The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

Pretrained Transformers as Universal Computation Engines

Kevin Lu,!? Aditya Grover,>> Pieter Abbeel,' Igor Mordatch*

! UC Berkeley, > Facebook Al Research, > UCLA, #* Google Brain
kzl@fb.com

Abstract

We investigate the capability of a transformer pretrained on
natural language to generalize to other modalities with mini-
mal finetuning — in particular, without finetuning of the self-
attention and feedforward layers of the residual blocks. We
consider such a model, which we call a Frozen Pretrained
Transformer (FPT), and study finetuning it on a variety of
sequence classification tasks spanning numerical computa-
tion, vision, and protein fold prediction. In contrast to prior
works which investigate finetuning on the same modality as
the pretraining dataset, we show that pretraining on natural
language can improve performance and compute efficiency
on non-language downstream tasks. Additionally, we perform
an analysis of the architecture, comparing the performance of
a random initialized transformer to a random LSTM. Com-
bining the two insights, we find language-pretrained trans-
formers can obtain strong performance on a variety of non-
language tasks.
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Figure 1: A frozen language-pretrained transformer (FPT)
— without finetuning the self-attention and feedforward lay-
ers — can achieve strong performance compared to a trans-
former fully trained from scratch on a downstream modality
on literature benchmarks (Tay et al. 2020; Rao et al. 2019).
We show results on diverse classification tasks (see Section
2.1): numerical computation (Bit Memory/XOR, ListOps),
image classification (MNIST, CIFAR-10, LRA), and pro-
tein fold prediction (Homology). We also show results for
a fully-trained from-scratch LSTM as a baseline. Our code
is available at: github.com/kzl/universal-computation
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1 Introduction

The transformer architecture (Vaswani et al. 2017) has
shown broad successes in deep learning, serving as the back-
bone of large models for tasks such as modeling natural lan-
guage (Brown et al. 2020), images (Dosovitskiy et al. 2020),
proteins (Jumper et al. 2021), and multimodal tasks compris-
ing of both images and text (Lu et al. 2019; Radford et al.
2021). Inspired by these successes, we seek to explore the
generalization capabilities of a transformer in transferring
from one modality to another.

Classical approaches to sequence processing used recur-
rent neural network (RNN) approaches (Rumelhart, Hin-
ton, and Williams 1985; Hochreiter and Schmidhuber 1997).
In contrast, transformers utilize self-attention layers to ex-
tract features across tokens of a sequence, such as words
(Vaswani et al. 2017) or image patches (Dosovitskiy et al.
2020). Furthermore, it has become common practice to train
large models on unsupervised objectives before finetuning
or evaluating zero-shot generalization on a downstream task.
However, the downstream tasks that have been studied are
generally restricted to the same modality as the original
training set: for example, train GPT (Radford et al. 2018) on
alarge language corpus, and finetune on a small task-specific
dataset. Our goal in this work is to investigate finetuning on
modalities distinct from the training modality.

We hypothesize that transformers — namely the self-
attention layers — can be pretrained on a data-rich modal-
ity (i.e. where data is plentiful, such as a language corpus)
and identify feature representations that are useful for arbi-
trary data sequences, enabling downstream transfer to dif-
ferent modalities. In particular, we seek to investigate what
pretrained language models (LMs) are capable of in terms
of generalizing to other modalities with sequential structure.

To investigate this hypothesis, we take a transformer
model pretrained on natural language data, GPT-2 (Radford
et al. 2019), and finetune only the linear input and output
layers, as well as the positional embeddings and layer norm
parameters. These decisions are made to highlight the pa-
rameters already in the language model, and not for per-
formance purposes. We call this model a Frozen Pretrained
Transformer (FPT). On a range of tasks across a variety of
modalities — including numerical computation, image clas-
sification, and protein fold prediction — FPT displays com-
parable performance to training the entire transformer from



scratch, matching reported benchmarks for these tasks (Fig-
ure 1). Additionally, we find FPT models also converge
faster during training. Our results suggest the self-attention
layers learned by a language model may perform computa-
tion that is universal across modalities. Through a series of
experiments, we investigate what contributes to cross-modal
transfer by isolating sub-components of these models.

2 Methodology
2.1 Tasks

We evaluate on a diverse set of classification tasks represen-
tative of different modalities. In particular, we are interested
in if language models are inherently capable of universal
computation, by which we mean the ability to learn repre-
sentations for predictive learning across diverse modalities.

Bit Memory. Similar to the task proposed by (Miconi,
Stanley, and Clune 2018), we consider a bit memory task
where the model is shown 5 bitstrings each of length 1000.
Afterwards, the model is shown a masked version of one of
the bitstrings, where each bit is masked with probability 0.5,
and the model is tasked with producing the original bitstring.
The bitstrings are broken up into sequences of length 50, so
that the models are fed 120 tokens of dimension 50.

Bit XOR. Similar to the bit memory task, the model is
shown 2 bitstrings of length 5, where the model must predict
the element-wise XOR. The bitstrings are shown 1 bit at a
time, so the models are fed 10 tokens of dimension 1.

ListOps. Taken from (Nangia and Bowman 2018; Tay
et al. 2020), the model is shown a sequence of list op-
erations (ex. [ MAX 4 3 [ MIN 2 3 ] 1 0 1) and
tasked with predicting the resulting output digit (ex. 4). This
task evaluates the ability of a model to parse mathematical
expressions and evaluate over a long context. The model is
shown 1 token at a time, so the models are fed 512 tokens of
dimension 15.

MNIST. On MNIST, the model must classify a handwrit-
ten digit from a 32 x 32 black-and-white image. The tokens
given to the model are 4 x 4 image patches, so the models
are fed 64 tokens of dimension 16.

CIFAR-10. On CIFAR-10 (Krizhevsky et al. 2009), the
model will be given 4 x 4 image patches, so the models are
fed 64 tokens of dimension 16.

CIFAR-10 LRA. This is a modified version of the above
task taken from the Long Range Arena (LRA) benchmark
where the images are converted to grayscale and flattened
with a token length of 1 (Tay et al. 2020). As a result, the
input sequence consists of 1024 tokens of dimension 1. This
task is more challenging than vanilla CIFAR-10 as the mod-
els must learn patterns over a significantly longer sequence
length and have minimal spatial inductive bias.

Remote homology detection. In this task, we are inter-
ested in predicting the fold for a protein, represented as an
amino acid sequence. We use the datasets provided by TAPE
(Rao et al. 2019; Fox, Brenner, and Chandonia 2013; Hou,
Adhikari, and Cheng 2018), where the train/test split is gen-
erated by holding out certain evolutionary groups. Note that
we do not pretrain on Pfam (El-Gebali et al. 2019), which
is common in other works. There are 20 common and 5
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uncommon amino acids (25 different types of inputs), and
there are 1195 possible labels to predict. We only consider
sequences of length less than 1024 for simplicity. The mod-
els are thus fed up to 1024 tokens of dimension 25.

2.2 Architecture

The architecture we use is summarized in Figure 2. We seek
to highlight the internal computation already present in the
language model, and so freeze the main components of the
model. Thus we consider finetuning the following parame-
ters of a pretrained GPT-2 model (Radford et al. 2019):

* Output layer: it is crucial to finetune the output layer
since we transfer to a completely new task. We use the
simplest instantiation of an output network — a single lin-
ear layer applied to the last output token output by the
transformer — in order to highlight that almost all the com-
putation is being performed by the frozen transformer.

* Inputlayer: it is important to reinitialize a new input layer
since we are reading in a new modality; in essence, we
are learning how to query the transformer. This contrasts
with prior unsupervised embedding evaluation techniques,
such as linear probing — due to the change in modality, we
should train the input layer as well, and evaluate if the
frozen intermediate transformer model performs effective
computation. Again, we use a linear layer to minimize the
amount of computation outside the transformer.

* Layer norm parameters: as common in other finetuning
works (Rebuffi, Bilen, and Vedaldi 2017; Houlsby et al.
2019), we also finetune the layer norm affine parameters,
which adapt to the downstream task statistics.

* Positional embeddings: we generally also see a small
benefit to finetuning the positional embeddings, which are
similar to the input layer parameters.

Given the cheap linear scaling of these parameters, the
parameter counts of large transformer models are domi-
nated by the self-attention and feedforward layers, which
grow quadratically with the sequence length and layer width.
For the base CIFAR-10 model with 124M parameters, these
come out to approximately 0.086% of the network. We fur-
ther ablate the importance of each parameter in Section 3.11.

Note that, crucially, all communication between tokens in
the model are frozen. The data in each datapoint is chunked
into discrete tokens (bits, image patches, amino acids, etc.),
and can only reference each other via the frozen attention
connections, which are not trained; additionally, neither the
output nor the input layers are connected to multiple tokens.
Our key investigation is to analyze the computation that is
already inherent in the language model, and hence we do a
minimal amount of computation that is learned on the down-
stream modality.



Model \ Bit Memory XOR ListOps MNIST C10 C10LRA Homology
FPT 100% 100%  38.4% 98.0%  68.2% 38.6% 12.7%
Random 75.8% 100%  34.3% 91.7%  61.7% 36.1% 9.3%
Bit 100% 100%  35.4% 97.8%  62.6% 36.7% 7.8%
ViT 100% 100%  37.4% 97.8%  72.5% 43.0% 7.5%

Table 1: Investigation of pretraining modality. Test accuracy of language-pretrained (FPT) vs randomly initialized (Random) vs
Bit Memory pretraining (Bit) vs pretrained Vision Transformer (ViT) models. The transformer is frozen.

3 Empirical Evaluations

In this section, we review the results demonstrating transfer
from language to other modalities, and seek to better un-
derstand why this occurs and what enables this transfer. All
model sizes are the base model size (12 layers, 768 hidden
dimension), unless stated otherwise; due to the number of
experiments, we use one seed for each reported accuracy.

3.1 Can Pretrained Language Models Transfer to
Different Modalities?

We investigate if the self-attention and feedforward layers
— the main body — of a pretrained transformer can be ap-
plied to a classification problem in a different modality with-
out finetuning. To do this, we apply our base procedure as
described above, where the input embedding layer, output
readout layer, and layer norm parameters are finetuned.

We minimally tune the FPT models, using the standard
pretrained GPT-2 and default PyTorch learning rate of 1073,
We compare to fully training a transformer from scratch,
without pretraining, using the same learning rate and batch
size; we swept over layer sizes of 3 or 12, as some of the
fully trained models benefited from smaller size due to op-
timization challenges. Additionally, we compare to state-of-
the-art from literature when available (full transformer on
ListOps, CIFAR-10 LRA, and Remote Homology; LSTM
on Remote Homology), as these works performed more in-
depth sweeps on hyperparameters.

Our results are shown in Figure 1. We find that across
all seven tasks considered, FPT achieves comparable perfor-
mance to the fully trained transformer benchmark results.
We believe these results support the idea that these mod-
els are learning representations and performing computation
that is agnostic to the modality. We also note that both trans-
former variants significantly outperform LSTMs on some
tasks, particularly ListOps and CIFAR-10 LRA, which have
long sequence lengths of 512 and 1024, respectively.

Furthermore, unlike some other works utilizing trans-
formers for vision, we use minimal spatial bias to empha-
size the universal sequential aspect of the problem — for in-
stance, we do not interleave self-attention and convolution
layers. Note that we also do not use 2D positional embed-
dings (or other domain-specific techniques), hence provid-
ing very weak inductive prior to the model. Our reasoning
for these decisions is to evaluate the ability of transformers
to work on arbitrary sequential tasks.
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3.2 What is the Importance of the Pretraining
Modality?

We now compare pretraining on language to other pretrain-
ing methods for base model sizes:

Random initialization (Random): initialization of the
frozen transformer parameters randomly using the default
initialization choices for GPT-2, i.e. without pretraining.
Bit memory pretraining (Bit): pretraining from scratch
on the Bit Memory task and then freezing the parameters
before transferring. This allows the transformer to gain su-
pervision working with arbitrary bit strings and perform-
ing memory/denoising on independent inputs.

Image pretraining (ViT): Vision Transformer (Dosovit-
skiy et al. 2020) pretrained on ImageNet-21k (Deng et al.
2009). Note ViT does not have an autoregressive mask like
GPT-2; however, we found FPT with a BERT (Devlin et al.
2018) backbone performs very similarly to GPT-2, so this
distinction is not very important.

These experiments highlight the significance of pretrain-
ing — as opposed to simply the transformer architecture —
and compare language to other methods of supervision. Our
results are shown in Table 1. Although the random trans-
formers can achieve surprisingly strong accuracies, there is
a considerable gap to using natural language pretraining,
such as in MNIST, where random transformers achieve sim-
ilar performance to a linear classifier on top of raw features
(92%). Thus we believe that while the transformer architec-
ture might be naturally conducive to these evaluations, the
attention mechanisms used to transfer may be nontrivial and
not fully specified by the architecture. We also find that, in
addition to performance benefits, language pretraining im-
proves convergence compared to the randomly initialized
transformer (see Section 3.4).

Pretraining on bit memory improves performance com-
pared to the random models, but still lags behind training on
natural language data. Furthermore, measured by gradient
steps, all models converge faster than the randomly initial-
ized transformers (more details in Section 3.4), indicating
that all modes of pretraining improve upon random initial-
ization even without considering accuracy.

Additionally, while freezing a vision transformer yields
better improvements on CIFAR-10, pretraining on images is
not uniformly better; e.g., ViT is worse on protein classifica-
tion. One hypothesis is that protein sequences are structured
like language, in terms of discrete units of information with
a “grammar” (Saar et al. 2021), so transfer from language to
proteins may be more natural.



Model \ Bit Memory XOR ListOps MNIST CIFAR-10 C10LRA Homology
Trans. 75.8% 100%  34.3% 91.7% 61.7% 36.1% 9.3%
LSTM 50.9% 50.0% 16.8% 70.9% 34.4% 10.4% 6.6%
LSTM* 75.0% 50.0% 16.7% 92.5% 43.5% 10.6% 8.6%

Table 2: Test accuracy of frozen randomly initialized transformers vs frozen randomly initialized LSTM models. Frozen LSTMs
perform very poorly. LSTM* adds additional architecture improvements to match the transformers (see “+ Pos” in Table 4).

3.3 How Important is the Transformer vs LSTM
Architecture?

In Section 3.2 we found the transformer architecture can al-
ready be fairly effective in this regime, even with only ran-
dom parameters. In this section, we consider using a random
LSTM architecture instead of the transformer, allowing us to
consider the raw effect of architecture and ablating pretrain-
ing. Like FPT, we finetune the input, output, and layernorm
parameters for the LSTMs.

Our results are shown in Table 2. “LSTM” refers to
a 3-layer “standard” LSTM with a hidden dimension of
768, matching standard implementations of LSTMs, without
residual connections or positional embeddings. We include
this comparison to represent the traditional method more
faithfully, but add these additional architectural components
below. This matches the width of the FPT models, but not
the depth or total parameter count (note that LSTMs also do
not have positional embeddings). In the same style of FPT
and GPT-2, we do not use a bidirectional LSTM. We find
that the self-attention architecture already serves as an ef-
fective inductive bias for universal computation, improving
significantly over the recurrent LSTM model and compris-
ing most of the improvement in test accuracy from random
LSTM to FPT.

To better isolate the contribution of attention, we add ad-
ditional features to standard LSTMs. We compare the 3-
layer “standard” LSTM to a 12-layer “standard” LSTM,
matching the depth of the FPT networks. Under these model
choices, we report the performance of a frozen random 3-
layer vs 12-layer LSTM in Table 3. Naively, the 12-layer
model is much worse than the 3-layer model, hinting that
there is some loss of information by repeated LSTM layers.

Layers \ ListOps MNIST C10 Cl10LRA
12 16.2% 11.7%  10.8% 10.4%
3 16.8% 70.9%  34.4% 10.4%

Table 3: Test accuracy of frozen randomly initialized “stan-
dard” LSTMs with a hidden dimension of 768. The 12-layer
LSTM achieves only near-trivial performance.

We also experiment with ablating other architectural im-
provements included with the transformer architecture in Ta-
ble 4. Once residual connections (He et al. 2016) are added,
the 12-layer LSTM makes up a lot of the performance drops,
hinting that residual connections could make up for loss of
information from the LSTM layers which otherwise linearly
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combine the features. We also add positional embeddings,
which finishes bridging the gap between standard LSTM
implementations and the transformer. Even with these addi-
tional benefits, the LSTM still performs worse. Note that the
final 12-layer LSTM has about the same number of trainable
parameters as the transformer.

Model | ListOps MNIST CIFAR-10 C10 LRA

LSTM | 16.2% 11.7% 10.8% 10.4%
+ Skip | 16.8% 70.9% 34.4% 10.4%
+ Pos 16.7% 92.5% 43.5% 10.6%
Trans. | 34.3% 91.7% 61.7% 36.1%

Table 4: Test accuracy of 12-layer frozen randomly initial-
ized LSTMs with architecture modifications to match trans-
formers: residual connections (Skip) and positional embed-
dings (Pos). LSTM is worse in all settings.

3.4 Does Language Pretraining Improve
Compute Efficiency Over Random
Initialization?

We investigate compute efficiency by considering the num-
ber of gradient steps to converge for FPT vs random trans-
former models, shown in Table 5. We generally find FPT
converges faster, which indicates language pretraining can
yield compute benefits for non-language tasks. While ran-
dom transformer models achieve decent test accuracies, in
particular when compared to random LSTMs, there is still a
considerable gap in the compute efficiency compared to us-
ing pretraining. Note that bit memory pretraining introduced
in Section 3.2 generally falls between the two models, and
notably is 6x slower than FPT on Bit XOR, which is signif-
icantly better than random.

Model \ Memory XOR ListOps C10LRA
FPT 1x10* 5x10%2 2x10®> 3x10°
Random | 4 x 10* 2x10* 6x10% 6 x 10°
Speedup |  4x 40x 3x 2%

Table 5: Approximate gradient steps until convergence for
pretrained (FPT) vs randomly initialized (Random) models.
Language pretraining converges faster in terms of gradient
steps (also translates to wall-clock time).



3.5 Do the Frozen Attention Layers Attend to
Modality-Specific Tokens?

We investigate if FPT attends to semantically meaningful
patterns in the data. We plot the attention weights (i.e. the
values of the softmax of query-key dot product) from the
first layer. We show the results in Figures 3 and 4 for the bit
tasks. Note GPT-2 is autoregressive, so the upper right cor-
ner of the attention mask is zeroed out. On these tasks, FPT
yields an interpretable attention pattern despite not training
the self-attention layers themselves. We did not find easily
interpretable patterns on the other tasks.
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Figure 3: On Bit XOR, the model must produce the element-
wise XOR of two bitstrings presented sequentially (bits 0-4
are the first bitstring, 5-9 are the second). FPT attends posi-
tionally to the two bits that are XOR’ed by the output token.
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Figure 4: On Bit Memory, the model must return one of five
strings (inputs 0-99) given a masked version of one of the
strings (inputs 100-119). Each token is 50 bits. FPT learns
to attend to the correct string based on finding similarity to
the inputs, not relying solely on position as in Bit XOR.

We also include the attention map for Bit XOR using a
randomly initialized transformer (which also solves the task)
in Figure 5. This model also learns to exploit the diagonal
pattern, although the strength is a little weaker. This indi-
cates that while the random transformer still learns to solve
the task, it learns a less semantically interpretable/strong at-
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Figure 5: A transformer with frozen randomly initialized
self-attention layers also learns to correlate the two diago-
nal elements on Bit XOR, although the magnitude of the
diagonals is lower.

3.6 Does Performance Scale With Model Size?

We evaluate the efficacy of adding more parameters to these
models on CIFAR-10. Most of the additional parameters are
in the transformer layers and are trained during the natural
language pretraining phase. Our results for pretrained and
random models are in Table 6. Unlike fully training a trans-
former, which exhibits more overfitting and divergence dur-
ing training with larger models, increasing model size stably
increases the capacity of the models. This result indicates
our observations and results are likely to scale as we move
towards larger models and higher-data regimes.

Model Size  Trained Params | FPT  Random
Small (Base) 106K 68.2% 61.7%
Medium 190K 69.8% 64.0%
Large 300K 72.1%  65.7%

Table 6: CIFAR-10 test accuracy of larger FPT models.

3.7 Can Performance Be Attributed Simply to
Better Statistics for Initialization?

In this section, we ablate taking the layer-wise mean and
standard deviation from the pretrained model and using it to
initialize a random transformer, in order to ablate if a bet-
ter initialization scheme via an “oracle” standard deviation
can recover the performance of FPT. Note that the GPT-2
initialization scheme initializes parameters as Gaussian; tra-
ditionally, the standard deviation is 0.02 by default.

We show the results using this initialization scheme in Ta-
ble 7 (note that all of the weights, biases, layer norm, and
positional embeddings are initialized — both mean and vari-
ance — in this fashion). This yields better results on most
tasks (more in Supplementary Material), but does poorly on
CIFAR-10. As a result, we believe the benefits of language
pretraining cannot be recovered with a simple better initial-
ization scheme, although future work in transformer initial-
ization could yield different results.

Init | Memory ListOps C10 CI10LRA

FPT 100% 384%  68.2% 38.6%
Stats 100% 374%  56.5% 33.1%
Default | 75.8% 343%  61.7% 36.1%

Table 7: Test accuracy when initializing parameters with
pretrained weights (FPT) vs randomly initializing accord-
ing to the mean and variance of the pretrained transformer
(Stats) vs defaul random initialization (Default).

3.8 Can We Train a Transformer by Only
Finetuning the Output Layer?

We consider using FPT solely for naive feature extraction for
linear classification, where we fix a randomly initialized in-
put layer and freeze all parts of the model except for the out-
put. Note that this resembles resevoir computing/echo state



networks (see Section 4 for discussion). The model evaluates
on every example in the training set once, caches the fea-
tures, and then we train a linear output layer. This enables
subsequent epochs after the first to run extremely quickly,
but does not easily handle dropout/data augmentations, and
scales well in terms of number of epochs, but not in dataset
size. Note that this is mathematically equivalent to linear
classification. Our results are shown in Table 8. Although we
find speedups extremely significant and they obtain nontriv-
ial performance, performance significantly degrades and the
models also exhibit overfitting (likely due to lack of regular-
ization; unlike the training of FPT, dropout is not applied).

Task | Speedup | Output Only  FPT

ListOps 500x 32.8% 38.4%
CIFAR-10 LRA 500x 24.7% 38.6%

Table 8: Training only the output layer as a linear regression
problem. Speedup refers to wall clock time per epoch.

3.9 How Does Model Depth Affect Token Mixing?

One interesting question is the importance of the depth of
the transformer for generating representions which “mix” to-
kens: for instance, if there is only one layer and the parame-
ters are random, it is unlikely for the tokens to be mixed well,
whereas if there are many layers, there are many chances for
the tokens to mix and form interesting representations use-
ful for downstream tasks. We investigate this on ListOps by
considering pretrained vs random models, where we only
take the first X layers of the 12-layer pretrained model (i.e.
for X=3, we use the first 3 layers of the pretrained GPT-2
model and perform classification from those hidden states).
Additionally, to maximally highlight the importance of the
pretrained layers, we randomly initialize the input layer, and
do not train the input or positional parameters.

With finetuning layernorm. We first investigate this
question with finetuning the layernorm parameters (i.e. we
finetune only the output layer and the layernorm parame-
ters). Results are shown in Table 9. Both models are unable
to do well with only one layer, but the pretrained model
performs significantly better than the random model at 2
layers, indicating that while the difference in performance at
12 layers is relatively small, there is a great benefit to using
pretrained layers for when considering a small number of
layers in that the tokens are “mixed” faster.

Number of Layers \ Pretrained Random

1 17% 17%
2 36% 16%
6 38% 35%

Table 9: Test accuracy on Listops while varying model
depth and finetuning layernorm parameters. Pretrained lay-
ers “mix” tokens faster, performing better at low depths.

Without finetuning layernorm. We now investigate this
question without finetuning the layernorm parameters, and
only finetuning the output parameters, as in the reservoir
computing setup in Section 3.8. Note this is equivalent to lin-
ear classification. This setting is the most challenging since
all processing that is able to mix tokens is done by either ran-
dom or pretrained parameters, and we are only able to train
a linear layer on top of the output of the last token; as a re-
sult, the only token mixing that is done is performed entirely
by the pretrained self-attention layers. Results are shown in
Table 10. The random model is poor even for a large number
of layers, while the pretrained model can still do reasonably
well, even though it requires more layers than before.

Number of Layers \ Pretrained Random

1 12% -
3 18% -
6 33% -
12 33% 17%
24 - 17%

Table 10: Test accuracy on Listops while varying model
depth and only training output parameters. Even for a large
number of layers, the random model performs poorly.

3.10 Can Training More Parameters Improve
Performance?

Our focus in this work was primarily to investigate if
and how efficient, general-purpose pretraining can trans-
fer across modalities. However, for practical applications, it
would naturally be better to choose a more specialized fine-
tuning scheme or add more trainable parameters, to try and
maximize performance.

On CIFAR-10, we experiment with additionally finetun-
ing the last attention and all the feedforward layers, shown
in Table 11. Generally these naive approaches can yield bet-
ter performance, we are optimistic about the possibility of
smarter universal training methods improving performance
in future work, such as with adapters (Houlsby et al. 2019).

Task Base (FPT) + AIlFF + Last Attn
CIFAR-10 68.2% 76.6% 80.0%

Table 11: Test accuracy on CIFAR-10 when finetuning ad-
ditional parameters. In addition to FPT, if we finetune the
feedforward layers and the last self-attention layer, we can
achieve 80% accuracy.

3.11 Which Parameters of the Model Are
Important To Finetune?

We now run ablations for only finetuning select parameters
of the pretrained GPT-2 to see which parameters are most
sensitive. Our results are in Table 12; full results are in the
Supplementary Material. Similar to a study of random CNNs



by (Frankle, Schwab, and Morcos 2020), we generally find
the layer norm parameters to be most important.

Task | outputonly +LN +input + pos
Memory 76% 94% 100% 100%
XOR 56% 98% 98% 100%
ListOps 15% 36% 36% 38%
MNIST 23% 96% 98% 98%
CIFAR-10 25% 54% 60% 68%
C10 LRA 17% 39% 39% 39%
Homology 2% 9%  10%  13%

Table 12: Ablation by successively adding certain parame-
ters to the list of finetuned parameters.

4 Related Work and Discussion

Multimodal transformers. Transformers (Vaswani et al.
2017) were first used successfully for natural language pro-
cessing (Radford et al. 2018; Devlin et al. 2018; Rad-
ford et al. 2019; Brown et al. 2020). In recent years, they
have also been shown to be effective architectures for other
modalities. Work specifically tackling multimodal tasks in-
clude (Kaiser et al. 2017), who showed a single model could
learn a variety of multimodal tasks with an attention archi-
tecture. VILBERT (Lu et al. 2019) and CLIP (Radford et al.
2021) jointly learn over images and text, embedding each
modality with distinct transformers. Our work is most sim-
ilar to DALL-E (Ramesh et al. 2021), which uses a sin-
gle transformer to embed both the image and text modali-
ties, which we consider to be generating a “universal latent
space” that projects any type of input into a single latent
space. Such a latent space would be useful for a model that
could learn from many sources of supervision.

Transformers in transfer settings. There are also many
works looking at transformers specifically in the context
of in-modality transfer, such as ViT for vision (Dosovit-
skiy et al. 2020), TS for language (Raffel et al. 2019), and
UDSMProt for protein sequences (Strodthoff et al. 2020).
(Hernandez et al. 2021) do a thorough investigation of trans-
fer with language pretraining, notably showing transfer from
English to Python, which they consider to be reasonably
distanced from English; many works have also looked at
transferring from one langauge to another (Artetxe, Ruder,
and Yogatama 2019; Ponti et al. 2019). Similar to our
work, (Papadimitriou and Jurafsky 2020) investigate trans-
fer for LSTMs between modalities including code, differ-
ent languages, and music, finding that pretraining on “non-
linguistic data with latent structure” can transfer to language,
finding grammatical structure in a modality to be impor-
tant, although we generally investigate the other direction,
explore more distanced modalities, and highlight the trans-
former architecture.

Global workspace theory. Linear probing is a common
technique for evaluating the embeddings learned by an un-
supervised model (Donahue, Kridhenbiihl, and Darrell 2016;
Oord, Li, and Vinyals 2018; Chen et al. 2020), which is rea-
sonable when you finetune on the same modality as the pre-
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trained one. However, when finetuning on a different modal-
ity, as in our setting, we have to reframe this notion of gener-
alizable embedding quality — instead of only finetuning the
output layer, we also want to finetune the input layer, and
instead evaluate the ability of the frozen intermediate model
to perform generalizable computation. This is reminiscent
of Global Workspace Theory (Baars 1993), which revolves
around the notion that there is a “blackboard” that differ-
ent parts of the brain send data to; we might consider the
frozen language model as being a blackboard in this setting.
Language might also be a natural choice of model for this
blackboard, as there are hypotheses that language may serve
as a good multipurpose high-level representation for cogni-
tive behavior and conscious planning (Andreas, Klein, and
Levine 2017; Goyal and Bengio 2020).

Reservoir computing. Similarly to the FPT setup and
Global Workspace Theory, in reservoir computing (Tanaka
et al. 2019) and echo state networks (Jaeger 2001; Jaeger
and Haas 2004), a random recurrent network is frozen and
only the output readout layer is trained. These models are
very fast to train, using a similar setup as in Section 3.8, be-
cause the activations of the recurrent network can be cached
and it is unnecessary to backpropagate over time. Somewhat
differently to the FPT architecture, echo state networks are
recurrent and thus feed back into themselves, which allows
the outputs of the random frozen network to modulate future
inputs. Unlike echo state networks, we also notably finetune
the input and positional embeddings, which allow the inputs
to the frozen network to adapt to a particular modality/for
a query to the frozen network to be learned. Echo state net-
works are also similar to the perspective of self-attention ap-
plying a data-dependent filter to the inputs, as opposed to 1D
convolutions, which are fixed filters regardless of inputs.

5 Conclusion

We proposed transferring a pretrained transformer language
model for downstream tasks in non-language modalities. We
showed empirically that these models could achieve perfor-
mance competitive with transformers fully trained on the
downstream task, relying solely on frozen parameters from
the language model to perform the bulk of the computation.
We believe this work can serve as the foundation for future
work investigating transfer between modalities, and training
regimes for multimodal universal models.

We note a limitation of our analysis is that we analyze
specific models on a restricted set of tasks. More investiga-
tion can highlight if similar behavior occurs for other models
on other tasks. As training regimes for these models evolve,
performing similar experiments may yield different results,
and we are excited for more research in this direction.

For high stakes applications in the real-world, there are
potential concerns with transfer of harmful biases from one
modality to one another using pretrained transformer mod-
els (Sheng et al. 2019; Bender et al. 2021). Mitigating these
biases is an active area of research (Grover et al. 2019; Choi
et al. 2020). Conversely, there are also potential upsides
with FPT models being able to better exploit representative
datasets from one or more modalities, which merit future in-
vestigation as well.
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