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SUMMARY Compressive sensing is attractive to distributed video cod-
ing with respect to two issues: low complexity in encoding and low data
rate in transmission. In this paper, a novel compressive sensing-based dis-
tributed video coding system is presented based on a combination of pre-
dictive coding and Wyner-Ziv difference coding of compressively sampled
frames. Experimental results show that the data volume in transmission in
the proposed method is less than one tenth of the distributed compressive
video sensing. The quality of decoded video was evaluated in terms of
PSNR and structural similarity index as well as visual inspections.
key words: video compression, distributed coding, compressive sensing

1. Introduction

Recent years the Internet of things (IOT) is rapidly in
progress. The development of video applications of using
wireless cameras is active. For example, wireless visual sen-
sor networks, wearable devices, remote medical equipments
and vehicle-mounted cameras that are connected with cloud
computing are promising areas of application. In those ap-
plications, a few of critical problems are the cost of a front-
end terminal, the data amount between an encoder and a de-
coder, and the power consumption in battery-driven devices.

Distributed video coding (DVC) is advantageous for
making a low-complexity/low-power encoder, since com-
plex tasks such as motion estimation and motion compen-
sation (ME/MC) can be shifted away from an encoder to a
decoder [1]–[4]. Instead, a DVC decoder is powered by dis-
tributed decoding that uses the temporal/spatial correlation
available from side information.

On the other hand, compressive sensing (CS) [5], [6] is
attractive for the reduction in transmission data over chan-
nels. Based on the assumption of a sparse representation of
a signal of interest, the original signal is recovered in the CS
decoder. Many studies are available for the sparse recov-
ery [7]–[9].

A framework of distributed compressive video sens-
ing (DCVS) [10] is a combination of DVC and CS. It is
attractive to realize low-complexity and low-power dissi-
pation encoding and at the same time to save the required
transmission data. Video data is compressively captured and
transmitted to a decoder, and poor information is boosted by
joint decoding with side information before sparse recon-
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Fig. 1 Illustration of the proposed encoder.

struction [11]–[16]. In many studies, DCVS offers a simple
structure in which every frame is equally subjected to CS,
and nothing more is developed in the encoder. This leads to
a dramatical reduction in the encoder complexity. However,
since a simple data set obtained by CS observations is sent
to a receiver in many DCVS systems, there is a room to save
the amount of transmission data.

The objectives of this work are twofold. The primary
goal is a reduction in transmission data over channels. The
other is to keep the encoder complexity at an acceptable
level and hence to provide a framework for a low-power dis-
sipation encoder. In the proposed architecture, every frame
is compressively sampled with CS, before it is subjected to
either predictive coding or distributed coding. In particu-
lar, the key frames after CS measurement are fed to intra-
predictive coding which is very efficient for a spatially cor-
related image.

Figure 1 illustrates the proposed encoder, where a CS-
measurement takes place for every frame to save the number
of samples. As a result, a significant reduction in transmis-
sion data is achieved. The encoder complexity can increase
than pure DCVS encoders, but can stay at a reasonable level
compared to popular video codecs, since ME/MC are out of
use. This architecture is hence advantageous to reduce the
computational burden in the encoder and the communica-
tion traffic over transmission channels. The key frames are
encoded by predictive coding, specifically by H.26x intra-
predictive coding, while the non-key frames are encoded by
differential Wyner-Ziv (WZ) encoding [2], [17]. The pro-
posed encoder is hence viewed as a combination of com-
pressive sensing, predictive coding, and distributed coding.
Conceptually, it may be viewed as a fusion of compressive
sensing and DVC.

The rest of the paper is organized as follows. Related
works are overviewed in Sect. 2. A new codec system is pro-
posed in Sect. 3. Experimental results are given in Sect. 4,
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where the quality of decoded video is evaluated in terms of
PSNR and structural similarity index (SSIM) as well as vi-
sual inspections. Conclusions follow in Sect. 5.

2. Related Works

A few related works are overviewed.

2.1 Distributed Video Coding (DVC)

DVC has been proposed to reduce the complexity in video
encoding [1], [4]. Successive frames of a video sequence
are encoded independently at the encoder, while they are
subjected to a joint decoding at the decoder with a help of
correlation among neighboring frames.

Key frames are encoded and decoded using a conven-
tional intra frame codec such as DCT or H.26x intra predic-
tion. Non-key frames are treated by Wyner-Ziv encoding.
At the DVC encoder, the Wyner-Ziv bits are generated by
quantization and channel encoding of the inter-frame differ-
ence. The decoder generates side information (SI) based on
Wyner-Ziv theorem. It is the interpolated frames generated
by ME/MC of the neighboring key frames and previously
decoded non-key frames. The decoder assumes a statistical
model as a virtual correlation channel. The decoder uses the
received Wyner-Ziv bits and SI to perform channel decoding
of non-key frames.

2.2 Compressive Sensing

CS is very attractive in imaging applications, especially for
low-power and low-resolution imaging devices [5]. We as-
sume that a real valued signal x of length N is represented
with an N × N basis matrix A as

x = As, (1)

where an N-dimensional sparse vector s is well approxi-
mated by at most K non-zero entries in such a way that
K � N. CS states that x is accurately reconstructed by tak-
ing only M linear and non-adaptive measurements, where
M satisfies

K < M = O(K log(N/K)) � N. (2)

The measurement process is described by

y = Cx, (3)

where y is an M-dimensional observation vector, and C is
an M × N measurement matrix that is incoherent with A.
One thus obtains

y = CAs. (4)

M entries in y are random linear combinations of the en-
tries of s, which are viewed as a compressed and encrypted
data of x. To reconstruct s from y, the convex optimization
problem is solved through a minimization on the �1 norm as

Fig. 2 DCVS encoder.

follows.

s′ = arg min
s

{
||s||1

∣∣∣y = CAs
}
, (5)

where s′ is an estimate of s. The primal-dual interior point
method [7] can be applied to solve the CS problem. Any
other minimization techniques may be used [6]. The recon-
struction of x is finally obtained as x′ = As′.

2.3 Gradient Projection for a Sparse Reconstruction

The gradient projection for a sparse reconstruction (GPSR)
is one of the fast iterative algorithms [9]. It is used to solve a
convex unconstrained optimization problem arising in com-
pressed sensing. The problem is of the form,

s′ = arg min
s

{
1
2
||y −CAs||22 + λ||s||1

}
, (6)

where λ is a Lagrange multiplier.

2.4 Distributed Compressive Video Sensing

The theory of distributed compressive video sensing
(DCVS) was presented by Kang and Lu [10]. The DCVS
endoder does not mind if it is a key frame or non-key frame.
A video sequence is simply identified with a collection of
frames. The DCVS encoder is illustrated in Fig. 2, where
ME/MC are absent. Since CS measurement is applied to
every frame, no matter what it is a key frame or not, the
structure of the encoder is simple. DCVS assumes none of
information among successive frames. Data compression is
simply gained by a reduction in dimension through the CS
measurement, where the measurement matrix is a random-
ized block Hadamard transform.

A typical DCVS decoder is illustrated in Fig. 3. At the
decoder, a key frame is reconstructed with their modified
GPSR. A non-key frame is reconstructed by GPSR with a
help of a picture estimate for that frame. The picture esti-
mate is generated by ME/MC-based interpolation from the
latest reconstructions of a pair of neighboring key frames.
Since this forms a good initial estimate for GSPR, the algo-
rithm reaches a convergence after a few iterations.
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2.5 Intra Prediction of H.264/AVC

Intra prediction of H.264/AVC exploits the spatial correla-
tion between adjacent coding blocks [18]. The current block
is predicted by adjacent pixels in the upper and left blocks
that are already decoded. H.264/AVC offers a rich set of pre-
diction patterns for intra prediction: nine prediction modes
for 4×4 and 8×8-luma blocks and four prediction modes for
16 × 16-luma blocks. Each mode follows a specific predic-
tion direction and the predicted samples are obtained by a
weighted average of decoded values of neighboring blocks.
The standard intra prediction of H.264/AVC uses the La-
grange optimization in order to counterbalance the compro-
mise between the cost for bit streams and the quality of
video for a given quantization parameter (QP) in such a way
that

min {J| J = D + λR} , (7)

Fig. 3 DCVS decoder.

Fig. 4 The proposed codec architecture.

where D is a measure of distortion and R is the cost for the
bits per block. λ is a Lagrange multiplier, which is a function
of QP.

3. Proposed Codec Architecture

The architecture of the proposed codec system is illus-
trated in Fig. 4. The underlying concept is to treat the CS-
measurement of every frame as an ordinary picture so that
predictive coding may be applied for efficient video trans-
mission. The observation data for a key frame is encoded
by the intra prediction. On the other hand, the observation
data for a non-key frame is encoded by WZ coding. Since
the data of both observations are efficiently compressed in
the encoder, it is possible to reduce the data volume in trans-
mission.

3.1 Encoding and Decoding of Key Frames

At the encoder, a key frame Xk is observed by block-based
compressive sensing, where a block is of Nb×Nb pixels. The
elements of a block are expressed by xk. The N2

b elements
in a block is reshaped into an N-dimensional column vector,
where N = N2

b . A CS measurement is developed onto the
column vector.

yk = Cxk = CAsk (8)

is an M-dimensional vector. C is an M × N measurement
matrix, where M/N < 1. A consists of a set of DCT basis
vectors.

All of the entries of the observed block-measurement
signals {yk} are concatenated to form an image Yk. As il-
lustrated in Fig. 5, the vertical dimension of a compressed
frame Yk is shrunk to M/N of the original one. The pro-
posed way for vector packing is a brute force convenience.
As observed in the magnified view in the figure, the spatial
structure is considerably destroyed, but the spatial correla-
tion is still preserved to a significant extent.
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Fig. 5 The first frame of container. Left: original. Right: after packing
of blockwise compressively sensed data into a smaller rectangular block.
The top and bottom rows show the raw picture and a magnified view, re-
spectively.

Fig. 6 The spatial correlation in the 3rd CS frame of hall in CIF. Hori-
zontal direction (a), and vertical direction (b).

The auto correlation coefficients along the horizontal
and vertical directions are plotted in Fig. 6, where the hori-
zontal axis is the displacement between pixels. In the plots,
it is a surprise to observe that the blockwise compressively-
sampled observation and the original frame show the iden-
tical spatial auto correlations. This is a supporting evidence
why intra predictive coding is applied to the CS observation
data regardless of its nature of random sampling.

It is now possible to apply H.264/AVC intra predic-
tion to the compressed frame Yk. Yk is converted into a
luma/chroma signal in YCbCr 4:2:0 before intra predictive
coding. The encoded data vk is sent to a decoder [19]. At the

Fig. 7 Encoding of non-key frames.

decoder, a picture block Y ′k is decoded by intra predictive de-
coding of vk. The decoded Y ′k is divided into blocks to form
a set of vectors, {y′k}. A sparse reconstruction is developed
on y′k as follows.

s′k = arg min
sk

{
1
2
||yk −CAsk ||22 + λ||sk ||1

}
. (9)

The decoded key frame X′k is reconstructed from the solution
vectors {x′k} that are obtained by a substitution of s′k into
Eq. (1).

3.2 Encoding and Decoding of Non-Key Frames

At the encoder, a non-key frame Xn is observed by the block-
based compressive sensing as same as a key frame. The re-
sulting data is formed into a vertically-shrunk pseudo frame,
Yn. As illustrated in Fig. 7, the difference between the suc-
cessive frames is fed to Golay encoding [20]. The non-key
frame difference dn is calculated by

dn = Yn − Yn−1. (10)

dn is encoded by Golay coding, and the parity syndrome wn

is generated to be sent to a decoder. The difference (residual)
coding is the simplest predictive coding. An intra-frame or
inter-frame difference in between the neighboring and pre-
vious pixel can be a good choice for data compression. The
former has been applied to key frames but in a more so-
phisticated prediction. The latter is here applied to non-key
frames. The basic idea is common to WZ residual coding in
Ref. [3].

At the decoder, ME/MC-based interpolation is applied
to key frame pictures to obtain the estimates of non-key
frames. The algorithm of motion estimation is the simple
and efficient search (SES) [21]. The decoding process is il-
lustrated in Fig. 8, where the frame estimate is refined by
error-correcting Golay decoding of the frame difference to
obtain Y ′n. Finally, the decoded non-key frame X′n is ob-
tained by GPSR of Y ′n.

3.3 Post Processing

For every frame, a Gaussian lowpass filter is applied to sup-
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press the block noise created by a block-based CS recon-
struction. The lowpass filtering (LPF) is followed by un-
sharp masking (USM) to compensate blurred effects and
to emphasize the sharpness around edges. Finally, the de-
coded key and non-key frames are merged to form a video
sequence.

Figure 9 shows a pair of pictures for the 8th frame of
hall sequence. Parts (a), (b), and (c) show the filtering-free
reconstruction, the filtered one, and that after LPF and USM,
respectively. Block artifacts are visible in part (a), whereas
they are absent in part (b) at the cost of blurring effect. In
(c), the sharpness has been visually improved around edges.
As for objective figures of merit, PSNR and SSIM have in-

Fig. 8 Decoding of non-key frames.

Fig. 9 The eighth decoded frame of hall in CIF. (a) filtering-free: PSNR
28.24dB, SSIM 0.60, (b) Gaussian lowpass filtered: PSNR 28.83dB, SSIM
0.79, and (c) Gaussian lowpass filter and unsharp masking (USM): PSNR
29.60dB, SSIM 0.80.

creased by 1.36dB and 0.2, respectively. In conclusion, the
visual quality of decoded frames is improved by the post
processing.

4. Experiments

4.1 Experimental Conditions

Image quality is evaluated by means of peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) [22]
that shows high correlations with the subjective scores in
image quality assessments [23]. Needless to mention, PSNR
is a mean squared error over a picture and SSIM is sensitive
to the erroneous activity around edges. Since there is none
of good established objective measures for visual quality as-
sessment, and since those two measures treat different types
of error, objective assessments are developed on them. Re-
member that it does not matter which measure is better.

PSNR is evaluated in YCbCr 4:2:0. In this paper, the
test video sequences are container, foreman, tempete, hall,
news, bus and bridge-close in CIF (352 × 288-pixel), of
which frame rate is 15fps. The GOP size is fixed at five
frames per GOP. In block-based compressive sensing, the
measurement block size is 4×4, and Nb = 4. The M×N ob-
servation matrix is a random matrix of which size is 8 × 16,
and the compression ratio is M/N = 0.5. A sparse basis ma-
trix A is formed by the backward DCT basis. These param-
eters are common for DCVS and the proposed method. The
quantization parameter is set as QP = 20 on intra prediction
in H.264/AVC. The macro-block size in ME is 8× 8 and the
algorithm is the simple and efficient search (SES) [21]. The
standard deviation of the Gaussian filter is experimentally
determined as σ = 1.2.

4.2 Experimental Results on Objective Measures

The transmission data volume of a key frame is compared
between the proposed system and DCVS [10]. The result
is listed in Table 1, where the rightmost column stands for

Table 1 PSNR, SSIM, and data size ratio with respect to a key frame.
Every 16th key frame was tested and the average values are listed. The data
size implies the data amount of a frame.

Test video Method
PSNR
in dB

SSIM
Data size

ratio

container
DCVS 28.26 0.65 1.00
Proposed 28.89 0.76 0.13

hall
DCVS 28.95 0.70 1.00
Proposed 29.67 0.81 0.17

foreman
DCVS 31.10 0.67 1.00
Proposed 32.02 0.81 0.18

tempete
DCVS 28.11 0.70 1.00
Proposed 27.94 0.69 0.18

news
DCVS 28.83 0.81 1.00
Proposed 29.73 0.82 0.12

bus
DCVS 26.59 0.68 1.00
Proposed 27.11 0.66 0.17

bridge-close
DCVS 29.67 0.67 1.00
Proposed 29.80 0.76 0.17
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Table 2 PSNR, SSIM, and data size ratio with respect to a non-key
frame. Every 8th frame was tested and the average values are listed. The
data size implies the data amount of a frame.

Test video Method
PSNR
in dB

SSIM
Data size

ratio

container
DCVS 28.23 0.65 1.000
Proposed 28.45 0.73 0.001

hall
DCVS 29.31 0.70 1.000
Proposed 29.60 0.80 0.002

foreman
DCVS 30.57 0.67 1.000
Proposed 29.25 0.72 0.003

tempete
DCVS 28.26 0.57 1.000
Proposed 26.79 0.63 0.005

news
DCVS 29.30 0.80 1.000
Proposed 28.95 0.80 0.001

bus
DCVS 26.30 0.69 1.000
Proposed 23.56 0.42 0.037

bridge-close
DCVS 29.63 0.67 1.000
Proposed 29.76 0.73 0.001

Table 3 PSNR and bit rates with respect to a GOP. Six GOPs (i.e. 30
frames) were tested and PSNR denotes the average value.

Test video Method
PSNR
in dB

Bit rate in
Mbps

Bit rate
ratio

container
DCVS 28.25 9.12 1.00
Proposed 28.57 0.30 0.03

hall
DCVS 29.27 9.12 1.00
Proposed 29.04 0.32 0.04

foreman
DCVS 30.77 9.12 1.00
Proposed 29.14 0.35 0.03

tempete
DCVS 28.22 9.12 1.00
Proposed 26.66 0.37 0.04

news
DCVS 29.29 9.12 1.00
Proposed 29.17 0.24 0.03

bus
DCVS 27.03 9.12 1.00
Proposed 23.56 0.57 0.06

bridge-close
DCVS 29.65 9.12 1.00
Proposed 29.70 0.31 0.03

the data size ratio divided by the data size of DCVS, and
every 16th frame is subjected to the comparison. As seen
in the table, the transmitted data of a key frame in the pro-
posed system is less than one fifth of that in DCVS under
the condition that both methods show competitive values in
PSNR. It is observed that the values of structural similarity
index (SSIM) are also similar for both methods. Precisely
speaking, the proposed method results in higher SSIM than
DCVS for most of cases.

Table 2 lists the same items as the previous table, but
for a different case of non-key frame transmission where ev-
ery 8th frame is subjected for experiment. The pairs of val-
ues of PSNR and SSIM between the proposed method and
DCVS are almost the same. In contrast, the transmission
data size of the proposed method is much smaller than that
of DCVS. Typically it amounts to 0.1-3.7% of DCVS, and
it is an evidence for its dramatical performance. In the cases
for bus, the transmission data are around 4%, because fast
motions are dominantly present in those sequences.

The proposed method and DCVS are again compared
with respect to GOP encoding as shown in Table 3, where
the bit rate is in bits per second rather than bits per GOP.

Note that the frame rate is 15fps, and thus six GOPs are
equal to the period of two seconds. As seen in the table, the
proposed system offers much lower bit rates than DCVS.
The improvement in bit rates owes to the differential com-
pression of non-key frames, whereas the DCVS codec oper-
ations are executed on every frame, no matter which is a key
frame or non-key frame.

4.3 Visual Inspections and Other Comprehensive Evalua-
tions

In Fig. 10, decoded key and non-key frames are shown in
the top and bottom row, respectively. The decoded samples
from DCVS and the proposed method are placed at the left
and right column, respectively. Block artifacts are evident in
the decoded pictures from DCVS as seen in the left column.
In particular, the thin flag pole looks smeared and jaggy in
the non-key frame decoded by DCVS as observed in (c) in
spite of a considerably large data size. In contrast as seen
in the right column, significant artifacts are imperceptible in
both pictures decoded by the proposed method. Note that
the data size for the non-key frame in (d) is as little as just
22k bits, whereas it is 204k bits in (c). As for key frames,
the better visual performance of the proposed method owes
to the high performance in H.264 intra-prediction. Alter-
nately, as for non-key frames, the higher performance of the
proposed method is gained by a low-distortion quantization
in WZ difference encoding and the post processing.

Figures 11 and 12 show the performance comparisons
over time with respect to PSNR and SSIM for hall and
f oreman, respectively. Blue and red plots represent DCVS
and the proposed method, respectively.

In the case of lower motion video such as hall, both
methods are competitive in PSNR, while the proposed
method outperforms DCVS with respect to SSIM. Signifi-
cant degradations were imperceptible in the video sequences
decoded by the proposed method.

If fast motions are dominant as such as in foreman, high
fluctuations in PSNR and SSIM are visually observed in the
sequence decoded by the proposed method. The fidelity of
decoded images decreases because of poor information for
non-key frames.

The rate-distortion performance is compared in Fig. 13
among DVC [2], DCVS [10], and the proposed method. The
rate-distortion plots on H.264/AVC (VM 9.5) and MPEG-2
are also overlayed for reference. The test sequence is tem-
pete in CIF format. As seen in the figure, the proposed
method operates at very low bit rates compared with DVC
and DCVS. This means that the primary goal of this work
has been successfully satisfied. Since the bit rate was mainly
controlled by the decimation factor, M/N, in compressive
sensing for DCVS and the proposed method, the operation
curves are missing on some intervals along the operational
bit rates. In contrast, conventional hybrid video codecs such
as H.264 and MPEG-2 shows better performances even at
very low bit rates at the expense of high complexity in en-
coding.
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Fig. 10 Decoded frames of foreman and container in CIF format for visual inspections. (a) 16th
frame by DCVS; PSNR 30.43dB, SSIM 0.78. (b) 16th frame by the proposed method; PSNR 32.20dB,
SSIM 0.85. (c) 8th frame by DCVS; PSNR 26.59dB, SSIM 0.41. (d) 8th frame by the proposed method;
PSNR 28.75dB, SSIM 0.74.

Fig. 11 Temporal variations in (a) PSNR and (b) SSIM for hall. Two
plots of DCVS and the proposed are in blue and red, respectively.

4.4 Computational Complexity and Others

The computational complexity of the proposed encoder ex-

Fig. 12 Temporal variations in (a) PSNR and (b) SSIM for foreman. Two
plots of DCVS and the proposed are in blue and red, respectively.

ceeds that of DCVS because of the intra-predictive coding.
It is however less than that of DVC due to the data reduction
by compressive sensing.
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Fig. 13 The rate-distortion plots for tempete in CIF format.

Table 4 Encoding time. Six GOPs, i.e. 30 frames, were tested.

Method Frames
Encoding
time in sec

Total time
in sec

Proposed
key 2.25

10.89
non-key 8.64

DCVS [10]
key 0.74

3.75
non-key 3.01

DVC [2]
key 5.23

20.12
non-key 14.89

H.264/AVC
key 13.56

59.64
non-key 46.08

Encoding time for six GOPs including 30 frames is
compared among the proposed method, DCVS, DVC, and
H.264 in Table 4. The proposed method needs a longer time
by a few times than DCVS, because of intra predictive cod-
ing. On the contrary, it is twice faster than DVC, because
DVC operates on the whole pixels in full resolution. As an-
ticipated, the H.264 encoder requires the longest time.

The proposed decoder consists of H.264 decoding of
key frames, ME/MC-based interpolation for side informa-
tion for non-key frames, and iterative sparse reconstruction.
The decoder is hence much more complex than the encoder.
However, the expense for intra-frame decoding and ME/MC
is much less than the conventional hybrid decoders with
transform-based predictive decoding and ME/MC because
of the decimation of raw samples by compressive sensing.
Compared to the DCVS decoder, the proposed decoder is
more complex due to H.264 decoding and ME/MC. How-
ever, it is of less (or competitive) complexity than (or to)
DVC decoders where all pixels in a full resolution are pro-
cessed. As for the WZ difference decoding including sparse
reconstruction but excepting side information generation, it
is not so heavy but is more time-consuming than arithmetic
decoding in most of conventional decoders.

On the other hand, the transmission data over channels
decreases, since the raw data being encoded shrinks by a
factor of M/N and is further compressed by intra predictive
coding and WZ difference coding. It is worth to mention that

deterioration in visual quality is suppressed by post process-
ing of LPF and unsharp masking. The proposed system is
hence advantageous for wireless applications and hand-held
terminals with low-power requirements.

5. Conclusions

A new compressive sensing-based distributed video coding
has been presented. In the proposed scheme, the encoder is
made of a block-based compressive sensing of a video frame
and a pair of encoding units. One is the intra predictive cod-
ing for key frames, and the other is the Wyner-Ziv difference
coding for non-key frames. The proposed scheme results in
a great deal of reduction in transmission/storage data, while
the encoding complexity stays at an intermediate level be-
tween compressive sensing-encoding with no prediction and
distributed encoding. Experimental results showed that the
transmitted data volume of the proposed scheme is less than
one tenth to that of the conventional DCVS.
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