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PAPER

Exponential Neighborhood Preserving Embedding
for Face Recognition

Ruisheng RAN†,††a), Bin FANG†b), Nonmembers, and Xuegang WU†††c), Member

SUMMARY Neighborhood preserving embedding is a widely used
manifold reduced dimensionality technique. But NPE has to encounter two
problems. One problem is that it suffers from the small-sample-size (SSS)
problem. Another is that the performance of NPE is seriously sensitive
to the neighborhood size k. To overcome the two problems, an exponen-
tial neighborhood preserving embedding (ENPE) is proposed in this paper.
The main idea of ENPE is that the matrix exponential is introduced to NPE,
then the SSS problem is avoided and low sensitivity to the neighborhood
size k is gotten. The experiments are conducted on ORL, Georgia Tech
and AR face database. The results show that, ENPE shows advantageous
performance over other unsupervised methods, such as PCA, LPP, ELPP
and NPE. Another is that ENPE is much less sensitive to the neighborhood
parameter k contrasted with the unsupervised manifold learning methods
LPP, ELPP and NPE.
key words: neighborhood preserving embedding, matrix exponential, face
recognition, the small-sample-size problem, manifold learning

1. Introduction

The classical principal component analysis (PCA) [1] and
linear discriminant analysis (LDA) [2] are two important
and effective approaches in pattern recognition. However,
PCA and LDA aim only to preserve the global structures of
the image samples and cannot uncover the essential mani-
fold structure of the image.

Recently, many of manifold learning algorithms have
been developed, such as locally linear embedding (LLE) [3],
Isomap [4], Laplacian eigenmaps (LE) [5], local tangent
space alignment (LTSA) [6]. These manifold learning al-
gorithms discover the intrinsic geometry structure of a data
set and have been widely used in the past decade. Unfortu-
nately, all of these algorithms suffer from the out-of-sample
problem [7]. To address this problem, a linearization pro-
cedure is developed, which constructs a linear map from the
original data space to new low-dimensionality space. Repre-
sentative ones are local preserving projection (LPP) [8] and
neighborhood preserving embedding (NPE) [9]. LPP is a
linearization version of LE [5] and NPE is a linearization
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version of LLE [3]. In addition, stochastic neighbor em-
bedding (SNE) [10] and its variation, t-distributed stochastic
neighbor embedding (t-SNE) [11], are also popular embed-
ding methods.

The main idea of NPE is that it introduces a linear
transformation matrix into LLE. NPE inherits LLE’s neigh-
borhood preserving property. Due to its simplicity and ef-
fectiveness, NPE has become a popular method in com-
puter vision field. Recently, NPE has been investigated in
many literatures, such as [12]–[14]. However, NPE has to
encounter two problems. One problem of NPE is the fact
that, like LDA, it also suffers from the small-sample-size
(SSS) problem. Because that, in most cases, the dimension
of the sample is much larger than the number of the sam-
ples, the generalized eigenvalue problem may be unsolvable.
Another problem of NPE is that, the neighbor relationship
is measured by the artificially constructed adjacent graph.
Usually, the k nearest neighbor or ε-neighborhood criteria is
used to construct adjacent graph. The performance of NPE
is seriously sensitive to the neighborhood size k, which is
observed in the experiments presented in the Sect. 5 of this
paper.

As an effective method, exponential discriminant anal-
ysis (EDA) [15] is proposed to overcome the SSS problem of
classical LDA. The main idea of EDA is that the matrix ex-
ponential is introduced. It replaces the between-class scatter
matrix SB with the matrix exponential exp(SB), and replaces
the within-class scatter matrix SW with the matrix exponen-
tial exp(SW ), and so avoid the singularity of the matrix SB

and SW .
After the release of EDA, it is also introduced to

solve the SSS problem, especially in the manifold learn-
ing field. Many of manifold learning algorithms, such as
Local Preserving Projection (LPP) [8], Discriminant Local-
ity Preserving Projection (DLPP) [16], Local Discriminant
Embedding (LDE) [17] and Semi-supervised Discriminant
Embedding (SDE) [18], have to suffer from the SSS prob-
lem. Then, the EDA method is introduced to solve this
problem. The exponential LPP (ELPP) [19], the exponential
DLPP method (EDLPP) [20], the exponential LDE method
(ELDE) [21] and the exponential SDE method (ESDE) [22]
are proposed. They are the exponential versions of the cor-
responding methods. They avoid the SSS problem and show
better performance in face recognition.

Inspired by the idea of EDA, an exponential neighbor-
hood preserving embedding (ENPE) is proposed in this pa-
per. The main advantages of the proposed ENPE are two
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aspects. One is that ENPE avoids the SSS problem of NPE
and shows advantageous performance over NPE in face
recognition. Another is that, ENPE is much less sensitive to
the neighborhood parameter k, and it can get stable recogni-
tion performance when the parameter k varies.

NPE and the proposed ENPE are unsupervised meth-
ods. In general, unsupervised and supervised method are
two different methods. In face recognition, the performance
of the two methods are different because that the class-
specific information is used or not. This paper focus on
the unsupervised technique. Unsupervised learning is a vast
field. It is usually applied in such case where class la-
bel of data or other guidance for training is not available.
Compared with supervised learning, unsupervised learning
is generally much difficult due to the lack of label informa-
tion [23], [24]. In manifold learning filed, the original man-
ifold learning algorithms are generally unsupervised, and
then these algorithms are extended to supervised cases.

The rest of this paper is organized as follows. In
Sect. 2, the neighborhood preserving embedding method is
reviewed. In Sect. 3, exponential neighborhood preserving
embedding (ENPE) is presented. Section 4 provides the the-
oretical analysis of the proposed ENPE method. Experimen-
tal results are shown in Sect. 5. Finally, Sect. 6 concludes
this study.

2. Review of NPE

Neighborhood preserving embedding (NPE) [9] is unsuper-
vised manifold reduced dimension technique proposed in re-
cent years. NPE embeds the original data to a low dimen-
sional space, in which the local neighborhood structure on
the data manifold is preserved.

Let X = {xi ∈ RD | i = 1, 2, · · · ,N} represents the input
data in RD space. NPE aims to seek an optimal transforma-
tion matrix A to map the D-dimensional data point xi onto
a d-dimensional data point yi, {yi ∈ Rd | i = 1, 2, · · · ,N}
(d � D), namely, yi = AT xi, in which the local neighbor-
hood structure of the original data set X can be preserved.

NPE first finds the neighbors of each data point in space
RD, then constructs an adjacency graph on the input data set.

Let the weights Wi j be the coefficients that best recon-
struct xi from its neighbors j = 1, 2, · · · , k, and W = (Wi j)
be the reconstruct matrix. The matrix W can be calculated
by minimizing the objective function:

φ(W) =
∑

i

∥∥∥∥∥∥xi −
∑

j

Wi jx j

∥∥∥∥∥∥,
with constraints

∑
j Wi j = 1 ( j = 1, 2, · · · ,N).

NPE believes that if the data points xi in space RD can
be reconstructed by Wi j, then the corresponding point yi in
low dimension space Rd can also be reconstructed by Wi j.
Therefore, the optimal mapping transformation matrix Aopt

can be obtained by solving the minimization problem:

Aopt = arg min

⎡⎢⎢⎢⎢⎢⎢⎣
∑

i

∥∥∥∥∥∥yi −
∑

j

Wi jy j

∥∥∥∥∥∥
2
⎤⎥⎥⎥⎥⎥⎥⎦.

With the algebraic transformation, the above minimization
problem may be reduced as:

Aopt = arg min
AT XXT A=1

AT XMXT A. (1)

And then the optimal mapping vectors are the solution of
the generalized eigenvalue problem:

XMXT a = λXXT a. (2)

The optimal mapping transformation matrix Aopt is com-
posed of the optimal mapping transformation vectors, which
are arranged in the order of the corresponding eigenvalues
from small to large. Where

X = (x1, x2 · · · , xN), M = (I −W)T (I −W)

and I is an identity matrix.

3. Exponential Neighborhood Preserving Embedding

3.1 Matrix Exponential

In this section, we firstly introduce the following definition
and theorems of matrix exponential [15]. Given an n × n
square matrix A, its exponential is defined as follows:

exp(A) = I + A +
A2

2!
+ · · · + Ak

k!
+ · · · ,

where I is the identity matrix with the size of n × n. The
properties of matrix exponential are listed as follows.

1) exp(A) is a finite matrix.
2) exp(A) is a full-rank matrix.
3) If square matrix A commutes with B, i.e., AB =

BA, then

exp(A + B) = exp(A) exp(B).

4) For an arbitrary square matrix A, there exists the
inverse of exp(A). This is given by

(exp(A))−1 = exp(−A).

5) If T is a nonsingular matrix, then

exp
(
T−1 AT

)
= T−1 exp(A)T.

6) If v1, v2, · · · , vn are eigenvectors of A that are related
to the eigenvalues λ1, λ2, · · · , λn, then v1, v2, · · · , vn are also
eigenvectors of exp(A) that are related to the eigenvalues
eλ1 , eλ2 , · · · , eλn of exp(A).

3.2 The SSS Problem of NPE

Denote SM = XMXT , SI = XXT , then generalized eigen-
value problem (2) can be rewritten as follows:

SM a = λSI a.

About the ranks of SM and SI , the following theorem
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holds:
Theorem 1. Let N is the number of the samples, and

D is dimension of the samples, if D > N, then the rank of
SM is at most N − 1, and the rank of SI is at most N, i.e.

rank(SM) ≤ N − 1 and rank(SI) ≤ N.

Proof. We have SM = XMXT , where M = (I −W)T

(I − W). Note that W is an N-order matrix, and the row
elements of the matrix W are with constraint

∑
j

Wi j = 1

( j = 1, 2, · · · ,N), so it easy to know that the rank of the
matrix I−W is at most N−1. It is known that the maximum
possible rank of the product of two matrices is smaller than
or equal to the smaller of the ranks of the two matrices. The
rank of the matrix M is at most N − 1, and then the rank of
SM is at most N − 1, i.e.

rank(SM) ≤ rank
(
XMXT ) ≤ N − 1.

Similarly, it is easy to know that the rank of SI is at
most N, i.e.

rank(SI) ≤ rank
(
XXT ) ≤ N.

According to the above Theorem 1, both the matrices
SM = XMXT and SI = XXT can be singular. It is from the
fact that, in most cases, the number of images in the training
set N is much smaller than the dimensionality of the image
D, i.e. N � D. This is known as SSS problem and NPE
suffers from the difficulty.

3.3 Exponential NPE

According to the above Theorem 1, both the matrices SM =

XMXT and SI = XXT can be singular in most cases, it is
from fact that there are some 0 eigenvalues. The exponential
NPE (ENPE) is proposed to address the problem. It replaces
the matrices SM and SI with the exponential of SM and SI

respectively. According to Eq. (1), the criterion function of
NPE can be rewritten as:

min
AT SI A=1

AT SM A. (3)

Let ΦM = (ϕm1,ϕm2, · · · ,ϕmD) is the eigenvector ma-
trix of SM that corresponds to eigenvalue of SM:

ΛM = diag(λm1, λm2, · · · , λmD),

and ΦI = (ϕi1,ϕi2, · · · ,ϕiD) is the eigenvector matrix of SI

that corresponds to eigenvalue of SI :

ΛI = diag(λi1, λi2, · · · , λiD).

The criterion of NPE (3) can be rewritten as:

min
ATΦT

I ΛIΦT A=1
ATΦT

MΛMΦM A. (4)

In the criterion function (4), we replace the eigenvalue
λm j of SM with exp(λm j), and λi j of SI with exp(λi j), and

denote

exp(ΛM) = diag
(
eλm1 , eλm2 , · · · , eλmD

)
,

exp(ΛI) = diag
(
eλi1 , eλi2 , · · · , eλiD

)
.

The criterion of NPE can be transformed to:

min
ATΦT

I exp(ΛI )ΦT A=1
ATΦT

M exp(ΛM)ΦM A,

i.e.,

min
AT exp(SI )A=1

AT exp(SM)A.

The columns vector of optimal transformation matrix
A, i.e., the optimal projection axes, can be obtained by solv-
ing the following generalized eigenvalue problem:

exp(SM)a = λ exp(SI)a. (5)

However, in this paper, an important goal of selecting
the optimal projected axes is to make that the method is low
sensitivity to the neighborhood parameter k. Unfortunately,
with some experiments, we find that the recognition perfor-
mance is sensitive to the neighborhood size k. And so the
following processing will be made.

Because the matrix exp(SI) is full-rank matrix, the
eigenvalue problem (5) can be written as:

(exp(SI))
−1 exp(SM)a = λa. (6)

Then, by the matrix exponential property 4), we have:

exp(−SI) exp(SM)a = λa. (7)

By the matrix exponential property 3), if the matrix
equation SMSI = SISM holds, we have

exp(−SI) exp(SM) = exp(SM − SI).

But it is easily to prove that there is SMSI = (SISM)T ,
not SMSI = SISM , so the above equation does not hold.

However, in fact, the difference of exp(−SI) exp(SM)
and exp(SM − SI) is little. Let

SMSI = SISM + ΔT, (8)

exp(SM − SI) = exp(−SI) exp(SM) + ΔS. (9)

According to Theorem presented in Appendix, we have

‖ΔS‖ ≤ 1
2

exp(‖SM‖ + ‖SI‖)‖ΔT‖. (10)

The detailed proof of the estimate of the ‖ΔS‖ may be re-
ferred in the Appendix.

In generally, the matrix exponential exp(A) usually
expands the matrix A. So we must normalize the matri-
ces SM and SI because exp(SM) and exp(−SI) may involve
larger values. And then, ΔT in Eq. (8) is generally a little
value matrix. So, in the Eq. (9), contrasted with the ma-
trix exp(−SI) exp(SM) and the matrix exp(SM − SI), ΔS is a



RAN et al.: EXPONENTIAL NEIGHBORHOOD PRESERVING EMBEDDING FOR FACE RECOGNITION
1413

Table 1 The measurement of the three matrices for different k (where
A = exp(SM − SI ), B = exp(−SI ) exp(SM))

matrix whose element values are very little. So, it is feasi-
ble to replace the matrix exp(−SI) exp(SM) with the matrix
exp(SM − SI), and the error is very little.

An experiment has also been made to prove that. The
experiment is made in ORL face database. In this experi-
ment, for the different neighborhood parameter k, we com-
pute exp(−SI) exp(SM), exp(SM − SI) and ΔS, and use the
Frobenius norm to measure the matrices. The experiment
results are list in Table 1. We find that the Frobenius norm
of ΔS, i.e., ‖ΔS‖F , is much little. Contrasted to the matrix
exp(−SI) exp(SM) and the matrix exp(SM −SI), ΔS occupies
a very small proportion.

And then the eigenvalue problem (7) may be replaced
with the eigenvalue problem:

exp(SM − SI)a = λa. (11)

Let the column vectors a0, a1, · · · , ad−1 be the solu-
tions of Eq. (11), ordered by their corresponding eigen-
values, namely, λ0 ≤ λ1 ≤ · · · ≤ λd−1, and let A =

(a0, a1, · · · , ad−1), then A is the optimal transformation ma-
trix. This is ENPE method proposed in this paper.

4. Theoretical Analysis of ENPE

From the Sect. 3.2, NPE method suffers from the SSS prob-
lem. To overcome the complication of singular matrices,
PCA can be adopted to reduce the dimensionality of the
original image. But, due to the processing PCA step, some
of significant information, which is contained in the origi-
nal data, may be lost in the low-dimensional mapped data
y. The neighbor relationship of NPE is measured by the
artificially constructed adjacent graph. Usually, k nearest
neighbor criteria is adopted to construct the adjacent graph
based on the preset neighborhood size k. However, for the
different preset neighborhood size k, the eigenvalues gotten
from the generalized eigenvalue problem (2) are different
and the optimal projected axes are different greatly. This
causes that NPE method is seriously sensitive to the neigh-
borhood size k.

The proposed ENPE method may address the above
problems effectively. On the one hand, obviously, the ENPE
method has no the small-sample-size (SSS) problem. On
the other hand, importantly, based on the eigenvalue prob-
lem (11), the ENPE method has low sensitivity to the neigh-
borhood parameter k. Let us to discuss the problem in this

Table 2 The norm of the eigenvector difference for two different param-
eter k

section.
According to the matrix exponential property 6), the

matrix exp(SM − SI) and the matrix SM − SI have the same
eigenvectors. Consider the eigenvalue problem:

(SM − SI)a = λa. (12)

Based on the above discussion, the eigenvectors of the
eigenvalue problem (11), i.e., the projection axes of ENPE,
are from the eigenvectors of the eigenvalue problem (12)
essentially.

And, in fact, the projection axes of NPE are from the
eigenvectors of the eigenvalue problem:

SM a = λSI a. (13)

The eigenvalues of the Eq. (12) is from the solution of
the eigen-polynomial:

det(λI − SM − SI) = 0. (14)

And the eigenvalues of the Eq. (13) is from the solution
of the eigen-polynomial:

det(SM − λSI) = 0. (15)

When the neighborhood parameter k varies, the differ-
ence of the eigenvalues gotten from the Eq. (14) is little, and
the difference of the eigenvectors gotten is little. But the dif-
ference of the eigenvalues gotten from the Eq. (15) is large,
and the difference of the eigenvectors gotten is large. To ex-
plain the problem, an experiment about the difference of the
eigenvectors from two different parameter k is made to con-
trast the two methods. The experiment results are listed in
the Table 2.

The experiment process is as follows. Two neighbor-
hood parameters k1 and k2, are randomly preset. For the
parameter k1, we firstly compute the eigenvalues λNPEk1

i
(i = 1, 2, · · · , t) of NPE. Where, as an example, the first
seven eigenvectors, i.e., t = 7, are considered. Then get the
eigenvector vNPEk1

i corresponding to the eigenvalues λNPEk1
i

of NPE. And then, for the parameter k2, we may get the
eigenvector vNPEk2

i . And then to compute the Frobenius
norms of the vectors vNPEk1

i − vNPEk2
i , i.e.,

∥∥∥vNPEk1
i − vNPEk2

i

∥∥∥
F

(i = 1, 2, · · · , t).
The results are listed on the second row of Table 2.

Similarly, for ENPE method, the Frobenius norms of
vector differences for parameter k1 and k2 are computed, i.e.,∥∥∥vENPEk1

i − vENPEk2
i

∥∥∥
F

(i = 1, 2, · · · , t).
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The results are listed on the third row of Table 2.
Based on the above discussion, for the different pa-

rameter k, the difference of the eigenvectors from ENPE is
much smaller than that of NPE. The good property make
that ENPE is less sensitive than NPE when the neighbor-
hood size k varies.

5. Experiment Results

The experiments are made on the ORL, Georgia Tech and
AR face database respectively. For each experiment, it is
made from two aspects. One is to measure the sensitiv-
ity of ENPE method to the neighborhood parameter k, an-
other is to evaluate the face recognition performance of the
proposed ENPE method. In the experiments, the proposed
ENPE method is compared with the classical PCA, and the
unsupervised manifold learning methods, including LPP [8],
exponential LPP (ELPP) [19] and NPE [9]. For the methods
suffering from the SSS problem (LPP and NPE), PCA tech-
nique is firstly used to reduce the dimension of the original
image vector.

5.1 Face Database

1) ORL face database
The ORL database contains 400 images of 40 persons

(10 images per person). For some subjects, the images were
taken at different times, varying the lighting, facial expres-
sions (open or closed eyes, smiling or not smiling) and facial
details (glasses or no glasses). In our experiment, each im-
age is manually cropped and resized to 32 × 32 pixels.

2) Georgia Tech face database
Georgia Tech face database contains images of 50 peo-

ple taken in two or three sessions between 06/01/99 and
11/15/99 at the Center for Signal and Image Processing at
Georgia Institute of Technology. All people in the database
are represented by 15 color JPEG images with cluttered
background. In our experiment, each image is manually
cropped and resized to 32 × 32 pixels.

3) AR face database
This face database contains over 4000 color images

corresponding to 126 people’s faces. Images feature frontal
view faces with different facial expressions, illumination
conditions and occlusions. The pictures were taken under
strictly controlled conditions. In our experiment, each im-
age is manually cropped and resized to 40 × 40 pixels.

5.2 Experiment Results on ORL Face Database

The experiment is conducted on ORL face Database. A
random subset with p (p = 2, 3, 4, 5, 6) images for each
individual was taken to form the training set, and the re-
maining were used as the testing set. For a fixed p, the
above random split process is repeated 20 times to obtain
stable recognition results. And for a fixed training sam-
ple p and a fixed split, the neighborhood parameter k is
searched from {2, 3, · · · ,N − 1} and with step size = 5, i.e.,

Table 3 The MMDs of four methods on ORL face database

Fig. 1 The comparison of NPE and ENPE versus the parameter k for ten
random splits on ORL face database

k =
{
2, 7, 12 · · · , 2 +

[N − 1
5

]
× 5

}
, where N is the training

sample number. For convenience, denote l =
[N − 1

5

]
+ 1.

Firstly, we evaluate the face recognition sensitivity to
the parameter k for four local manifold learning algorithms:
LPP, ELPP, NPE and ENPE. A criterion to measure the
sensitivity to the parameter k, mean maximum difference
(MMD), is presented in [19]. For a fixed p, there are 20
random splits in the experiments and each split includes l
recognition ratios versus l values of k. So, there are maxi-
mum value and minimum value in the l recognition accura-
cies for each split. The maximum difference of recognition
accuracy is obtained by subtracting the minimum accuracy
from the maximum accuracy for each split. The mean max-
imum difference criterion (MMD) is the mean value of 20
maximum differences from the 20 random splits. According
the definition, the smaller value of MMD means that the al-
gorithm is more stable and more insensitive corresponding
to the parameter k.

The experiment results are listed in Table 3, where the
face subspace dimension is 40. For the other subspace di-
mensions, the similar results can be gotten. From the Ta-
ble 3, we observe the following facts: 1) the MMDs of
ENPE are less than that of other methods and this shows
that the performance of ENPE is much less sensitive to k
than that of other methods, 2) the matrix exponential meth-
ods ELPP and ENPE are much less sensitive to k than that
of LPP and NPE.

Furth more, the following Fig. 1 is used to compare
the sensitivity to the neighborhood parameter k of NPE and
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Table 4 The performance comparison of five methods on ORL database

ENPE methods. In the Fig. 1, ten recognition rate curves
versus the parameter k are plotted for ten times random splits
when the train sample p = 6. The horizontal axis shows the
neighborhood parameter k for 10 times random splits. The
vertical line is used to separate the recognition rate curve of
each random split. Between two vertical lines, the value of
k is from 2 to maximum. Where, for p = 6, the maximum
of k is 237, so the value of k is from 2 to 237.

From Fig. 1, NPE shows a fluctuant trend and ENPE
shows a more stable trend. This means that the performance
of ENPE is much less sensitive to the parameter k than that
of NPE. And in most cases, the recognition accuracies of
ENPE are better than that of NPE.

Secondly, we evaluate the performance of the five un-
supervised methods: PCA, LPP, ELPP, NPE and the pro-
posed ENPE. In this experiment, for each training sample p
(p = 2, 3, 4, 5), 20 random splits have been made. There
are l recognition accuracies corresponding to the l values of
k for each split. For each random split, we report the top-1
recognition accuracy from the best parameter k configura-
tion. And so, there 20 maximal recognition accuracies, then
we get the average value of the 20 maximal recognition ac-
curacies and regard it as the recognition rate of the corre-
sponding method. In general, the recognition performance
varies with the dimension of the face subspace. In the exper-
iment, let the dimension is from a range of dimensions. For
every subspace dimension, the above process is repeated to
calculate the recognition rate. The best average performance
obtained by the five methods as well as the corresponding
dimension is summarized in Table 4. The number appearing
in parenthesis is the optimal subspace dimension. From Ta-
ble 4, the recognition rates of ENPE are better than that of
PCA, LPP, ELPP and NPE.

5.3 Experiment Results on Georgia Tech Face Database

Georgia Tech face database is more complex than ORL
database, because it contains various pose faces with differ-
ent expressions on cluttered background. In this experiment,
a random subset with p (p = 2, 4, 6, 8, 10) images for ev-
eryone was taken to form the training set, and the remaining
were used as the testing set. For a fixed p, the above random
split process is repeated 20 times to obtain stable recognition
results. And for a fixed p and a fixed split, the neighborhood
parameter k is searched from {2, 3, · · · ,N − 1} and the step

size = 5, i.e., k =
{
2, 7, 12 · · · , 2 +

[N − 1
5

]
×5

}
.

Table 5 The MMDs of four methods on Georgia Tech face database

Fig. 2 The comparison of NPE and ENPE versus the parameter k for ten
random splits on Georgia Tech face database

In the same way, the mean maximum difference
(MMD) criterion is used to measure the face recognition
sensitivity with respect to the neighborhood parameter k.
As an illustration, the face subspace dimension is set to 40.
The experiment results are shown in Table 5. As shown, the
performance of ENPE is less sensitive to the neighborhood
parameter k than that of other methods.

The recognition rate of NPE and ENPE versus the pa-
rameter k for ten times random splits when p = 6 are shown
in Fig. 2. The legend is the same as the description in the
Sect. 5.2. The horizontal axis shows the neighborhood pa-
rameter k for ten times random splits. The value of k is from
2 to maximum for each split. This also means that the per-
formance of ENPE is much less sensitive to the parameter k
than that of NPE. And in most cases, the recognition accu-
racies of ENPE are better than that of NPE.

In this experiment, we also evaluate the performance
of the five methods: PCA, LPP, ELPP, NPE and ENPE. The
subspace dimension is from a range of dimensions. The best
average performance corresponding dimension is summa-
rized in the Table 6. From the Table 6, the recognition rates
of ENPE are better than that of other four methods in the
complex face database.

5.4 Experiment Results on AR Face Database

AR face database is more larger and complex face database.
In this experiment, a random subset with p (p = 3, 4,
5, 6, 7) images for everyone was taken to form the train-
ing set, and the remaining were used as the testing set.
For a fixed p, the above random split process is repeated
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Table 6 The performance comparison of five methods on Georgia Tech
face database

Table 7 The MMDs of four methods on AR face database

Fig. 3 The comparison of NPE and ENPE versus the parameter k for ten
random splits on AR face database

10 times to obtain stable recognition results. And for a
fixed p and a fixed split, the neighborhood parameter k is
searched from {2, 3, · · · ,N − 1} and the step size = 10, i.e.,

k =
{
2, 12, · · · , 2 +

[N − 1
10

]
× 10

}
.

The mean maximum difference (MMD) criterion is
also used to measure the face recognition sensitivity with
respect to the neighborhood parameter k.

The experiment results are shown in Table 7. From
Table 7, the MMD values of ENPE are the smallest than that
of LPP, ELPP and NPE. This means that the performance
of ENPE is less sensitive to k than that of other methods.
And interestingly, the recognition performance of ENPE is
almost constant for all the training samples. Where, the face
subspace dimension is set to 40.

In fact, the similar results may be gotten for the other
subspace dimension. Figure 3 shows the recognition rate
versus the parameter k for 10 times random splits when the
training sample p = 6. Obviously, ENPE shows a more
stable trend than that of NPE. This also proves that the per-
formance of ENPE is much less sensitive to the parameter k

Table 8 The performance comparison of five methods on AR database

than that of NPE. And in most cases, the recognition accu-
racies of ENPE are better than that of NPE.

In this experiment, we also evaluate the performance
of the five methods: PCA, LPP, ELPP, NPE and ENPE. The
best average performance corresponding subspace dimen-
sion is summarized in Table 8. The experiment on AR face
database also illustrates that ENPE is more effective than
other four methods.

6. Conclusions

In this paper, an exponential neighborhood preserving em-
bedding (ENPE) is proposed to improve NPE method. The
main idea of ENPE is that the matrix exponential is intro-
duced to NPE. Unlike the NPE method, the proposed ENPE
method has no the small-sample-size problem, and shows
much stable recognition performance when the neighbor-
hood parameter varies. The experiments are conducted on
three public face databases: ORL, Georgia Tech and AR.
In our experiments, ENPE is compared with the methods
without discriminant information: PCA, LPP, the improved
LPP with matrix exponential (ELPP) and NPE. The experi-
ment results prove that ENPE has two superiorities: 1) NPE
shows advantageous performance over the above methods in
face recognition. 2) Compared with the manifold learning
methods LPP, ELPP and NPE, ENPE is much less sensitive
to the neighborhood parameter k.
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Appendix:

According to the matrix exponential property 3), if square

matrix A commutes with B, i.e., AB = BA, then

exp(A + B) = exp(A) exp(B).

But, if AB � BA, the above equation does not hold. Let

exp(A + B) = exp(A) exp(B) + ΔE,

where ΔE is the error matrix. In the Appendix, it is proved
that ‖ΔE‖ is much little, so the error matrix ΔE is a little
value matrix, and then exp(A+ B) may be approximated by
exp(A) exp(B).

Denote

AB = BA + ΔC,

where ΔC is the error matrix between the matrix AB and
BA. And we made the following rule:

if n < m,
n∑

i=m

(∗) = 0.

Additionally, let the norm ‖•‖ used in this paper be compat-
ible norm.

By the definition of the matrix exponential, we have

exp(A + B) =
∞∑

k=0

(A + B)k

k!
=

∞∑
k=0

1
k!

Pk, (A· 1)

for convenience, denote Pk = (A + B)k.
On the other hand, it is easy to know that the series:

∞∑
i=0

Ai

i!
= I + A +

A2

2!
+ · · · + Ak

k!
+ · · ·

is an absolutely convergent series. And then, by the multi-
plication theorem of absolutely convergent series, we have

exp(A) exp(B) =
∞∑

i=0

Ai

i!

∞∑
j=0

B j

j!
=

∞∑
k=0

[ k∑
l=0

Ak−l

(k − l)!
Bl

l!

]

=

∞∑
k=0

[
1
k!

k∑
l=0

(
k
l

)
Ak−lBl

]
=

∞∑
k=0

[ 1
k!

Qk

]
,

(A· 2)

for convenience, denote Qk =

k∑
l=0

(
k
l

)
Ak−lBl.

Because of AB � BA, we have Pk � Qk. About the er-
ror between the matrix Pk and Qk, the following conclusion
holds.

Lemma. Let ΔHk be the error matrix between the ma-
trix Pk and Qk, i.e.,

Pk = Qk − ΔHk, (A· 3)

then the error matrix ΔHk may be formulated as:

ΔHk =

k−1∑
j=0

(
k − 1

j

) k−1− j∑
r=1

Ak−1− j−rΔCAr−1B j
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+ (A + B)
k−2∑
j=0

(
k − 2

j

) k−2− j∑
r=1

Ak−2− j−rΔCAr−1B j

+ · · · · · ·
+ (A + B)k−2ΔC

=

k−2∑
i=0

⎛⎜⎜⎜⎜⎜⎜⎝(A+B)i
k−1−i∑

j=0

(
k−1−i

j

) k−1−i− j∑
r=1

Ak−1−i− j−rΔCAr−1B j

⎞⎟⎟⎟⎟⎟⎟⎠
(A· 4)

Proof. Proof by mathematical induction.
1) when k = 0, 1, 2,
If k = 0, ΔHk = 0, Eq. (A· 3) and Eq. (A· 4) hold.
If k = 1, ΔHk = 0, Eq. (A· 3) and Eq. (A· 4) hold.
If k = 2, ΔHk = ΔC, Eq. (A· 3) and Eq. (A· 4) hold.
2) Let Eq. (A· 3) and Eq. (A· 4) hold when k = m.
3) when k = m + 1, we have

Pm+1 = (A + B)m+1 = (A + B)Pm

= (A + B)(Qm − ΔHm)

= (A + B)
m∑

l=0

(
m
l

)
Am−lBl − (A + B)ΔHm

= A
m∑

l=0

(
m
l

)
Am−lBl+B

m∑
j=0

(
m
j

)
Am− jB j−(A+B)ΔHm

=

m∑
l=0

(
m
l

)
Am−l+1Bl+

m∑
j=0

(
m
j

)
BAm− jB j−(A+B)ΔHm

= Am+1 +

m∑
l=1

(
m
l

)
Am−l+1Bl +

m∑
j=0

(
m
j

)
BAm− jB j

− (A + B)ΔHm. (A· 5)

The item
m∑

j=0

(
m
j

)
BAm− jB j of the above formula may be

written as:

m∑
j=0

(
m
j

)
BAm− jB j

=

m∑
j=0

(
m
j

)
(AB − ΔC)Am− j−1B j

=

m∑
j=0

(
m
j

) (
ABAm− j−1 − ΔCAm− j−1)B j

=

m∑
j=0

(
m
j

) (
A(AB − ΔC)Am− j−2 − ΔCAm− j−1)B j

=

m∑
j=0

(
m
j

) (
A2BAm− j−2−AΔCAm− j−2−ΔCAm− j−1)B j

· · · · · ·
=

m∑
j=0

(
m
j

) (
Am− jB − Am− j−1ΔC − Am− j−2ΔCA − · · ·

− ΔCAm− j−1)B j

=

m∑
j=0

(
m
j

) (
Am− jB −

m− j∑
r=1

Am− j−rΔCAr−1

)
B j

=

m∑
j=0

(
m
j

)
Am− jB j+1 −

m∑
j=0

(
m
j

) m− j∑
r=1

Am− j−rΔCAr−1B j.

So, Eq. (A· 5) becomes

Pm+1 = Am+1+

m∑
l=1

(
m
l

)
Am−l+1Bl+

m∑
j=0

(
m
j

)
Am− jB j+1

−
m∑

j=0

(
m
j

) m− j∑
r=1

Am− j−rΔCAr−1Bj−(A+B)ΔHm

= Am+1 +

m∑
l=1

(
m
l

)
Am−l+1Bl +

m+1∑
l=1

(
m

l − 1

)
Am−l+1Bl

(l = j + 1)

−
m∑

j=0

(
m
j

) m− j∑
r=1

Am− j−rΔCAr−1B j − (A + B)ΔHm

= Am+1 +

m∑
l=1

(
m
l

)
Am−l+1Bl

+

m∑
l=1

(
m

l − 1

)
Am−l+1Bl + Bm+1

−
m∑

j=0

(
m
j

) m− j∑
r=1

Am− j−rΔCAr−1B j − (A + B)ΔHm

= Am+1 +

m∑
l=1

((
m
l

)
+

(
m

l − 1

))
Am+1−lBl + Bm+1

−
m∑

j=0

(
m
j

) m− j∑
r=1

Am− j−rΔCAr−1B j − (A + B)ΔHm

= Am+1+

m∑
l=1

(
m+1

l

)
Am+1−lBl+Bm+1 (Pascal’s law)

−
m∑

j=0

(
m
j

) m− j∑
r=1

Am− j−rΔCAr−1B j − (A + B)ΔHm

=

m+1∑
l=0

(
m + 1

l

)
Am+1−lBl

−
m∑

j=0

(
m
j

) m− j∑
r=1

Am− j−rΔCAr−1B j − (A + B)ΔHm

= Qm+1−
m∑

j=0

(
m
j

) m− j∑
r=1

Am− j−rΔCAr−1B j−(A+B)ΔHm.

Denote

ΔHm+1 =

m∑
j=0

(
m
j

) m− j∑
r=1

Am− j−rΔCAr−1B j+(A+B)ΔHm.

When k = m, Eq. (A· 3) and Eq. (A· 4) hold, replace ΔHm of
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the above equation with the expression of ΔHm, then

ΔHm+1

=

m∑
j=0

(
m
j

) m− j∑
r=1

Am− j−rΔCAr−1B j

+ (A + B)
m−1∑
j=0

(
m − 1

j

) m−1− j∑
r=1

Am−1− j−rΔCAr−1B j

+ · · · · · ·
+ (A + B)m−1ΔC

=

m−1∑
i=0

⎛⎜⎜⎜⎜⎜⎜⎝(A + B)i
m−i∑
j=0

(
m − i

j

) m−i− j∑
r=1

Am−i− j−rΔCAr−1B j

⎞⎟⎟⎟⎟⎟⎟⎠
�

Based on the Lemma, the norm ‖ΔE‖ of the error ma-
trix ΔE may be measured.

Theorem. If AB � BA, let

exp(A + B) = exp(A) exp(B) + ΔE,

then the norm of the error matrix ΔE may be estimated as:

‖ΔE‖ ≤ 1
2

exp(‖A‖ + ‖B‖)‖ΔC‖.

Proof. According to Eq. (A· 1) and Eq. (A· 2),

ΔE = exp(A + B) − exp(A) exp(B)

=

∞∑
k=0

1
k!

(Pk − Qk)

=

∞∑
k=0

1
k!
ΔHk

=

∞∑
k=0

1
k!

k−2∑
i=0

⎛⎜⎜⎜⎜⎜⎜⎝(A+B)i
k−1−i∑

j=0

(
k−1−i

j

)k−1−i− j∑
r=1

Ak−1−i− j−rΔCAr−1B j

⎞⎟⎟⎟⎟⎟⎟⎠ ,
then, we have

‖ΔE‖ ≤
∞∑

k=2

1
k!

∥∥∥∥∥∥∥∥
k−2∑
i=0

⎛⎜⎜⎜⎜⎜⎜⎝(A+B)i
k−1−i∑

j=0

(
k−1−i

j

) k−1−i− j∑
r=1

Ak−1−i− j−rΔCAr−1B j

⎞⎟⎟⎟⎟⎟⎟⎠
∥∥∥∥∥∥∥∥

≤
∞∑

k=2

1
k!

k−2∑
i=0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∥∥∥(A+B)i

∥∥∥
∥∥∥∥∥∥∥∥

k−1−i∑
j=0

(
k−1−i

j

) k−1−i− j∑
r=1

Ak−1−i− j−rΔCAr−1B j

∥∥∥∥∥∥∥∥
⎞⎟⎟⎟⎟⎟⎟⎟⎠

≤
∞∑

k=2

1
k!

k−2∑
i=0

⎛⎜⎜⎜⎜⎜⎜⎝(‖A+B‖)i
k−1−i∑

j=0

(
k−1−i

j

) k−1−i− j∑
r=1

∥∥∥Ak−1−i− j−r
∥∥∥∥∥∥ΔC

∥∥∥∥∥∥Ar−1
∥∥∥∥∥∥B j

∥∥∥
⎞⎟⎟⎟⎟⎟⎟⎠

≤
∞∑

k=2

1
k!

k−2∑
i=0

⎛⎜⎜⎜⎜⎜⎜⎝(‖A+B‖)i
k−1−i∑

j=0

(
k−1−i

j

) k−1−i− j∑
r=1

(‖A‖)k−2−i− j‖ΔC‖(‖B‖) j

⎞⎟⎟⎟⎟⎟⎟⎠

=

∞∑
k=2

1
k!

k−2∑
i=0

⎛⎜⎜⎜⎜⎜⎜⎝(‖A+B‖)i
k−1−i∑

j=0

(
k−1−i

j

)
(k−1−i− j)(‖A‖)k−2−i− j(‖B‖) j‖ΔC‖

⎞⎟⎟⎟⎟⎟⎟⎠

=

∞∑
k=2

1
k!

k−2∑
i=0

⎛⎜⎜⎜⎜⎜⎜⎝(‖A+B‖)i
k−2−i∑

j=0

(
k−1−i

j

)
(k−1−i− j)(‖A‖)k−2−i− j(‖B‖) j‖ΔC‖

⎞⎟⎟⎟⎟⎟⎟⎠

=

∞∑
k=2

1
k!

k−2∑
i=0

⎛⎜⎜⎜⎜⎜⎜⎝(‖A+B‖)i(k−1−i)

⎛⎜⎜⎜⎜⎜⎜⎝
k−2−i∑

j=0

(
k−2−i

j

)
(‖A‖)k−2−i− j(‖B‖) j

⎞⎟⎟⎟⎟⎟⎟⎠ ‖ΔC‖
⎞⎟⎟⎟⎟⎟⎟⎠

≤
∞∑

k=2

1
k!

k−2∑
i=0

(
(‖A‖+‖B‖)i(k−1−i)(‖A‖+‖B‖)k−2−i)‖ΔC‖

=

∞∑
k=2

1
k!

k−2∑
i=0

(
(k − 1 − i)(‖A‖ + ‖B‖)k−2)‖ΔC‖

=

∞∑
k=2

1
k!

k−2∑
i=0

(k − 1 − i)(‖A‖ + ‖B‖)k−2‖ΔC‖

=

( ∞∑
k=2

1
k!

(k(k − 1)
2

)
(‖A‖ + ‖B‖)k−2

)
‖ΔC‖

=
1
2

∞∑
k=2

(‖A‖ + ‖B‖)k−2

(k − 2)!
‖ΔC‖

=
1
2

∞∑
n=0

(‖A‖ + ‖B‖)n

n!
‖ΔC‖ (denote n = k − 2)

=
1
2

exp(‖A‖ + ‖B‖)‖ΔC‖. �
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