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SUMMARY Major cloud service providers, including Amazon and Mi-
crosoft, have started employing field-programmable gate arrays (FPGAs)
to build high-performance and low-power-consumption cloud capability.
However, utilizing an FPGA-enabled cloud is still challenging because of
two main reasons. First, the introduction of software and hardware co-
design leads to high development complexity. Second, FPGA virtualization
and accelerator scheduling techniques are not fully researched for cluster
deployment. In this paper, we propose an open-source FPGA-as-a-service
(FaaS) platform, the hCODE, to simplify the design, management and de-
ployment of FPGA accelerators at cluster scale. The proposed platform
implements a Shell-and-IP design pattern and an open accelerator reposi-
tory to reduce design and management costs of FPGA projects. Efficient
FPGA virtualization and accelerator scheduling techniques are proposed to
deploy accelerators on the FPGA-enabled cluster easily. With the proposed
hCODE, hardware designers and accelerator users can be organized on one
platform to efficiently build open-hardware ecosystem.
key words: FPGA-as-a-service, hardware acceleration, open-source hard-
ware

1. Introduction

Field-programmable gate arrays (FPGAs) have demon-
strated great speed performance and power-efficiency ad-
vantages over conventional processors in a variety of ap-
plication domains, such as machine learning, big data, and
image processing. Recently, major cloud service providers,
including Amazon and Microsoft, have started employ-
ing FPGAs to build high-performance and low-power-
consumption cloud capability. In line of this, the necessity
of software (SW) and hardware (HW) co-design for cloud
applications demands new development methods, tools and
community construction efforts.

There are two main challenges in integrating FPGAs
into the modern cloud system: the high HW/SW co-design
complexity and HW virtualization. First, there is no clear
division between the HW design flow and the SW design
flow. Co-designing of HW and SW under current meth-
ods requires developers to have knowledge of both HW and
SW development, which is difficult especially when archi-
tecting large projects involving tens to hundreds of people.
In addition, there is no sophisticated open-source platform
for hardware developers to publish their designs and from
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which software developers can directly obtain accelerators
out of the box.

Second, modern cloud computing servers are highly
virtualized, so that multiple applications from one or multi-
ple tenants can be concurrently executed on the same phys-
ical servers without disturbing each other, which improves
the server utilization rates and reduces cloud operating ex-
penses. In order to employ FPGAs in such a highly virtu-
alized cloud, it is necessary to provide virtualization tech-
niques for sharing the resources of one FPGA, such as
lookup tables (LUTs), block RAMs (BRAMs) and digital
signal processors (DSPs), to allow multiple accelerators to
be implemented. Based on the FPGA virtualization, a new
scheduling policy for efficient accelerator arrangement at the
cluster scale is also essential. Different with the conven-
tional SW task schedulers that only consider processor cores
and memory size, an accelerator scheduling policy for FP-
GAs has to take FPGA resource utilization as well as com-
munication bandwidth in consideration.

In this paper, we propose an FPGA-as-a-service (FaaS)
platform named the Heterogeneous Computing Oriented
Development Environment (hCODE). The hCODE is the
first open-source platform approach for simplifying the de-
sign, management, and deployment of FPGA accelerators at
a cluster scale. As a solution of the described problems, the
main contributions of hCODE are as follows.

1. FPGA virtualization. A Shell-and-IP design pattern
is adopted in hCODE. The virtualized shell logics pro-
vide high reusability and portability for HW designs.
Moreover, multiple accelerators can be implemented
on one FPGA with a multi-channel shell to improve
HW utilization rates.

2. Accelerator repository. An accelerator repository is
developed to host shell and IP projects. We also pro-
vide tools for easily searching, downloading and auto-
assembling accelerators.

3. Cluster management. Standalone master and slave
server functions are embedded in hCODE to simplify
cluster management. An accelerator scheduler is im-
plemented to efficiently allocate accelerators onto the
cluster.

The prototype of hCODE is open-sourced on Github
(https://github.com/hCODE-FPGA/hCODE) for evaluation.
The rest of this paper is organized as follows. Section 2
introduces related works. A quick overview of hCODE is
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given in Sect. 3. Section 4–6 describes the proposed FPGA
virtualization, accelerator repository and cluster deployment
of hCODE platform, respectively. Evaluation and case stud-
ies are shown in Sect. 7. Section 8 gives conclusions and
discusses future work.

2. Related Work

2.1 FPGA Design Pattern

Packaging common modules into a reusable shell frame-
work is a traditional practice to improve HW design produc-
tivity. Although FPGA vendors provide fundamental intel-
lectual properties (IPs) in their development tools, it still re-
quires efforts to utilize these IPs in specific projects. Third-
party frameworks like RIFFA [1] and XILLYBUS [2] have
done a lot of works on HW and drivers in order to provide
an easy-to-use interface based on the official PCIe IP core.
[3] introduced a complete open-source framework that pro-
vides PCIe, Ethernet, and DRAM interfaces. Microsoft also
introduced a shell-and-role HW architecture in [4]. How-
ever, no framework can efficiently fit all application sce-
nario. General purpose frameworks are complexly imple-
mented for more functionality and flexibility, which may re-
sult in a larger area and a lower frequency for FPGA designs.

2.2 Accelerator Management and Open-Source

OpenCores is an open-source HW website that offers a va-
riety of open-source IPs [5]. However, OpenCores does not
provide any functions beyond online storage. In contrast,
modern SW package managers provide an online reposi-
tory, version control, dependency control, and even allow
automatic integration of third-party packages into a user
project [6]. However, managing a HW project is more chal-
lenging when considering portability and scalability on dif-
ferent devices.

2.3 Accelerator Deployment on the Cloud

There are several related works on FPGA utilization within
cloud computing. Some works [7]–[9] integrate FPGAs into
the OpenStack system, while Blaze [10] focuses on acceler-
ating big data processing platforms such as Hadoop YARN
and Apache Spark. For the FPGA virtualization, most works
[7]–[9] partition an FPGA into several pre-defined partial re-
configuration (PR) regions to implement accelerators. How-
ever, because the sizes of pre-defined PR regions cannot al-
ways fit requested accelerator, an efficient full reconfigura-
tion mechanism of the entire FPGA is necessary, which is
not discussed in these works. For accelerator scheduling,
an accelerator-centric scheduling method is implemented
in Blaze [10], which suggests arranging tasks requiring the
same accelerator on the same FPGA-enabled server to avoid
reconfiguration overhead. However, FPGA virtualization for
resource utilization improvement is not considered in this

work. An accelerator scheduling policy based on virtual-
ized FPGAs is mentioned in [7], which suggests scheduling
accelerators of different characteristics together to improve
efficiency. The authors also used a simple case to prove their
ideas, however, no details of the implementation methodol-
ogy is shown.

3. hCODE Platform Overview

The target of the proposed hCODE platform is to simplify
the design, management, and deployment of FPGA accel-
erators. As Fig. 1 shows, there are three participant roles
on the hCODE platform, the shell designer, the IP designer
and the accelerator user, who are organized with an open ac-
celerator repository. A shell designer provides application-
independent logics. An IP designer develop application log-
ics by reusing a shell to reduce design cost. At last, acceler-
ator users can easily deploy accelerators on a single machine
or an FPGA-enabled cluster by using hCODE commands.

The interface provided for users of hCODE is a com-
mand line tool. The main functions of hCODE are listed in
Table 1. And three main commands are introduced as fol-
low.

ip get: This command downloads necessary IPs and
shell projects to make an accelerator project. The user spec-
ifies the name of the requested IPs as arguments, and then
hCODE automatically downloads these IPs as well as a shell
that compatible with current HW setup to make the acceler-
ator project.

ip make: This command performs the compilation

Fig. 1 An example application on hCODE platform.

Table 1 List of main hCODE commands.
Command Functional description

setup Set up the hCODE system files in ∼/.hcode folder.
repo Add/remove project repositories.
list/search List projects/Search projects with a QUERY string.
ip get Download specified IP(s) and compatible shells.
ip make Compile the accelerator from IP(s) and shell project.
fpga program Program specified bitstream to local/remote FPGA(s).
cluster master Start a cluster master server.
cluster slave Start a cluster slave server.
cluster status Collect FPGA status and logs from slave servers.
cluster schedule Deploy accelerator on cluster with hCODE scheduler.
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of the accelerator project prepared by the ip get command.
This process configures and compiles the IPs, integrates the
product of the IPs into the shell project, and finally compiles
the combined project to generate a bitstream file.

cluster schedule: This command reads user-specified
IP names, target server names and other constraint informa-
tion from command arguments, generates an allocation so-
lution on the cluster, calls ip get and ip make to generate ac-
celerator bitstream, and finally configure target FPGAs with
fpga program command.

4. FPGA Virtualization of hCODE Platform

In this section, we explain the basic design methodology on
the proposed hCODE platform. We first introduce the Shell-
and-IP design pattern for FPGA virtualization, which pro-
vides several important HW implementation features such
as design reusability, IP portability and FPGA on-chip re-
source sharing. Then we discuss details of FPGA on-chip
resource virtualization that allowing multiple IPs to be im-
plemented on one FPGA.

4.1 Shell-and-IP Design Pattern

The hCODE implements the Shell-and-IP design pattern
and defines participant roles to reduce the design costs of
accelerators and provide FPGA virtualization capabilities. It
is a common methodology to partition a HW design into an
application-independent shell part and an application-logic
IP part, as shown in Fig. 1. The shell logic, which is also
named the service logic in [7] or the static logic in [8], pro-
vides common modules and functions such as communica-
tion, memory control, etc. IPs and a shell are linked to pro-
duce an accelerator. The shell layer can also be considered
as HW virtualization layer. With this method, a developed
shell can be reused by different IP projects to reduce IP de-
sign cost. An IP can be integrated with different shells to
achieve portability between FPGAs. IP portability is nec-
essary for open-HW community construction and FPGA-
enabled cloud management because different users or cloud
providers typically use different FPGAs.

Based on this design pattern, we define three partici-
pant roles on the hCODE platform: the shell designer, the
IP designer and the accelerator user. The shell designer pro-
vides a shell hardware design and a shell driver. An IP de-
signer reuses a shell and develops the IP HW and IP driver
for accelerator users. As a result, accelerator users are al-
lowed to utilize accelerators on hCODE platform without
caring much HW details. With a clear division of respon-
sibility, the three roles on hCODE platform can collaborate
effectively to build large SW and HW co-design projects.

4.2 FPGA Virtualization

In order to efficiently use an FPGA-enabled cluster, hCODE
supports three FPGA utilization modes by designing cor-
responding shells: the non-virtualization mode, the PR-

virtualization mode, and the static-virtualization mode. The
pros and cons of each mode are summarized in Table 2. In
the traditional non-virtualization mode, the only accelera-
tor occupies the entire FPGA’s resource in a straightforward
way. Next, we mainly explain two virtualization modes in
detail.

4.2.1 PR-Virtualization Mode

An obvious FPGA virtualization approach that employed
by most related researches is to use the partial reconfigu-
ration technique [2]–[4], which allows specified regions on
an FPGA to be reconfigured separately and is supported by
most modern FPGAs. However, the sizes of pre-defined PR
regions cannot be changed dynamically, which means that
when a new accelerator’s size is too large for any of the PR
regions, it cannot be implemented. In contrary, when the
new accelerator’s size is much smaller than any of the PR
regions, FPGA resources will be wasted. This mode will be
efficient if all IPs to be implemented in an application is de-
termined, and we can analysis resources requested by them
to find the best numbers, sizes and locations for pre-defined
PR regions.

In hCODE, we built multi-channel shells to implement
multiple accelerators on one FPGA. Figure 2(a) shows a
slave node running multiple accelerators. First, we have pro-
vided multi-channel PCIe shells in the hCODE repository.
In contrast to a single-channel shell, a multi-channel shell
comprises a PCIe module with multiple independent com-
munication channels enabled. For each IP, an independent
clock domain FIFO is used for the connection with the PCIe
module, and a separate clock is inputted from a clock gen-

Table 2 Comparison between FPGA utilization modes.

Pros Cons

Non - No limitation for IP impl. - Only one IP (low utilization rate)
PR - Multiple IPs - PR-regions are fixed

- Independent IP update - Require PR support from cloud
- Shorter compile time provider

Static - Multiple IPs - Require full reconfiguration
- No region limitation for IPs (FPGA stops & lose states)
- Applicable on present shells - Longer compile time
of cloud providers

Fig. 2 The slave node and the full reconfiguration flow.
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Fig. 3 hCODE SPEC file examples.

erator.
The PR-virtualization mode is implemented by provid-

ing multi-channel shells with PR regions. First, a shell de-
signer implements a multi-channel shell with PR-regions,
and describes the quantity of available resources of each re-
gion in the resource section in the shell SPEC file, as shown
in Fig. 3. On the other hand, an accelerator user can get an
accelerator project of an IP on a specified region by exe-
cuting ip get with parameters of IP name, IP version, shell
name and PR region id. The hCODE also checks feasibil-
ity by comparing available resources of this PR region from
shell project and requested resource from IP project. At last,
ip make can be used to compile the accelerator project and
generate bitstream, and fpga program can be used to config-
ure the target FPGA in cluster.

4.2.2 Static-Virtualization Mode

In addition to non-virtualization mode and PR-virtualization
mode, we proposed static-virtualization mode, which packs
multiple accelerators in one project and generates bitstream
without PR. This method can improve FPGA utilization
rate in several scenarios that PR-virtualization cannot han-
dle. First, present public cloud providers like AWS, imple-
ment custom logics in their shell logic’s PR region so that
PR customization is not applicable for users. Second, PR-
virtualization is not always efficient because pre-defined PR-
regions are fixed. For these scenarios, static-virtualization
that does not use PR or limit resource region can be a choice.

However, static-virtualization requires a longer com-
pile time than PR-virtualization when FPGA resources are
sufficient, because the entire FPGA has to be redesigned.
In addition, a full reconfiguration is required on the target
FPGA, which means all operating accelerators have to be
stopped and state will be lost after reconfiguration. For ap-
plications that all IPs and accelerator scheduling are deter-
mined, the IP packing is performed once during the precom-
pilation stage, therefore the compile time will not be a cost
at runtime. In order to perform a full reconfiguration with-
out disturbing operating accelerators, a lock based recon-

figuration flow is used, as shown in Fig. 2(b). For the re-
configuration time overhead, if the reconfiguration does not
happen frequently (e.g., less frequently than several times
per minute), this time overhead will not be significant for
most long execution-time tasks that normally last for tens
of minutes to hours. For accelerator having states, a state
backup and restore mechanism should be implemented by
accelerator designer.

The implementation of a static-virtualization shell is
similar to an PR-virtualization shell, only without the PR
process. Because there is no PR-region limitation for IPs,
the resource section of shell SPEC file only describes to-
tal available resources like a non-virtualization shell. When
performing the feasibility check, hCODE sums up all re-
quested IPs’ resources and then compares with total avail-
able resources of the shell. The IP and shell matching
of the static-virtualization is implemented according to
the hCODE compatible-shell mechanism. By adding new
static-virtualization shells to the hCODE repository, and
describing their compatibility relationship to the original
single-channel shell, so that hCODE can automatically find
the proper shell to use when multiple IPs are requested.
Please note that different FPGA utilization modes imple-
mented in hCODE do not require any changes of IPs. The
virtualization of implementing multiple IPs on one FPGA
can be realized by only utilizing hCODE commands, which
significantly reduces the complexity of FPGA virtualization.

5. Accelerator Repository Implementation

In this section, we discuss implementation of the hCODE
accelerator repository. The proposed accelerator repository
connects shell designers, IP designers and accelerator users
by organizing shells and IPs projects in one place. We also
provide convenient tools for platform users to easily access
repository and generate accelerator.

5.1 Accelerators Repository

The hCODE repository and command line tool is developed
based on CocoaPods [6], which is a modern dependency
manager for Objective-C and Swift projects. We extended
the project specification (SPEC) file format in order to de-
scribe HW and appended functions to support Shell-and-IP
design pattern.

A JSON format SPEC file with the name hcode.spec is
required to describe a HW project. Figure 3 shows SPEC file
example parts for a shell and an IP design. Basic informa-
tion sections such as the design name, project type, author,
summary, license, source for the two type of designs are the
same for both shell and IP projects. In a shell SPEC file,
the hardware section provides target board and FPGA de-
vice information. The interface defines ports and bandwidth
between shell and IPs. The resource section describes avail-
able resources of custom logic regions for IPs. The com-
patible shell section is used to implement IP portability and
FPGA virtualization on hCODE platform. If an IP can be
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implemented on a specific shell, it is considered to be im-
plementable on its compatible shells of different devices or
different number of channels too. On the other hand, in an IP
SPEC file, implementation information of this IP on differ-
ent shells are provided in the shell section. For FPGA virtu-
alization and accelerator scheduling, the shell SPEC file de-
scribes properties of multiple channels in interface, which
are used to implement multiple IPs on one FPGA. In order
to achieve best performance of an IP on a target shell, the
IP SPEC file has a max number section to tell hCODE the
ideal number of IPs for implementation.

There is a central hCODE SPEC repository on Github
that holds public information for all of the projects in the
hCODE platform, as shown in Fig. 4. The folders in this
repository are organized in a structure consisting of project
name, project version, and project specification file. This
repository is synchronized to local when a user executing
hcode setup command. By indexing this repository, hCODE
can perform project searching, downloading, and Shell-and-
IP matching for platform users. Moreover, developers can
also add private repository with hCODE hcode repo com-
mand.

Shell and IP designers are allowed publishing their
projects on the hCODE platform by submitting SPEC files
to hCODE repository. This flow is shown in Fig. 4. First, a
developer has to fork the SPEC repository from the hCODE
master branch to a private repository. Second, the developer
creates a sample hcode.spec with hcode spec create com-
mand, makes necessary modifications on it, and pushes en-
tire design into the private repository with hcode repo push
command. At last, a pull request to the hCODE master
repository has to be sent on Github. In order to ensure the
platform quality, we will evaluate developers’ requests. Af-
ter confirmation, the project is merged and becomes public
to all hCODE users.

5.2 Accelerator Generation

Accelerator users can easily derive accelerators by using
hCODE ip get and ip make commands. The ip get command
reads a list of names of requested IPs from arguments or a
configuration file. For example, when the command hcode
ip get ip-kvsorter ip-kvsorter ip-kvsorter ip-aes128 is exe-
cuted, hCODE will first check whether there is a matched

Fig. 4 Repository and design publish flow.

bitstream in the local cache. If there is no matched bitstream
in the cache, then hCODE will download ip-kvsorter and
ip-aes128 as well as a 4-channel shell that compatible with
current FPGA HW to the current directory. Meanwhile, a
configuration file named hcode, which describes the rela-
tionship between channels and IPs, will be generated. With
this file, the user can execute the hcode ip make command to
build the IPs, integrate the IPs into the shell project, and fi-
nally generate the bitstream by calling an FPGA design tool,
such as Xilinx Vivado or Altera Quartus. Because hCODE
only defines the project directory structure and the script
command interface, this flow is compatible with various de-
sign tools. At last, fpga program command can be used
to download generated bitstream to the local or a remote
FPGA. Therefore, the IP portability and FPGA resource vir-
tualization can be realized by utilizing only hCODE com-
mands, which significantly reduces the complexity of FPGA
virtualization.

6. FPGA Deployment at Cluster Scale

In this section, we introduce management of FPGA-enabled
cluster with hCODE, which is the core function that imple-
menting the FaaS for accelerator users. The main structure
of an hCODE-based FPGA cluster is shown in Fig. 5. The
master node reads a user’s request for accelerators, performs
scheduling, generates bitstreams, programs FPGAs on slave
nodes and returns accelerator accessing method to user. The
slave nodes report FPGA status to the master node, perform
FPGA configuration and control FPGA access requests from
SW tasks.

6.1 Accelerator Scheduling

The hCODE implements a resource tracking mechanism,
a scheduler and a task execution controller for accelerator
scheduling.

In order to quantify the FPGA resource utilization and
bandwidth for scheduling, all shell projects have the total
available resource and interface maximum bandwidth infor-
mation in their SPEC files. All IP projects provide the im-
plementation resource and ideal throughput information in
their SPEC files, as introduced in Sect. 5.1. With this in-
formation, the scheduler can do calculations to combine IPs

Fig. 5 Cluster-scale hCODE-based FPGA management.
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with shells efficiently. In addition, the scheduler has to track
all available FPGA resources on cluster. Slave nodes send
FPGA boards as well as IP implementation status back to
the master node periodically with a status report module, as
shown in Fig. 5.

The implemented scheduler employs a policy that
takes FPGA resources and bandwidth in consideration. The
scheduler reads a list of names of IPs, the available servers
and scheduling constrains (e.g., area-first or speed-first)
from user’s input. In order to generate an allocation solution
for the requested IPs on the FPGA-enabled cluster, the pro-
posed scheduler assigns priorities to nodes in the following
(decreasing) order: 1) idle servers that have no accelerators
on their FPGAs; 2) servers with enough bandwidth and un-
used FPGA resources; and 3) servers with enough unused
FPGA resources. After the allocation solution is generated,
the scheduler calls the ip get, ip make, and fpga program
commands to generate bitstreams and configure the FPGAs
on the slaves. Finally, the user will be notified of the names
of allocated servers and the FPGA channels to use in de-
ploying their SW application tasks.

6.2 hCODE with SW Framework

The hCODE reduces SW and HW co-design costs on the
following points. First, the hCODE employs the Shell-and-
IP design pattern and an accelerator repository to decouple
SW and HW designs, as shown in Fig. 1. The interface be-
tween SW and HW developments is the driver API provided
in each IP project. With this approach, HW designers de-
velop reusable accelerators and SW developers can adopt
them in various applications without knowing HW details.
Second, accelerators in hCODE are managed in a similar
style like modern SW managers, which allows heteroge-
neous application to be configured and compiled easily. For
example, a SW and HW co-designed project only needs to
embed a hcode configuration file with IPs and shell descrip-
tion, the rest steps for bitstream generation and FPGA con-
figuration can be performed using hCODE commands.

The hCODE only processes the HW scheduling for
FPGAs on the cluster. SW tasks execution on the clus-
ter can be deployed manually or by utilizing distribution
SW framework such as Hadoop. An example structure of
hCODE works with Hadoop YARN is shown in Fig. 6. The
hCODE manages HWs on FPGAs and YARN manages SWs
on CPUs. An application that request for HW acceleration
should send an IP list to resource manager at application
master initiation function, then the YARN scheduler passes
the same request as well as available servers to hCODE
master. The hCODE performs scheduling and configures
granted FPGAs, then returns granted server and channel
list to the resource manager. At last, the YARN scheduler
tags accelerator information on server’s labels and performs
the final label based scheduling that proposed in [10]. The
hCODE has low dependency on the SW scheduling system,
therefore it can be easily integrated to current SW platforms.

Fig. 6 An example of hCODE works with Hadoop YARN.

7. Case Study

In this section, we give a few case studies to evaluate per-
formance of FPGA virtualization, scheduling results, and
discuss the development time improvement of the proposed
hCODE.

The experimental environment is composed of a master
server and two slave servers. The master server is used for
cluster control and the slave servers are used for task pro-
cessing. The master server has an i7-2600 CPU and 12 GB
of memory. The slave servers have Intel Xeon(R) X5690
processors and 96 GB of memory each. One slave server
has a VC707 FPGA board attached through a PCIe Gen2 8-
lane slot; the other has a KC705 instead. The details of the
used IPs and shells are given in Table 3.

7.1 FPGA Resource Utilization

For FPGA virtualization, although the PR technique has
advantages, such as updating one region without disturb-
ing accelerators operating in other regions, it is difficult to
achieve high resource utilization. Figure 7 shows the FPGA
resource utilization comparison between implementations
with and without PR. When implementing three 64-way
merge-sorters, PR with 4 PR regions left only one available
region, which contains around 25% of resources (Fig. 7 (a)).
In contrast, the implementation without PR has more avail-
able resources that can be allocated to more accelerators
(Fig. 7 (b)). Therefore, the PR-based virtualization, which is
commonly employed, is not always efficient. The proposed
static-virtualization mechanism in hCODE provides better
resource utilization for certain scenarios.

7.2 Bandwidth Utilization

In addition to improving on-chip resource utilization, the
virtualization method can also improve PCIe communica-
tion bandwidth utilization to achieve accelerator perfor-
mance gains. The top chart in Fig. 8 shows bandwidth uti-
lization for sorting a 644 record dataset. Because the sorter
IP is 64-way, it takes four loops of SW–HW communica-
tion to finish the whole dataset sorting. The average band-
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width utilization is only 58.2%. The middle chart in Fig. 8
shows the result for the same calculation when three tasks
(three 644 record datasets) are run on three IPs concur-
rently. We find that the average bandwidth utilization in-
creased to 83.0%. This improvement comes from two as-
pects. First, having three concurrent tasks helps to keep the
total throughput stable at the maximum bandwidth. Second,

Fig. 7 Resource utilization comparison (three 64-way merge-sorter IPs
are implemented).

Fig. 8 Bandwidth utilization results.

Table 3 Implementation details of used IP and shells from hCODE repository.

LUT LUTRAM FF BRAM DSP Freq.(MHz) Avg. throughput(GB/s)

ip-kvsorter (64-way merge-sorter) 20,778 3,968 40,414 128 0 150 0.58
ip-aes128 4,700 0 10,230 51.5 0 200 1.4
ip-kmeans 83,841 16,519 43,901 93 120 150 0.03

shell-vc707-xillybus-ap fifo128 6,852 1,049 6,875 18 0 250 1.8 (Available BW)
shell-vc707-xillybus-ap fifo128-4ch 12,787 3,548 10,352 45 0 250 1.8 (Available BW)
shell-kc705-xillybus-ap fifo128-2ch 8,859 1,888 8,092 27 0 250 1.8 (Available BW)

VC707(Available resources) 303,600 130,800 607,200 1030 2800 - -
KC705(Available resources) 203,800 64,000 407,600 445 840 - -

the HW vs. SW processing timing ratio is increased by con-
current execution.

In addition, further performance gains can be achieved
with SW and HW co-scheduling. We noticed that the band-
width is idle when all tasks shift to the SW processing stage
together. So, we used the FPGA access controlling mech-
anism of hCODE slaves to force a 0.2 s (resp., 0.4 s) de-
lay before the start of the second (resp., third) task. The
result is shown in the bottom chart in Fig. 8. We can see
that the idle time is reduced and the average utilization in-
creased to 89.1%. At present, hCODE only provides basic
function on the slave node to support such FPGA access
controlling, co-scheduling decision is made by SW devel-
oper. We also evaluated a four-IP implementation, but not
much further improvement was observed. Therefore, three
IPs with the start time of tasks shifted achieves the best per-
formance. Please note, some data points with bandwidth uti-
lization over 100% in the results are because of SW buffers.

7.3 Accelerator Scheduling

A sorter IP, an AES IP and a KMeans IP are scheduled on
two target servers for the accelerator scheduling evaluation.
The implementation details of used IPs and shells are listed
in Table 3. The sorter IP is developed with HLS. The AES
IP and KMeans IP are ported to hCODE from [11] and [12],
respectively. The two servers were attached with different
FPGA boards (one with VC707 and the other with KC705)
to examine the management of the cluster composed of var-
ious HWs. In order to observe how accelerators influence
each other clearly, we allocated tasks of similar execution
times for IPs.

Figure 9 shows the execution time comparison of dif-
ferent scheduling solutions. The solution S 1 shows the base-

Fig. 9 Execution time of scheduling solutions.
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line, for which all three IPs are implemented on the VC707-
attached server and all tasks are executed serially. The over-
all execution time of S 1 is 17.45s. The solution S 2 uses the
same HW as S 1 but all tasks are executed in parallel. The
overall result of S 2 is 9.2s, which improves 1.9 times than
S 1. However, because of bandwidth conflict, the sorter and
the AES tasks are 1.53 and 1.5 times slower than S 1, re-
spectively. This is acceptable if all tasks are from the same
tenant who only cares about the overall execution time. On
the other hand, if all tasks are from different tenants, the
solution S 2 will degrade service quality for customers.

In order to achieve higher performance for all tasks, S 3
and S 4 utilize two FPGA-attached servers for implemen-
tation. The S 3 shows a scheduling solution only consider
FPGA resource utilization. Because VC707 has more on-
chip resources, S 3 allocates three sorter IPs that discussed
in previous section and the AES IP on it. The KMeans IP is
moved to the other KC705-attached server. We can see that
sorting time is reduced while AES time does not changed
much because the bandwidth conflict still exists.

At last, the S 4 shows the result of a scheduling solu-
tion implemented in hCODE, which takes bandwidth and
resource utilization in consideration. This scheduler first
divides high bandwidth IPs onto different FPGAs and then
check the FPGA utilization. If the solution is implementable
on target FPGAs then return it to the user, otherwise con-
tinue to try new solutions. In this case, because both the
sorters and the KMeans request for large area, and both the
sorters and the AES request for high bandwidth, the S 4 is
the best solution which allocates sorter IPs on the VC707-
server, and AES IP and KMeans IP on the KC705-server.
This solution improves 2.87 times overall execution times
than S 1 and also providing the best performance of each ac-
celerator.

7.4 Development Time Discussion

Because it is difficult to show a quantitative evaluation on
development time improvement with hCODE, we only give
a simple discussion here. We successfully completed all
evaluations in this section via hCODE commands alone.
This shows that IPs on the hCODE platform can be imple-
mented on virtualized FPGAs and deployed on an FPGA-
enabled cluster without any change. In addition, any IP can
be implemented with improved concurrent performance at a
low development cost. Throughput improvement commonly
requires a large amount of effort in IP design. However, with
the help of hCODE, we can easily achieve high throughput
by implementing multiple accelerators on one FPGA and
using them concurrently, which requires no changes of IPs
as everything is done by hCODE.

8. Conclusion

Today, most public cloud computing providers are actively
using FPGAs to improve the energy-efficiency of cloud in-
frastructures. However, the current solution, such as the

Amazon AWS F1, is still based on low efficiency server level
renting. On the other hand, there is no mature open-source
solution to build private FPGA-enabled cloud system. In
this paper, we have proposed hCODE, to simplify FPGA
virtualization and accelerator deployment at a cluster scale.
By utilizing hCODE, IP developers can build and deploy
accelerators at a cluster scale with low cost. The case study
results show higher FPGA utilization rates and better accel-
eration performance can be achieved easily with hCODE. In
future work, we will integrate the proposed hCODE plat-
form with more current cluster systems, such as Apache
Spark and OpenStack. We are also going to evaluate future
work on public FPGA-enabled clouds.
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