IEICE TRANS. INFE. & SYST., VOL.E98-D, NO.2 FEBRUARY 2015

309

| LETTER Special Section on Reconfigurable Systems

Acceleration of the Fast Multipole Method on FPGA Devices

Hitoshi UKAWA 'Y, Nonmember and Tetsu NARUMI'™, Member

SUMMARY The fast multipole method (FMM) for N-body simulations
is attracting much attention since it requires minimal communication be-
tween computing nodes. We implemented hardware pipelines specialized
for the FMM on an FPGA device, the GRAPE-9. An N-body simulation
with 1.6 x 107 particles ran 16 times faster than that on a CPU. Moreover
the particle-to-particle stage of the FMM on the GRAPE-9 executed 2.5
times faster than on a GPU in a limited case.

key words: FPGA, fast multipole method, special-purpose pipeline, N-
body simulation

1. Introduction

The N-body simulation is one of the main focus areas in
high performance computing, since it requires huge compu-
tational power. Without a sophisticated algorithm, the com-
putational cost to calculate the gravity between N particles
is O(N?), while that of the fast multipole method (FMM)
is only O(N)[1],[2]. Recently, the FMM’s low communi-
cation requirement between computing nodes has become
a hot topic since the parallel efficiency of the fast fourier
transform often degrades with a large number of proces-
sors [3],[4]. Combining an accelerator, such as a graphics
processing unit (GPU), with the FMM is one of the promis-
ing approaches to speed up the simulation further, as in exa-
FMM [5] and gemsFMM [6]. However, there is limited ded-
icated hardware for the FMM probably owing to the com-
plexity thereof. We implemented a special-purpose pipeline
for the FMM on a field programmable gate array (FPGA) us-
ing a high-level language, and obtained better performance
compared with both CPU and GPU implementations.

2. Fast Multipole Method

FMM, proposed by Rokhlin in 1985, is an efficient algo-
rithm for N-body simulations [1], [2] that reduces the com-
putational complexity of N-body problems from O(N?) to
O(N). In a direct method, mutual forces are calculated be-
tween all pairs in the system. However, in the FMM, multi-
poles are made from multi particles before calculation, and

Manuscript received May 5, 2014.
Manuscript revised September 1, 2014.
Manuscript publicized November 19, 2014.
"The author is with the University of Tsukuba, Tsukuba-shi,
305-8577 Japan.
""The author is with the University of Electro-Communications,
Chofu-shi, 182-8585 Japan.
a) E-mail: ukawa@hpcs.cs.tsukuba.ac.jp
b) E-mail: narumi @cs.uec.ac.jp
DOI: 10.1587/transinf.2014RCL0002

the mutual force is calculated between multipoles rather
than between particles. FMM is composed of six stages:
P2M (particle to multipole), M2M (multipole to multipole),
M2L (multipole to local), L2L (local to local), L2P (local
to particle), and P2P (particle to particle). Before starting
these stages, the simulation box is divided into eight sub-
boxes and an octree is constructed hierarchically to handle
multipoles efficiently. First, a multipole is calculated from
neighboring particles in the P2M stage. The radius of the
multipole expansion is enlarged in the M2M stage, and then
the multipole expansion is converted to a local expansion
by calculating the mutual forces between multipoles in the
M2L stage. The radius of the local expansion is reduced
in the L2L stage, and each particle’s potential is calculated
from the local expansion in the L2P stage. The contribution
of distant particles is calculated during these five stages. Fi-
nally, the potential between neighboring particles is calcu-
lated directly in the P2P stage.

There are two parameters in the FMM: the opening
angle, 6, and the order of multipole expansion, P. With a
smaller 6, the tree becomes deeper and the calculation com-
plexity of the M2L stage increases, while that of the P2P
stage decreases. Using a larger 6, results in a shallower tree
while the complexity of M2L decreases, and that of P2P in-
creases.

3. Implementation

We used the GRAPE-9, a special-purpose computer for
N-body simulations, as an FPGA device, since it can be
reconfigured easily using the pipeline generator for pro-
grammable GRAPE, generation 2 (PGPG2) software de-
scribed later.

3.1 GRAPE-9

We used the GRAPE-9 model800[7]. A schematic of
the GRAPE-9 system is shown in Fig. 1. The GRAPE-9
model800 has eight cards called processor chips, each of
which has one Altera Cyclone IV GX FPGA and 2GB DDR2
memory. Since the GRAPE-9 was designed primarily to cal-
culate gravity, pipelined circuits for this purpose was ini-
tially written on the FPGA. However users can implement
original pipelines for the GRAPE-9 using the PGPG2 soft-
ware [8], which means that a special-purpose accelerator can
be constructed.

Copyright © 2015 The Institute of Electronics, Information and Communication Engineers

310

GRAPE-9 model800

PCle

[:::::::::] Gen2x16
Host Computer|<€ :

Gen1x8

i.....FPGAOrDDRZ
x N
;l—| Xi input L3 —
input buffer pipelines output buffer
FPGA

Fig.1 Overview of a GRAPE-9 model800 system.

The GRAPE-9 with PGPG2 can not execute arbitrary
programs but it can execute the following equation:

N
Ai=Zf(xi»xj) (1
J

where, A; is the ith result, f() is the function between two
particles, and x, is the position of the nth particle. The f()
is converted into one pipelined circuit by the PGPG2, and is
connected to the circuit to execute summation. These two
circuits construct one pipeline. Therefore one summation
in Eq. (1) is executed on one pipeline. When an FPGA has
four pipelines, four different data, i.e., x;, Xir1, Xis2, Xit3,
are stored on the registers of different pipelines. The data
of x; is stored on the DDR2 memory or the block RAM in
the FPGA. Once the calculation is started, the same x; data
is broadcasted to all the pipelines at every clock, and the
pipeline circuits calculate f(x;, x;), f(xit1,x;), f(xit2, X)),
and f(x;3,x;), respectivey. After accumulating for all the
x; data, four results, i.e. A;, Ajr1, Ajy2, and A3, are trans-
ferred to the host computer. This cycle is repeated for all the
x; data.

One P2P pipline circuit that compiled by the PGPG2
uses 1,307 logic elements, and 72 pipelines are placed in one
FPGA. So, if four cards are used, 288 pipelines in total are
placed in the GRAPE-9. This means that 288 gravitational
potentials are calculated at one time. About M2L, one M2L
pipeline use 9,681 logic elements, and eight pipelines are
placed in one FPGA. The number, eight, is limited by the
algorithm to calculate the M2L stage not by the amount of
logic elements in the FPGA.

3.2 PGPG2

The PGPG2 is developed based on PGPGI[9] by the
same company as the GRAPE-9. It automatically gener-
ates pipelined VHDL code and C libraries to control the
GRAPE-9 from the source code written in its own language,
PG2. Basically, users do not have to write the VHDL codes
because PGPG2 automatically generates it.

PG2 code consist of a signal part, an equation part, and

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.2 FEBRUARY 2015

1 int64 pout fout; // potential
2 int32 i3] ipin; /7 ip
3 int32 %j[3] jpin; /7 jp
4 float18.9 mj jpin; /4 src of ip
5
6 dx = (float18.9)(xj - xi);
7 rl =dx * dx;
8 inr = pg_pow(rl, -1, 2);
9 mr = inr * mj;
18
11 pout += (int64)(mr << 45);
Fig.2 PG2 code of the P2P stage.
1 r2 = ddx * ddx; 1/ 2
2 inr = (flag) ? @ : pg_pow(rz, -1, 2); I/ 1/r
3 inr2 = @ - inr * inr; /] -(1/r)r2
4 inr3 = inr * inr2; /] -(1/r)"3
5 inr5 = 3 * inr3 * inr2; /] (1/r)ns
6
7 c®@ = 1inr; /! 0th coefficient
8
9 c1 = ddx[@] * inr3; // 1th coefficient
18 c2 = ddx[1] * inr3;
11 c3 = ddx[2] * inr3;
12
13 c4 = ddx[8] * ddx[®] * inr5 + inr3; // 2th coefficient
14 5 = ddx[8] * ddx[1] * inr5;
15 6 = ddx[8] * ddx[2] * inr5;
16 7 = ddx[1] * ddx[1] * inr5 + inr3;
17 8 = ddx[1] * ddx[2] * inr5;
18 9 = ddx[2] * ddx[2] * inr5 + inr3;
19

20 /* 0th local coefficient */
21 L[0] += (int64)((M[O]*cO+M[1]*c1+M[2]*c2+M[3]*c3) << Llshift);

23 /* 1th local coefficient */

24 L[1] += (int64)((M[O]*c1+M[1]*C4+M[2]*C5+M[3]*c6) << Lshift);
25 L[2] += (int64)((M[O]*c2+M[1]*C5+M[2]*CT+M[3]*c8) << Llshift);
26 L[3] += (int64)((M[O]*c3+M[1]*C6+M[2]*CB+M[3]*Cc9) << Lshift);

28 /* 2th local coefficient */

29 L[4] += (int64)((M[@]*c4) << Llshift);
30 L[5] += (int64)((M[0]1*c5) << lshift);
31 L[6] += (int64)((M[0]*c6) << Llshift);
32 L[7] += (int64)((M[0]*c7) << lshift);
33 L[8] += (inte4)((M[@]*c8) << lshift);
34 L[9] += (inte4)((M[@]*c9) << lshift);

Fig.3 PG2 code of the M2L stage.

an output part. The PG2 code of the P2P stage is shown
in Fig.2. Lines 1 to 4 are signal part, which defines input
and output signals. For I/O signals, one has to specify three
tokens: data types, signal names, and signal types. Data
types are int or float. As shown in the figure, an arbitrary bit
length for the mantissa and exponent parts of the floating-
point as well as the integer values can be specified. Signal
types are fout, ipin or jpin. Fout means output, ipin means x;
input data, jpin means x; input data. Lines 6 to 9 are equa-
tion part, which calculate the potential energy between x;
and x; particles. Explicit declaration for inner variables like
‘dx, ‘r2, ‘inr, and ‘mr’ is not needed. The operation ‘=’
means the connection of right and left signals. Other oper-
ations are the same as C language. Line 11 is output part,
which converts the results to integers and sums them up.
Output signals have to have operation ‘+=" that means sum-
mation. Vector variables can be described in PG2 as ‘xi[3].
Multiplication between vectors like line 7 is converted to
an inner product. The pg_pow() is the library function de-
fined in PG2, which calculates the power function. Fig.3
shows a part of the PG2 code of the M2L stage. It generates

LETTER

1: jmsize = MAX MEMORY SIZE

2: npipe = NUMBER OF PIPELINES
3: for each leaf cells of octree do

& ji=0

5. while j < n; do

[G transfer jmsize sets of x; data to GRAPE-9
T while i < n; do

8 transfer npipe sets of x; data to GRAPE-9
9 run the GRAPE-9

10: get result from GRAPE-9
11: i =1+ npipe

12: end while

13: for i =0 to n; do

14: summation of ith result
15: end for

16: Jj =7+ jmsize

17: end while
18: end for

Fig.4 Pseudo code of the P2P stage on a host computer.

the pipeline to calculate the multipole to the local operation
for P=2. Line 7 to 18 calculate variables of ‘cO’ to ‘c9,
coefficients of M2L. The variables of ‘M[0]’ to ‘M[3]" are
multipole coefficients. Then line 20 to 34 calculate local co-
efficients from variables ‘cO’ and ‘M[0]’ to ‘c9’ and ‘M[3].
Fig. 4 shows how the host computer controls the GRAPE-9
in the P2P stage. In lines 6 and 8, the host computer sends
the data to the pipeline, and in line 10, it receives the re-
sults. In line 9 the signal to start the calculation is sent to the
pipeline. These operations are performed by special APIs
generated by the PGPG2. Basically, the execution flow of
other stages is similar to Fig. 4, although the parameters are
different.

4. Result

First, we ran the N-body simulation code using the FMM
on a CPU and the GRAPE-9, and compared the results of
each stage as shown in Fig.5. One processor chip of the
GRAPE-9 was used, while the CPU was an Intel core i3
3220 3.30GHz processor. The number of particles was 10°,
the max tree depth was 5, and the expansion order was 2.
The GRAPE-9 is faster than the CPU in the M2L and P2P
stages, but slower in the other stages. This is because the
M2L and P2P stages have much higher computational com-
plexity than the other stages, and the GRAPE-9 is more
efficient under these conditions. For both the CPU and
GRAPE-9, the M2L and P2P stages dominate the total cal-
culation time. Therefore, we used both the GRAPE-9 and
CPU in the next experiment, i.e., M2L. and P2P were exe-
cuted on the GRAPE-9, and the other stages on the CPU.
The P2P and M2L stages used four and one processor chips,
respectively. The total execution times are shown in Fig. 6.
‘GRAPE-9’ denotes the combination of CPU and GRAPE-
9, and ‘Direct” means direct calculation without the FMM

311

CICPU
102} WM GRAPE-9

Calculation time [sec]
=

P2M M2M M2L L2L L2P P2P Total
Stages of FMM

Fig.5 Calculation time of each stage on a CPU and GRAPE-9.

108 —
17| +—CPU

108} = GRAPE-9

1051 7% direct

10*

10°

102t

10" b

10%-

10'E

102 R : : :

10* 10° 108 107
Number of Particles

Fig.6 Total execution time of FMM on CPU and GRAPE-9.

Calculation time [sec]

on the CPU. As shown in Fig. 6, the calculation time of the
direct method scales as O(N?), while both FMMs scale as
O(N). Comparing the execution of the FMM on the com-
bined CPU and GRAPE-9 with that on only the CPU shows
that the combination gets consistently better performance
under all conditions, culminating in 16 times faster with
1.6 x 107 particles in this experiment.

Next, we compared the P2P stage on GRAPE-9 with
that on a GPU, confirming GRAPE-9 executes faster than
the GPU. The target GPU device, an NVIDIA GeForce GT
240, was specifically chosen because it uses similar technol-
ogy and electrical power to the GRAPE-9. The GT 240 uses
40-nm technology and its maximum power consumption is
70W, while the FPGA in the GRAPE-9 uses 60-nm tech-
nology and consumes 60W, with four cards. Therefore the
GT 240 should be faster from a technology and power con-
sumption perspective. In terms of price, GRAPE-9 is much
more expensive than GT240. GRAPE-9 is four thousand
dollar with four cards, while GT 240 is about one hundred
dollar. The software running on the GPU is gemsFMM [6],
developed by Yokota. Four processor chips were used in this
calculation. Comparative results for the GRAPE-9 and the
GPU executing the P2P stage are shown in Fig. 7. The calcu-
lation speed of the GPU is maximal with 3 x 10* particles or
more. This is because the peak speed of this GPU is about
160 GFLOPS. With 10° particles, the calculation speed of
the GRAPE-9 reaches about 350 GFLOPS, but thereafter, it
declines sharply and then increases. The reason for these
up and down performance swings is that the optimal depth
of the octree changes depending on the number of particles.

312

e
o
w

—GPU
*GRAPE-9

Calculation speed [Gflops]
S

-
O_.

10t 10° 10° 10’
Number of Particles
Fig.7 Calculation speed of the P2P on a GPU and GRAPE-9.

For example, if the number of particles exceeds 10, the to-
tal execution time of FMM can be reduced by increasing
the tree depth. If the tree depth is increased one level, the
calculation cost of P2P becomes eight times smaller. How-
ever, with the GRAPE-9, the efficiency decreases since the
communication time between the GRAPE-9 and host com-
puter becomes a bottleneck. Current version of PGPG2 can-
not access randomly to the memory. The x; data always
broadcasted contignuously from the first address. So the
host computer often have to transfer the same x; data for
neighboring particles to the GRAPE-9 every time P2P stage
started. In fact, the same particle data must be transferred
125 times from host computer to the GRAPE-9 because of
this reason.

5. Conclusion

We implemented the FMM on an FPGA device, the
GRAPE-9. The calculation speed of our system is faster
than that on the CPU. Under specific conditions, it is also
faster than on a GPU.

To achieve better performance by reducing communi-

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.2 FEBRUARY 2015

cation of x; data between the GRAPE-9 and the host com-
puter, new functions need to be added to PGPG2 to han-
dle the cell-index method, which accesses particles by cells.
This will obviate the need to transfer the same particle data
repeatedly.

Moreover, using the new GRAPE-9 would be useful for
further acceleration. The GRAPE-9 model5000, released
in November 2013, has 16 processor chips, and it includes
a new version of FPGA, the Altera Cyclone V GX. Using
multiple GRAPE-9 computers is also future work.

References

[1] V.Rokhlin, “Rapid solution of integral equations of classical potential
theory,” Comp. Phys., vol.60, pp.187-207, Sept. 1985.

[2] L. Greengard and V. Rokhlin, “A fast algorithm for particle simula-
tion,” Comp. Phys., vol.135, pp.280-292, Aug. 1997.

[3] R. Yokota, L.A. Barba, T. Narumi, and K. Yasuoka, ‘“Petascale tur-
bulence simulation using a highly parallel fast multipole method on
GPUs,” Comp. Phys. Communs., vol.184, pp.445-455, March 2013.

[4] A. Arnold, F. Fahrenberger, C. Holm, O. Lenz, M. Bolten, H. Dachsel,
R. Halver, I. Kabadshow, F. Gahler, F. Heber, J. Iseringhausen, M.
Hofmann, M. Pippig, D. Potts, and G. Sutmann, “Comparison of scal-
able fast methods for long-range interactions,” Phys. Rev. E, vol.88,
063308, Dec. 2013.

[5]1 R. Yokota, “An FMM based on dual tree traversal for many-core archi-
tectures,” Algorithm & Comp. Tech., vol.7, no.3, pp.301-324, Sept.
2013.

[6] R. Yokota, “gemsFMM,” https://sites.google.com/site/rioyokota/
software/gemsfmm, accessed April 20, 2014.

[7] T. Fukushige and A. Kawai, “GRAPE-9 model800,” K&F Computing
Research, http://www.kfcr.jp/grape9-e.html, accessed April 20, 2014.

[8] T. Fukushige and A. Kawai, “Pipeline-designing utility PGPG2 (for
GRAPE-9),” K&F Computing Research, http://www.kfcr.jp/grape9-e.
html, accessed April 20, 2014.

[9] T. Hamada, T. Fukushige, and J. Makino, “PGPG: An automatic gen-
erator of pipeline design for programmable GRAPE systems,” Publi-
cations of the Astronomical Society of Japan, vol.57, no.5, pp.799-
813, Oct. 2005.

