show that estimator (8) and copula-graphic

estimator of Breakers and Veraverbeke have the same asymptotic behaviours.

For the design points x1, ...xn, denote

∆n = min
16i6n

(xi − xi−1), ∆n = max
16i6n

(xi − xi−1).
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For the kernel π, let

‖π‖2
2 =

∫

∞

−∞

π2(u)du, mν(π) =

∫

∞

−∞

uνπ(u)du, ν = 1, 2,

‖π‖∞ = sup
u∈R

π(u).

Moreover, we use next assumptions on the design and on the kernel function:

(A1) As n → ∞, xn → 1, ∆n = O( 1
n ), ∆n − ∆n = o( 1

n ).

(A2) π is a probability density function with compact support [−M,M ] for some M > 0, with

m1(π) = 0 and |π(u) − π(u′)| 6 C(π)|u − u′|, where C(π) is some constant.

Let THx
= inf{t > 0 : Hx(t) = 1}. Then THx

= min(TFx
, TGx

). For our results we need

some smoothnees conditions on functions Hx(t) and H
(1)
x (t). We formulate them for a general

(sub)distribution function Nx(t), 0 6 x 6 1, t ∈ R and for a fixed T > 0.

(A3)
∂

∂x
Nx(t) = Ṅx(t) exists and is continuous in (x, t) ∈ [0, 1] × [0, T ].

(A4)
∂

∂t
Nx(t) = N ′

x(t) exists and is continuous in (x, t) ∈ [0, 1] × [0, T ].

(A5)
∂2

∂x2
Nx(t) = N̈x(t) exists and is continuous in (x, t) ∈ [0, 1] × [0, T ].

(A6)
∂2

∂t2
Nx(t) = N ′′

x (t) exists and is continuous in (x, t) ∈ [0, 1] × [0, T ].

(A7)
∂2

∂x∂t
Nx(t) = Ṅ ′

x(t) exists and is continuous in (x, t) ∈ [0, 1] × [0, T ].

(A8)
∂ϕx(u)

∂u
= ϕ′

x(u) and
∂2ϕx(u)

∂u2
= ϕ′′

x(u) are Lipschitz in the x-direction with a bounded

Lipschitz constant and
∂3ϕx(u)

∂u3
= ϕ′′′

x (u) 6 0 exists and is continuous in (x, u) ∈ [0, 1] × (0, 1].

It is clear that for existence of right hand side of representation (5) we must require the

conditions (A 4) for functions Hx(t) and H
(1)
x (t) in [0, 1] × [0, T ] with T < THx

and existence of

ϕ′

x(u) on [0, 1] × (0, 1].

We derive an almost sure representation result with rate.

Theorem 1.1. Assume (A1), (A2), Hx(t) and H
(1)
x (t) satisfy (A5)–(A7) in [0, T ] with T < THx

,

ϕx satisfies (A8) and hn → 0,
log n

nhn
→ 0,

nh5
n

log n
= O(1). Then, as n → ∞,

Fxh(t) − Fx(t) =

n
∑

i=1

ωni(x, hn)Ψtx(Zi, δi) + rn(t),

where

Ψtx(Zi, δi) =
−1

ϕ′
x (SX

x (t))

[
∫ t

0

ϕ′′

x

(

SZ
x (u)

)

(I(Zi 6 u) − Hx(u))dH(1)
x (u)−

−ϕ′

x

(

SZ
x (t)

)

(I(Zi 6 t, δi = 1) − H(1)
x (t)) −

∫ t

0

ϕ′′

x

(

SZ
x (u)

)

(I(Zi 6 u, δi = 1) − H(1)
x (u))dHx(u)

]

and

sup
06t6T

|rn(t)|
a.s.
= O

(

(

log n

nhn

)3/4
)

.
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The weak convergence of the empirical process (nhn)1/2{Fxh(·)−Fx(·)} in the space ℓ∞[0, T ]

of uniformly bounded functions on [0, T ], endowed with the uniform topology is the contents of

the next theorem.

Theorem 1.2. Assume (A1), (A2), Hx(t) and H
(1)
x (t) satisfy (A5)–(A7) in [0, T ] with T < THx

,
and that ϕx satisfies (A8).

(I) If nh5
n → 0 and

(log n)3

nhn
→ 0, then, as n → ∞,

(nhn)1/2 {Fxh(·) − Fx(·)} =⇒ Wx(·) in ℓ∞[0, T ].

(II) If hn = Cn−1/5 for some C > 0, then, as n → ∞,

(nhn)1/2{Fxh(·) − Fx(·)} =⇒ W
∗

x(·) in ℓ∞[0, T ],

where Wx(·) and W
∗

x(·) are Gaussian processes with means

EWx(t) = 0, EW
∗

x(t) = ax(t),

and same covariance

Cov(Wx(t),W∗

x(s)) = Cov(W∗

x(t),W∗

x(s)) = Γx(t, s),

with

ax(t) =
−C5/2m2(π)

2ϕ′
x(SX

x (t))

∫ t

0

[

ϕ′′

x(SZ
x (u))Ḧx(u)dH(1)

x (u) − ϕ′

x(SZ
x (u))dḦ(1)

x (u)
]

,

and

Γx(t, s) =
‖π‖2

2

ϕ′
x (SX

x (t)) ϕ′
x (SX

x (s))

{

∫ min(t,s)

0

(

ϕ′

x

(

SZ
x (z)

))2
dH(1)

x (z)+

+

∫ min(t,s)

0

[

ϕ′′

x(SZ
x (w))SZ

x (w) + ϕ′

x(SZ
x (w))

]

∫ w

0

ϕ′′

x(SZ
x (y))dH(1)

x (y)dH(1)
x (w)+

+

∫ min(t,s)

0

ϕ′′

x(SZ
x (w))

∫ max(t,s)

w

(

ϕ′′

x(SZ
x (y))SZ

x (y) + ϕ′

x(SZ
x (y))

)

dH(1)
x (y)dH(1)

x (w)−

−

∫ t

0

[

ϕ′′

x(SZ
x (y))SZ

x (y) + ϕ′

x(SZ
x (y))

]

dH(1)
x (y)

∫ s

0

[

ϕ′′

x(SZ
x (w))SZ

x (w) + ϕ′

x(SZ
x (w))

]

dH(1)
x (w)

}

.

2. Proofs of Theorems 2.1 and 2.2

In order to proving the Theorems 2.1 and 2.2 we need some auxiliary results for empiricals

Hxh and H
(1)
xh . While the Lemma 3.1 below (i.e. Lemma A4 from [9]) about the rates of strong

uniform consistency of weighted empiricals is formulated only for Hxh, it is still true also for

H
(1)
xh and proved exactly with the same way.

Lemma 2.1 ( [9]). (I) Assume (A 1), (A 2), Hx(t) satisfies (A 3), hn → 0, nhn → ∞,
nh3

n

log n
= O(1). Then, as n → ∞,

sup
06t6T

|Hxh(t) − Hx(t)|
a.s.
= O

(

(

log n

nhn

)1/2
)

.
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(II) Assume (A 1), (A 2), Hx(t) satisfies (A 3) and (A 5), hn → 0,
nh5

n

log n
= O(1). Then, as

n → ∞,

sup
06t6T

|Hxh(t) − Hx(t)|
a.s.
= O

(

(

log n

nhn

)1/2
)

.

The next Lemma 3.2 (Lemma 2 in [5]) provides the convergence rate of Theorem 2.1.

Lemma 2.2 ( [5]). Under the conditions of theorem 2.1, as n → ∞,

sup
06t6T

∣

∣

∣

∣

−

∫ t

0

[

ϕ′

x

(

SZ
xh(u)

)

− ϕ′

x

(

SZ
x (u)

)]

d
(

H
(1)
xh (u) − H(1)

x (u)
)

∣

∣

∣

∣

a.s.
= O

(

(

log n

nhn

)3/4
)

.

Proof of Theorem 2.1. Applying a second order Taylor expansion, we have

Fxh(t) − Fx(t) = −
(

SX
xh(t) − SX

x (t)
)

=

= −

{

ϕ−1
x

[

−

∫ t

0

ϕ′

x

(

SZ
xh(u)

)

dH
(1)
xh (u)

]

− ϕ−1
x

[

−

∫ t

0

ϕ′

x

(

SZ
x (u)

)

dH(1)
x (u)

]}

=

= −
1

ϕ′
x (SX

x (t))

{

−

∫ t

0

ϕ′

x

(

SZ
xh(u)

)

dH
(1)
xh (u) +

∫ t

0

ϕ′

x

(

SZ
x (u)

)

dH(1)
x (u)

}

+

+
ϕ′′

x

(

ϕ−1
x (θxh(t))

)

2
[

ϕ′
x

(

ϕ−1
x (θxh(t))

)]2 ·

{

−

∫ t

0

ϕ′

x

(

SZ
xh(u)

)

dH
(1)
xh (u) +

∫ t

0

ϕ′

x

(

SZ
x (u)

)

dH(1)
x (u)

}2

=

= An(t) + Bn(t), (9)

where θxh(t) between

[

−

∫ t

0

ϕ′

x

(

SZ
xh(u)

)

dH
(1)
xh (u)

]

and

[

−

∫ t

0

ϕ′

x

(

SZ
x (u)

)

dH(1)
x (u)

]

. In (9) the

first summand we rewrite as

An(t) = −
1

ϕ′
x(SX

x (t))
[Qn1(t) + Qn2(t) + Qn3(t)] , (10)

where

Qn1(t) = −

∫ t

0

[

ϕ′

x(SZ
xh(u)) − ϕ′

x(SZ
x (u))

]

dH(1)
x (u),

Qn2(t) = −

∫ t

0

ϕ′

x(SZ
xh(u))d(H

(1)
xh (u)) − H(1)

x (u)),

and

Qn3(t) = −

∫ t

0

[ϕ′

x(SZ
xh(u)) − ϕ′

x(SZ
x (u))]d(H

(1)
xh (u)) − H(1)

x (u)).

From Lemma 2.2, we get

sup
06t6T

|Qn3(t)|
a.s.
= O

(

(

log n

nhn

)3/4
)

. (11)

Furthermore, for 0 6 t 6 T < THx
, also by Taylor expansion,

Qn1(t) =

∫ t

0

ϕ′′

x(SZ
x (u))(Hxh(u) − Hx(u))dH(1)

x (u)−

−

∫ t

0

1

2
ϕ′′

x(ηxh(u))(Hxh(u) − Hx(u))2dH(1)
x (u) =

=

∫ t

0

ϕ′′

x(SZ
x (u))(Hxh(u) − Hx(u))dH(1)

x (u) + qn(t),

(12)
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where ηxh(u) ∈ [min(Hxh(u),Hx(u)),max(Hxh(u),Hx(u))] and from Lemma 3.1,

sup
06t6T

|qn(t)|
a.s.
= O

(

log n

nhn

)

. (13)

Integrating by parts, we rewrite Qn2(t) as

Qn2(t) = −ϕ′

x(SZ
x (t))

(

H
(1)
xh (t) − H(1)

x (t)
)

+

∫ t

0

ϕ′′

x(SZ
x (u))

(

H
(1)
xh (u) − H(1)

x (u)
)

dHx(u). (14)

Therefore, from (10)-(14), and Lemma 2.1, we have

sup
06t6T

|An(t)|
a.s.
= O

(

(

log n

nhn

)1/2
)

. (15)

Since,

sup
06t6T

|Bn(t)|
a.s.
= O

(

(

sup
06t6T

|An(t)|

)2
)

, (16)

hence, from (15)

sup
06t6T

|Bn(t)|
a.s.
= O

(

log n

nhn

)

. (17)

Then, finally from (9)–(17), we obtain that for 0 6 t 6 T < THx
, as n → ∞,

Fxh(t) − Fx(t)
a.s.
= −

1

ϕ′
x(SX

x (t))

{
∫ t

0

ϕ′′

x(SZ
x (u))(Hxh(u) − Hx(u))dH(1)

x (u)−

−ϕ′

x(SZ
x (t))

(

H
(1)
xh (t) − H(1)

x (t)
)

+

∫ t

0

ϕ′′

x(SZ
x (u))

(

H
(1)
xh (u) − H(1)

x (u)
)

dHx(u)

}

+

+O

(

(

log n

nhn

)3/4
)

=
n
∑

i=1

ωni(x, hn)Ψtx(Zi, δi) + O

(

(

log n

nhn

)3/4
)

,

which completes the proof of Theorem 2.1.

It is necessary to note that almost sure representation of Theorem 2.1 plays a key role on

investigating of estimator (8) and, in particular, it provides a basic tool for obtaining weak

convergence result of Theorem 2.2. But the main summand Ψtx of this representation is the

same as in the case of copula-graphic estimator from [5]. Then the proof of Theorem 2.2 one

can accomponing by line of proof of Theorem 2 from [5]. Therefore, the proof of Theorem 2.2 is

omitted. Thus, the estimator (8) and copula-graphic estimator are asymptotic equivalent.
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Об оценивании условной функции распределения
при зависимом случайном цензурировании справа

Абдурахим А. Абдушукуров

Рустамжон С. Мурадов

В данной статье мы исследуем простую оценку интегрального типа функции распределения слу-

чайно цензурированных при фиксированных ковариатах наблюдений, где зависимость между про-

жительностью жизни и цензурирующей случайной величиной выражается через архимедовы

копулы. Для оценки мы доказываем асимптотическое представление с вероятностью единица,

которое обеспечивает ключевой подход для получения результата слабой сходимости.

Ключевые слова: фиксированный план, цензурирование справа, копулы, асимптотическое пред-

ставление, слабая сходимость, гауссовский процесс.
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