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Unsupervised Cross-Database Micro-Expression Recognition Using
Target-Adapted Least-Squares Regression*
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SUMMARY  Over the past several years, the research of micro-
expression recognition (MER) has become an active topic in affective com-
puting and computer vision because of its potential value in many appli-
cation fields, e.g., lie detection. However, most previous works assumed
an ideal scenario that both training and testing samples belong to the same
micro-expression database, which is easily broken in practice. In this let-
ter, we hence consider a more challenging scenario that the training and
testing samples come from different micro-expression databases and inves-
tigated unsupervised cross-database MER in which the source database is
labeled while the label information of target database is entirely unseen.
To solve this interesting problem, we propose an effective method called
target-adapted least-squares regression (TALSR). The basic idea of TALSR
is to learn a regression coefficient matrix based on the source samples and
their provided label information and also enable this learned regression co-
efficient matrix to suit the target micro-expression database. We are thus
able to use the learned regression coefficient matrix to predict the micro-
expression categories of the target micro-expression samples. Extensive
experiments on CASME II and SMIC micro-expression databases are con-
ducted to evaluate the proposed TALSR. The experimental results show
that our TALSR has better performance than lots of recent well-performing
domain adaptation methods in dealing with unsupervised cross-database
MER tasks.

key words: cross-database micro-expression recognition, micro-
expression recognition, domain adaptation, transfer learning, least-
squares regression

1. Introduction

Micro-expressions are short duration of facial expressions
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that cannot be repressed when people try to conceal their
genuine emotions [1]. Recognizing micro-expressions has
shown its potential value in many application fields, e.g.,
clinical diagnosis [2] and criminal investigation [3]. In con-
trast to ordinary facial expressions, micro-expressions have
several characteristics, i.e., shorter duration and lower in-
tensity, which makes micro-expression recognition (MER) a
challenging task [4]. Nevertheless, the MER research has at-
tracted lots of attentions of researchers from different fields
in recent years and lots of effective methods have been pro-
posed [5]-[8]. For example, in the work of [5] Pfister et al.
first used the spatiotemporal descriptor, local binary pattern
from three orthogonal planes (LBP-TOP)[9], to describe
micro-expressions. Wang et al. [6] proposed a color space
decomposition method to investigate whether color infor-
mation is beneficial for MER.

Although these methods achieved promising results
in MER, it is noticed that nearly all the existing methods
are evaluated in an ideal scenario that the training samples
and testing samples come from the same micro-expression
databases. However, in the practical scenario, the training
and testing micro-expression samples may be recorded by
different equipments or under different environments, which
would easily bring the large feature distribution difference
between them and hence degrade the performance of these
methods. Consequently, it is urgent to investigate a chal-
lenging but interesting MER problem, i.e., unsupervised
cross-database MER, in which the training and testing sam-
ples belong to different micro-expression databases and the
label information of training (source) samples is provided
while the testing (target) labels are completed not given. To
solve this challenging problem, Zong et al. [10], [11] first
attempted to treat it as a typical domain adaptation prob-
lem and propose several novel domain adaptation methods
including target sample re-generator (TSRG) and domain
regeneration framework. Before that, most researchers fo-
cused on the research of cross-database facial expression
recognition (FER), which is a challenging topic closely re-
lated to cross-database MER and proposed lots of effective
methods. For example, in the work of [12], Chu et al. pro-
posed a simple yet effective methods called selective trans-
fer machine (STM). STM aims to learn a set of weights to
re-weight the source samples such that they can share the
same or similar feature distributions with the target ones.
Sangineto et al. [13] proposed transductive parameter trans-
fer approach based on a regression framework, which learns

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers



1418

multiple person-specific classifiers and maps these classi-
fiers’ parameters to target samples to construct a target ad-
pative classifier. Recently, Yan et al. [14] leveraged the basic
idea of common subspace [15] and developed a dictionary
learning method called unsupervised domain adaptive dic-
tionary learning (UDADL) to solve cross-database facial ex-
pression recognition problem and achieved satisfactory per-
formance.

In this paper, we investigate unsupervised cross-
database MER and propose an effective least-squares regres-
sion (LSR) method called target-adapted LSR (TALSR).
Different from the above mentioned methods, the pro-
posed TALSR not only aims to eliminate the feature dis-
tributions mismatch between the source and target micro-
expression samples, but also considers the different contri-
butions of facial regions in cross-database MER. To evaluate
the performance of the proposed TALSR method, we con-
duct extensive cross-database MER experiments between
CASME I1[16] and SMIC [17] micro-expression databases.
The experimental results showed that our proposed TALSR
have better overall performance in coping with unsupervised
cross-database MER.

2. Proposed Method
2.1 Notations

In this section, we address the proposed TALSR in detail
and its application in unsupervised cross-database MER. To
begin with, we introduce some notations that are needed in
what follows. Suppose we have N, source micro-expression
samples and N, target micro-expression samples. Their cor-
responding feature matrices are denoted by X* € RN,
and X’ € RM®N: respectively. Note that M is the number of
faical regions yielded by the preset grids, e.g., 8 X 8, which
is widely used in MER research, and d is the dimension of
feature vectors. We also denote the source and target feature
matrices corresponding to the i” facial region by Xie RN
and X! € R®N: In addition, according to the task setting of
unsupervised cross-database MER, the label information of
source samples is provided. The source label matrix is de-
noted by L* € R™Ns, where ¢ is the micro-expression num-
ber. The i’ column I in L* is a binary-valued vector and
describes the label information of i sample in X;. Only
its j" element will be one while others will be all zero if it

belongs to the j” micro-expression.

2.2 Target-Adapted Least-Squares Regression

The basic idea of the proposed TALSR is to enable the
regression coefficient matrix learned based on the source
micro-expression samples and its label information to pre-
dict the micro-expression categories of target samples.
Meanwhile, TALSR would also consider the different con-
tributions of facial regions in solving unsupervised cross-
database MER. Following this idea, we design the optimiza-
tion problem for the TALSR model which targets at learning
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such a regression coefficient matrix U as follows:

min Ly(U) + 4Ry(U) + 1R(U), 6]

where A; and A, are the trade-off parameter to balance the
items in TALSR.

From Eq. (1), it is clear to see that the objective func-
tion of TALSR consists of three major terms. The first term
L(U) is the least-squares loss function whose aim is to de-
scribe the relationship between the source micro-expression
samples and their labels. £(U) can be written as:

M
L) = I -UXN} = IL = Y U X, (@)
i=1

where || - || denotes the Frobenius norm of a matrix.

The second term Ry targets at picking out the fa-
cial regions contributing to distinguishing different micro-
expressions and meanwhile weakening the remaining ones.
We are able to achieve this goal by resorting to the group
sparse iterm proposed in [18] which can be formulated as:

M
Ru(U) = ) Uil 3)

i=1

The last one is the regularization term Ry,. Ry, is de-
signed for enforcing the target micro-expression samples af-
ter projection with U to abide by the feature distribution of
the source micro-expression samples such that the learned
U is also applicable to the label prediction of the target sam-
ples. To this end, we borrow the idea of low-rank constraint
in the work of [19] and design Ry; as the following formula-
tion:

M M
Ru(U,Z) = || Y UIX[Z - > UIXl; + AZI.,  (4)

i=1 i=1

where Z is a linear reconstruction coeflicient matrix of the
projected target micro-expression samples with respect to
the projected source ones and || - ||, denotes the nuclear norm
of a matrix.

By combining the above three terms in Egs. (2), (3),
(4), we can arrive at the final optimization problem of
TALSR whose formulation is as follows:

M M
. , Tys|12

rl?lgnHU— g U Xllz + 4 E Uil
- i=1 i=1

M M
ol Y UIXTZ - Y UK + izl (5)

i=1 i=1

where the trade-off parameter corresponding to ||Z||. is ob-
tained by A3 = A X A.

2.3 Optimization of TALSR

We optimize TALSR with alternated direction method
(ADM). Specifically, the objective function is iteratively
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minimized with respect to one of parameters U and Z while
fixing the other one. The updating rule can be summarized
as the following two steps.

(1) Fix Z and update U: in this step, we can arrive at
the following optimization problem:

M
: K T s st9112
min (L, 0] - ;Ui (XS, VL AXE

M
+41 ) G, (6)
i=1

where AX?" = X?Z — X! and 0 is the zero matrix with the
size of ¢ X N,.

(2) Fix U and update Z: the optimization problem in
this step can be written as:

A
min [[UTX'Z - UTX/|2 + 2 |1Z)... @)
Z /12

Note that the above two sub-optimization problem can
be efficiently solved by the inexact augmented Lagragian
multiplier (IALM) [20] method. The detailed solving pro-
cedures can be referred to [18], [20], [21].

2.4 Unsupervised Cross-Database MER Based on TALSR

Suppose U is the optimal solution of TALSR learned by
using the above method. We can then predict the micro-
expression category of target samples by resorting to U. Let
x!, be the feature vector of one testing sample from target
micro-expression database. Its label can be predicted as the
i micro-expression, where the i”* element is the maximal
oneinl, = UTx,.

3. Experiments
3.1 Experiment Setting

In this section, we conduct extensive unsupervised cross-
database MER experiments on two publicly available
micro-expression databases including CASME 1I[16] and
SMIC[17] to evaluate the performance of the proposed
TALSR. SMIC has three subsets, i.e., SMIC (HS), SMIC
(VIS) and SMIC (NIR). They are recorded by a high-speed
camera, a visual camera, and a near-infrared camera, re-
spectively, where SMIC (HS) consists of 164 samples from
16 subjects and SMIC (VIS) and SMIC (NIR) contain 71
micro-expression video clips belonging to eight subjects.
These samples are divided into three micro-expressions in-
cluding Positive, Negative, and Surprise. CASME II
database has 256 samples from 26 participants, which are
categorized into seven micro-expressions (Happy, Disgust,
Repression, Surprise, Others, S ad, and Fear).

In order to enable the micro-expression categories of
CASME 1II to be consistent with SMIC, we select the
samples of Happy, Disgust, Sad, Fear, and Surprise
from original CASME 1II and then relabel them with the
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Table 1  Statistics of relabeled CASME II and SMIC databases used for
cross-database MER experiments.

| Database | Negative | Positive | Surprise |
CASME I 73 32 25
SMIC (HS) 70 51 43
SMIC (VIS) 28 23 20
SMIC (NIR) 28 23 20

same micro-expression labels in SMIC. Specifically, the
Happy samples are relabeled with Positive, and the sam-
ples of Disgust, Sad, and Fear correspond to Negative
micro-expression. The labels of Surprise samples remain
unchanged. We summarize the sample statistics of new
CASME II and SMIC in Table 1. In the experiments, we
crop and transform the face image in the micro-expression
video clips to 112x112. Then, temporal interpolation model
(TIM) [22] is used to normalize the frame number to 16. The
multi-scale LBP-TOP [8] (uniform LBP-TOP with R = 3,
P = 8 together with a multi-scale spatial division grids in-
cluding 1 X 1,2x 2,4 x4, and 8 X 8) is served as the micro-
expression feature.

Based on the new CASME II and SMIC, we design
SIX unsupervised cross-database MER experiments, i.e.,
C » HH->C,C—->V,V—>C_C, C —> N, and
N — C,where C, H, V,and N are short for new CASME 11,
SMIC (HS), SMIC (VIS), and SMIC (NIR). In the ex-
periment of S — T, S and T denote source and target
micro-expression database, respectively. Mean F1 score
and Accuracy widely used in MER are chosen as the eval-
uation metrics in the experiments. Accuracy is the nor-
mal recognition rate, while Mean F1 score is defined as
Fl = % i %, where p; and r; denote the precision and
recall of the i micro-expression respectively, and c is the
category number of micro-expressions.

In the experiments, we compare the proposed TALSR
with recently well-performing unsupervised domain adap-
tation methods including importance-weighted support vec-
tor machine (IW-SVM)[23], transfer component analy-
sis (TCA) [24], geodesic flow kernel (GFK) [25], subspace
alignment (SA)[26], transfer kernel learning (TKL)[27],
(TSRG) [10], (DRLS)[11]. Linear SVM with parameter
C = 1 is served as the classifier for all the domain adapta-
tion methods. To offer a fair comparison, the domain adap-
tation methods involving kernel function all choose linear
kernel as the kernel function. In addition, SVM without
any domain adaptation is also included in the comparison
to serve as the baseline. Since the target label information
is entirely unknown, cross-validation strategy is not avail-
able to determine the optimal hyper-parameter, e.g., the op-
timal number of eigenvectors for TCA and 1;, A, and A3
for TALSR. Hence, we follow the grid searching strategy,
which is widely used in unsupervised domain adaptation
experiments [10], [11], [27], and report the best result for
all the method in term of Mean F1 score corresponding
to the optimal hyper-parameters. Note that we also calcu-
late the average Mean F1 score and Accuracy among all
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Table 2  Results (mean F1 score / accuracy) of all the methods in the unsupervised cross-database

MER experiments between CASME II and SMIC.
Method C—-H H-C C—-V V->C C—>N N-—>C Average
SVM 0.3697 /45.12 | 0.3245/48.46 | 0.4701/50.70 | 0.5367/53.08 | 0.5295/52.11 | 0.2326/23.85 | 0.4112/45.55
IW-SVM [23] | 0.3541/41.46 | 0.5829/62.31 | 0.5778/59.15 | 0.5537/54.62 | 0.5117/50.70 | 0.3456/36.15 | 0.4876/50.73
TCA [24] 0.4637/46.34 | 0.4870/53.08 | 0.6834/69.01 | 0.5789/59.23 | 0.4992/50.70 | 0.3937/42.31 | 0.5177/53.45
GFK [25] 0.4126/46.95 | 0.4776/50.77 | 0.6361/66.20 | 0.6056/61.50 | 0.5180/53.52 | 0.4469/46,92 | 0.5161/54.34
SA[26] 0.4302/47.56 | 0.5447/62.31 | 0.5938/59.15 | 0.5243/51.54 | 0.4738/47.89 | 0.3592/36.92 | 0.4877/50.90
TKL [27] 0.3829/44.51 | 0.4661/54.62 | 0.6042/60.56 | 0.5378/53.08 | 0.5392/54.93 | 0.4248/43.85 | 0.4925/51.93
TSRG[10] 0.5042/51.83 | 0.5171/60.77 | 0.5935/59.15 | 0.6208/63.08 | 0.5624/56.34 | 0.4105/46.15 | 0.5348/56.22
DRLS[11] 0.4924 /53.05 | 0.5267/59.23 | 0.5757/57.75 | 0.5942/60.00 | 0.4885/49.83 | 0.3838/42.37 | 0.5102/53.71
TALSR 0.4934 /49.39 | 0.5366/57.69 | 0.6362/63.38 | 0.5966/60.00 | 0.5907/59.15 | 0.4622/47.69 | 0.5526/56.21

SIX experiments for each method such that we can make an
overall comparison between the proposed TALSR and other
comparison methods.

3.2 Experimental Results

The experimental results are given in Table 2. From the re-
sults, something interesting can be found.

Firstly, it is clear to see that compared with the baseline
method (SVM without domain adaptation), nearly all the
domain adaptation methods achieved significant improve-
ment in term of both Mean F1 score and Accuracy in all the
experiments. This indicate that domain adaptation methods
provide an effective way to cope with unsupervised cross-
database MER problem.

Secondly, as the average results showed, it can be seen
that the proposed TALSR achieves the best result in term
of Mean F1 score among all the methods, which is signifi-
cantly better than the results of all the comparison methods.
Although TSRG performs better than TALSR in term of
Accuracy, their results are actually very competitive, which
can be clearly seen from the comparison between 56.21%
(TALSR) and 56.22% (TSRG).

Finally, we can also observe that the proposed TALSR
outperforms all the comparison methods in terms of both
Mean F1 score and Accuracy in TWO experiments (C — N
and N — C) among all SIX experiments. In a word, the pro-
posed TALSR has an overall satisfactory and superior per-
formance in dealing with unsupervised cross-database MER
tasks. In addition, it is beneficial for developing unsuper-
vised cross-database MER method to take the contributions
of facial regions into consideration, which is worth of focus-
ing on in the future.

4. Conclusion

In this letter, we have proposed an effective method called
target-adapted least-squares regression (TALSR) to deal
with the unsupervised cross-database MER problem. The
main contribution of the proposed TALSR is that TALSR is
able to eliminate the feature distribution difference between
the source and target micro-expression samples and mean-
while pick out the facial regions having contributions to

distinguishing different micro-expressions. To evaluate the
performance of TALSR, we conduct extensive unsupervised
cross-database MER experiments on CASME II and SMIC
databases. Compared with recent state-of-the-art unsuper-
vised domain adaptation methods, the proposed TALSR has
an overall superior performance.
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