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A 100-M/s 2.6-pJ/pulse compact UWB impulse transmitter based
on antenna-and-pulse-generator codesign

Hongming Lyu'?, Xiangyu Liu', and Aydin Babakhani'

Abstract This work presents a novel concept of antenna-and-pulse-gen-
erator codesign for realizing FCC-regulation-compliant IR-UWB trans-
mitters. The method contributes to a compact design that significantly
reduces the overall device footprint and energy consumption. A Gaussian
mono-pulse generator and a folded-dipole antenna with a bandwidth of
7.8-9.5GHz are co-optimized, eliminating any matching sections. The
energy consumption for each impulse emission is only 2.6 pJ and 100
Mpulse/s operation of the transmitter complies with the FCC mask. The
transmitter of this kind shows promise for size-restricted and ultra-low
power applications such as medical implants.
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1. Introduction

The unlicensed 3.1-10.6 GHz ultra-wideband impulse (IR-
UWRB) radio has remarkable advantages such as compact
size, low power consumption, and circuitry simplicity.
Because of these merits, it is especially popular for realizing
low-power telemetries for numerous wearable and implant-
able applications [1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13].

Edge-combining is a widely used method in generating
IR-UWB pulses [3, 5, 14, 15, 16, 17]. It has a simple circuit
structure and removes the otherwise power-hungry local
oscillators. To satisfy the Federal Communications Com-
mission (FCC) emission limit, two methods have been
primarily used to eliminate the low-frequency (<3.1 GHz)
portion of radiation. First, multiple pulses with different
delays are combined to create a short period of toggles with
the center frequency amid 3.1-10.6 GHz, i.e., pulse-com-
bining [14, 16]. This method, however, is at the expense of
higher power consumption. Second, a pulse-shaping filter
is added following a Gaussian mono-pulse generator, i.c.,
filtered edge-combining [5, 15, 17]. The filter can be
implemented with either extra passive components or an
active differentiator [15].

This letter proposes a new idea of directly utilizing the
Tx antenna bandwidth to confine the spectrum of the
radiated power. This method eliminates any pulse-shaping
filters and reduces the power consumption. To implement

Dept. of Electrical and Computer Engineering, University of
California Los Angeles, Los Angeles, CA 90095, US
a) hongminglyu@ucla.edu

DOI: 10.1587/elex.16.20190672
Received November 6, 2019
Accepted November 11, 2019
Publicized December 2, 2019
Copyedited December 25, 2019

the idea, a Gaussian mono-pulse generator is designed to
maximize the power transfer efficiency to a folded-dipole
antenna with the input impedance of 300 Q and the band-
width of 7.8-9.5GHz. The folded-dipole antenna has a
fixed real input impedance at the resonant frequency, a
relatively wide bandwidth, and a compact size. As a result,
each impulse emission only consumes 2.6 pJ DC energy.
Operation of the transmitter at a pulse rate of 100 M/s is
demonstrated to comply with the FCC mask.

2. Circuit design

The circuit schematic of the transmitter is shown in Fig. 1.
Each transition of the input signal triggers a Gaussian
mono-pulse on either Out; and Out, nodes, which subse-
quently drives a folded-dipole antenna. While either output
node emits a pulse, the other node is tied to GND. The
receiver is based on energy detection scheme, and, there-
fore, does not differentiate Out;-driven or Out,-driven
impulses. The folded-dipole antenna is selected for its
compact size, wide bandwidth, and omnidirectional radia-
tion pattern [18, 19, 20, 21, 22, 23], which is particularly
promising for a wide range of efforts on the miniaturization
of various medical implants [24, 25, 26, 27, 28, 29]. The
input impedance of a folded-dipole antenna at the resonant
frequency approximately equals 300 Q [18].

Therefore, the gate-sizing of the Gaussian mono-pulse
generator is designed to maximize the power transfer
efficiency to 300 Q load resistance as shown in Fig. 2(a).
The close symmetry between Out; and Out, nodes is
guaranteed. Circuit simulations across all process corners,
i.e., typical-typical (TT), fast-fast (FF), slow-slow (SS),
fast-slow (FS), and slow-fast (SF), verify that both the
DC energy consumption and the delivered impulse energy
are stable (Fig. 2(b)). In TT process corner, for instance,
Out,-driven and Out,-driven pulses consume 2.75pJ and
2.55pJ DC energy, respectively.

The normalized fast Fourier transform (FFT) of the
Out;-driven and Out,-driven pulses in different process
corners are simulated as shown in Fig. 3(a) and (b), re-
spectively. To accommodate the most process variation, the
antenna bandwidth should cover 8-9 GHz.

3. Antenna design
The planar geometry of the folded-dipole antenna in this

design is shown in Fig. 4. The bond wires have been taken
into consideration.

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers
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Fig. 1. Circuit schematic of the proposed IR-UWB transmitter.
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Fig. 2. Pulse generator circuit optimization. (a) The pulse generator
is designed to maximize the power transfer efficiency to a 300 Q load.
(b) DC energy per pulse and the delivered impulse energy on 300 Q load
in different process corners.
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Fig. 3. Normalized FFT of (a) Out;-driven and (b) Out,-driven pulses
on 300 Q load.
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The radiation pattern of the antenna at 8 GHz is shown
in Fig. 5(a) with the maximum gain of 3.4dBi. S11 is
defined with respect to 300 Q and plotted in Fig. 5(b). The
corresponding matching efficiency, i.e., 1-mag(S11)?%, is
calculated. —10-dB-bandwidth of the antenna is 7.8-9.5
GHz, effectively acting as a pulse-shaping filter.

4. Measurement results

The photograph of the overall transmitter as implemented
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Fig. 4. Planar geometry of the folded-dipole antenna.
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Fig. 5. Antenna performance. (a) Radiation pattern at 8§ GHz (unit: dBi).
(b) S11 and the corresponding matching efficiency with respect to 300 Q.

Fig. 6. Transmitter and IC fabrication. (a) Photograph of the IR-UWB
transmitter as implemented. (b) Circuit layout of the pulse generator.

is shown in Fig. 6(a). The antenna is fabricated on a
Rogers 4350 substrate. The layout of the pulse generator
IC, fabricated in TSMC 180-nm CMOS process, only
occupies an area of 52 um X 42 ym as shown in Fig. 6(b).

The transmitter is wirelessly tested with a 6—-12 GHz
horn antenna (LB-OH-112-10, AINFO Inc.) that features a
directivity of 10 dBi. The horn antenna is positioned 20 cm
above the transmitter with the same polarization direction
as shown in Fig. 7(a). It is followed by a three-stage
cascaded LNA (two ZX60-14012L+, one ZX60-153LN-
S+, Mini-Circuits, Inc.) with a total gain of 36 dB (includ-
ing cable loss). The waveforms of Out;-driven and Out,-
driven pulses wirelessly measured with a 25 Gsample/s
oscilloscope are shown in Fig. 7(b) and (c), respectively.

With the transmitter operating at 100 Mpulse/s,
the Rx power spectrum observed on a spectrum analyzer
with a resolution bandwidth of 1 MHz is shown in
Fig. 8(a). The effective isotropic radiated power (EIRP)
can then be calculated according to the Friis transmission
equation,

EIRT7y = Pge — Dg — 20log,o(1/4nd) (1

where Pgry is the received power density, Dgy is the
directivity of the Rx antenna, 1 is the frequency-specific
wavelength, and d is the Tx-Rx distance. The EIRP is
calculated as plotted in Fig. 8(b). The emission limit of
UWB protocol is defined in EIRP with the FCC mask
shown in the same figure [30]. The experiment demon-
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Table I. Performance comparison of edge-combining based IR-UWB transmitters.

[16] [14] [15] [17] This work
Technology 65 nm 180 nm 180 nm 130nm 180 nm
Method pul;ej pul§ej ﬁlteredA efige- ﬁltered- e‘dge- antem}a co-
combining combining combining combining design
Bandwidth 3.1-8 GHz 6-10 GHz 3.5-6.5GHz 6.8 GHz 6.8-9 GHz
Pulse Rate 10M/s 750M/s 250 M/s 100M/s 100M/s
Supply Voltage 12V 1.8-22V 1.8V 12V 1.5V
Energy/Pulse 21.6pJ 12pJ 86pl 38.4pl 2.6pJ
IC Area 0.03 mm? 0.045 mm? 0.22 mm? 0.54 mm? 0.002 mm?
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Fig. 7. Measurement setup and the received transient waveforms.
(a) Photograph of the benchtop measurement setup. (b) Out;-driven
pulse waveform. (c¢) Out,-driven pulse waveform.

strates that 100 Mpulse/s operation of the transmitter
satisfies the FCC regulation.

A performance comparison with state-of-the-art edge-
combing based IR-UWB transmitters is shown in Table L.
This work significantly reduces the power consumption
with the antenna-and-pulse-generator codesign method
and achieves very small IC/overall-device footprints. It
does not require any additional passive components either
on-chip or off-chip.

5. Conclusion

This work presents a novel concept of antenna-and-pulse-
generator codesign to realize FCC-regulation-compliant
IR-UWB transmitters for size-restricted and ultra-low-
power applications. The transmitter co-optimizes a Gauss-
ian mono-pulse generator and a 300-Q-input-impedance
folded-dipole antenna eliminating any matching or filtering
sections. Each impulse emission consumes an average DC
energy of 2.6 pJ. Operation at 100 Mpulse/s suffices the
FCC regulation limit and shows the —10-dB-bandwidth
to be 6.8-8.6 GHz. The IR-UWB transmitter of this kind
shows promise for applications such as miniaturized
medical implants.
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Fig. 8. Power spectral density of the transmitter operating at
100 Mpulse/s. (a) Screenshot of the Rx power spectrum analyzer.
(b) Calculated EIRP of the transmitter.
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