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1. Introduction

The acuteness of the problem of information security is 
becoming increasingly significant and global. Cryptograph-
ic algorithms that meet modern requirements are an integral 
part of solving this problem. Block Symmetric Ciphers 
(BSCs), which are one of the most common types of cryp-
tographic algorithms, should provide high speed and resis-
tance to known cryptanalytic attacks in accordance with 
modern requirements.

It is generally accepted that the differentials and their 
probabilities must be considered for analyzing the resistance 
of the BSC to differential attacks. Confirmation of this fact 
can be found in the works [1–3], in which the probabilities 
of differentials for the most common modern cipher AES 
are studied. The actual direction of research is the develop-
ment of an approach to the estimation of the probabilities of 

differentials for the BSC Kalyna, which was adopted as the 
Ukrainian standard DSTU 7624:2014 in 2015.

2. Literature review and problem statement 

The maximum probability of the differential is the main 
indicator, which reflects the resistance of the BSC to the 
differential cryptanalysis. It should be noted that most of 
the estimates received even for the most common cipher AES 
(Rijndael) for today are approximate. Thus, detailed and 
accurate estimates are obtained only for 2-round AES differ-
entials in [4]. In [5], the well-known estimates for that time 
for 4‑round differentials AES were substantially elaborated.

In 2015, the new BSC Kalyna was adopted in Ukraine 
as the standard DSTU 7624:2014. The algorithm is Rijn-
dael-like, and the specification is given in [6, 7]. Certain dif-
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Виконується адаптацiя i застосування методу оцiню-
вання верхньої межi ймовiрностi двоциклових диферен-
цiалiв для блокового симетричного шифру Калина, який 
прийнятий в 2015 роцi в якостi українського стандарту 
ДСТУ 7624:2014. Вiдомi методи або дозволяють отримати 
тiльки наближене значення даного параметра для цього 
шифру, або не можуть бути застосованi в явному виглядi 
через структурнi особливостi цього шифру. Використання 
наближеного значення ймовiрностi двоциклових диферен-
цiалiв дає ще бiльшу похибку при оцiнюваннi ймовiрностей 
диференцiалiв з великою кiлькiстю циклiв, а також при 
оцiнюваннi стiйкостi алгоритму шифрування до iнших 
видiв диференцiальних атак.

Основнi етапи методу, що використовується, наступ-
нi: визначення мiнiмальної кiлькостi активних S-блокiв; 
визначення вида диференцiйної характеристики, що 
має максимальну ймовiрнiсть; визначення кiлькостi та 
ймовiрностей додаткових диференцiйних характеристик.

В ходi дослiджень адаптований метод дозволив знач-
но уточнити верхню межу ймовiрностi 2-циклових 
диференцiалiв для шифру «Калина». Ця межа станови-
ла ≈2–47,3, замiсть 2–40 при використаннi методу для 
вкладених SPN шифрiв (Nested SPN Cipher).

Уточнене значення верхньої межi ймовiрностi 2- 
циклових диференцiалiв дозволило уточнити i гранич-
не значення ймовiрностi 4 циклових диференцiалiв. Для 
Калини-128 (розмiр блоку 128 бiтiв) значення уточнено в 
214,6 разiв, для Калини-256 – в 229,2 разiв, Калини-512 –  
в 258,4 разiв.

Основною перевагою адаптованого для шифру Калина 
методу стала можливiсть iстотного уточнення верхньої 
межi ймовiрностi 2-циклового диференцiала. Недолiком 
адаптованого методу є прийнятi допущення, такi як, напри-
клад, використання однiєї пiдстановки замiсть чотирьох 
в оригiнальному алгоритмi. Результатом цього припущен-
ня може стати те, що в реальному алгоритмi ймовiрностi 
2-циклових диференцiалiв будуть ще меншими
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ferences of this algorithm from AES make the methods [4, 5]  
inapplicable for this algorithm. These differences include, 
firstly, the use of nonlinear substitutions of a random type 
with controlled cryptographic parameters. Secondly, the 
use of an enlarged fixed matrix, which is multiplied by each 
column of a block within a linear transformation, which is an 
analogue of the MixColumn transformation in AES.

The use of the approach proposed in [2] and developed 
in [8] will also be problematic as a result of an increased 
fixed matrix, which is multiplied by each column of a block 
within the linear transform of the Kalyna cipher.

In [9], a method for evaluating the maximum probability 
of two-round differentials for Rijndael-like ciphers was pro-
posed. This method, unlike the similar method previously 
known from [4], does not depend on the type of used non-
linear substitutions. However, in [9], the application of this 
method was demonstrated only for ciphers with algebraically 
constructed substitutions.

The study of the issue of estimating the maximum prob-
ability of differentials of BSCs including the Rijndael-like 
ciphers was presented in [10, 11]. The approach proposed in 
these works commonly uses the analysis of reduced cipher 
models (block size up to 16 bits) or the consideration of a 
small part of the block (up to 16 bits) and subsequent inter-
pretation of the result for a full-length encryption algorithm. 
In [10], two-round differentials of some modern ciphers, 
including AES (Rijndael-128), are analyzed using this ap-
proach. The main disadvantage of the considered approaches 
are inaccurate, highly approximate results that are very 
different from the known ones.

In [12], the example of the consideration of reduced mod-
els with a 16-bit block of Rijndael-like ciphers demonstrated 
the validity of the estimates obtained by the method of [9] 
for ciphers with arbitrary substitutions. However, this meth-
od has never been applied for the new Ukrainian standard 
DSTU 7624:2014.

The upper bound of the probability of two-round differ-
entials for this cipher can be obtained on the basis of the ma-
terials of the works [3, 13] and known maximum probability 
of passing the non-zero difference through the substitution, 
which is 2-5. The resulting approximate upper border value 
will be ( )85 402 2 .− −=  Using of such an approximate value will 
give an even greater error in estimating the probabilities 
of differentials with a large number of rounds, as well as in 
assessing the resistance of the encryption algorithm to other 
types of differential attacks. Thus, the main problem issue 
of this work is to obtain a more precise value of the upper 
bound of the probability of two-round differentials for the 
Ukrainian standard of encryption DSTU 7624:2014.

3. The aim and objectives of the study

The aim of this work is to obtain a more precise value of 
the upper bound of the probability of two-round differentials 
for the Ukrainian standard of encryption DSTU 7624: 2014.

To achieve this aim, it is necessary to accomplish the 
following objectives:

– to adapt the method proposed in [9] for the new 
Ukrainian standard DSTU 7624: 2014;

– to estimate the upper bound of the probability of 
2-round differentials for this cipher;

– to make a comparative analysis of the known and ob-
tained values of the probability of a 2-round differential and 

the upper bounds of the probabilities of differentials with a 
large number of rounds.

4. Rijndael-like cipher Kalyna (DSTU 7624:2014)

A convenient way to represent a data block of the Rijn-
dael-like cipher is a matrix in which each cell is a byte. Each 
round of Rijndael-like ciphers consists of four procedures: 
ByteSub (BS); ShiftRow (SR); MixColumn (MC); Ad-
dRoundKey.

During the ByteSub procedure, a nonlinear substitution 
for each block byte is made in accordance with a fixed 256-
byte table. 

The ShiftRow procedure performs the exchange (reposi-
tioning) of bytes between columns of the information block 
by cyclic shifting of the rows to different numbers of bytes.

The MixColumn procedure converts each column a(x) 
into the word b(x) by the following rule: b(a(x))=c(x)Äa(x), 
where c(x) is a fixed polynomial; Ä denotes an operation 
of multiplying polynomials with coefficients from GF (28) 
according to the selected module. This transformation is 
usually represented in the form of multiplying the vector a 
by the matrix c.

The AddRoundKey procedure performs a bitwise modu-
lo 2addition of the data block and the fragment of an extend-
ed key of the corresponding size.

During the decryption, the inverse procedures are per-
formed in reverse order.

There is a possibility to change the order of some of the 
transformations. For example, this is the case for the se-
quence of BS and SR. It’s clear that it does not matter: first 
perform the BS substitution, and then rearrange the bytes, 
or vice versa. Because of the linearity of the transformation, 
MC can be changed in places with the AddKey transforma-
tion, but in this case you need to make an addition with a 
subkey for which the MC transformation is pre-executed.

There is an alternative representation of round trans-
formations when the ByteSub, MixColumns, AddKey, and 
ByteSub operations are combined into 32-bit super boxes 
(highlighted in color in Table 1).

Each of these super boxes works with one column of a data 
block. 4 such 32-bit super boxes with the addition of some 
linear transformations before and after are equivalent to two-
round encryption (Table 1).

Two levels of super boxes, which run between SR, MC, 
AddKey and SR, are called mega box in [5]. One such 128-bit 
mega box, with the addition of some linear transformations 
before and after is equivalent to 4-round encryption (high-
lighted in color in Table 1).

The new BSC Kalyna was adopted as the Ukrainian 
standard DSTU 7624:2014 in 2015. This is a Rijndael-like al-
gorithm, which has a number of changes compared with AES:

1) using of non-linear random substitutions with con-
trolled cryptographic parameters;

2) using of an enlarged fixed matrix (8×8 bytes matrix size), 
which is multiplied by each column of the block (each column 
has the size of 8 bytes or 64 bits) within the linear transforma-
tion – the analogue of the MixColumn transformation in AES;

3) using of a new key expansion scheme that does not al-
low restoring the value of the source secret key from the value 
of one of the subkeys;

4) using of adding operations with different modules in 
AddKey transformations.
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Table 1

An alternative representation of a sequence of 
transformations, a super box, a mega box

Original sequence 
of transforma-

tions for 4 rounds

Alternative sequence 
of transformations for 

4 rounds

4 rounds 
using super 

boxes

4 rounds 
using mega 

boxes 

AddKey0 AddKey0 AddKey0 AddKey0

BS1 SR1 SR1 SR1

SR1 BS1
4 super 

boxes 32 to 
32 bits

mega box 
128 to 128 

bits

MC1 MC1

AddKey1 AddKey1

BS2 BS2

SR2 SR2 SR2

MC2 MC2 MC2

AddKey2 AddKey2 AddKey2

BS3 SR3 SR3

SR3 BS3
4 super 

boxes 32 to 
32 bits

MC3 MC3

AddKey3 AddKey3

BS4 BS4

SR4 SR4 SR4 SR4

MC4 MC4 MC4 MC4

AddKey4 AddKey4 AddKey4 AddKey4

The specification of this encryption algorithm is given 
in [6, 7]. The number of rounds depends on the size of the 
key and it is 10, 14 and 18 rounds for keys of 128, 256 and 
512 bits, respectively. The size of the cipher’s block is not 
less than the size of the key. Cipher variants with a block 
size of 128, 256, and 512 bits will be hereinafter denoted as 
Kalyna 128, Kalyna 192 and Kalyna 256, and blocks of these 
algorithms contain 2, 4, and 8 64-bit columns, respectively.

5. The main ideas of the approach used to determine the 
upper bound of probabilities for 2-round differentials

It is known that there is a possibility to perform an exact 
estimation of the upper bound of the probability of differen-
tials for modern block ciphers only for a small number of 
rounds. For the Rijndael cipher, this number of rounds 
is 2, and the corresponding method was proposed in [4].

For the Rijndael cipher, the results obtained in [9] 
coincide with the results of [4]. At the same time, the 
estimation of the probabilities of two-round differen-
tials uses the analysis of the properties of the differ-
ences tables of the cipher’s S-boxes, which makes it 
possible to use this method for ciphers with arbitrary 
substitutions, which is the case for the Kalyna cipher. 
Numerous computational experiments in the study of 
reduced-size super boxes from 4 to 32 bits with the 
S-box size from 2 to 8 bits are described in [9]. Exper-
iments on the search for 2-round differentials for such 
super boxes have shown that the differential having the 
maximum probability always contains a differential 
characteristic (DC), which also has a maximum prob-
ability. Using this fact, the proposed method contains 
the following basic steps:

1) determination of the minimum number of active 
S-boxes in the 2-round DC;

2) determination of the form of DC having the maximum 
probability;

3) determination of the number and probabilities of ad-
ditional DCs;

4) determination of the maximum probability of a 2-round 
differential as a sum of the results from step 2 and 3.

The input data for this method are the fixed matrix which 
is used in the multiplication during the MC transformation 
and the S-boxes with their difference tables.

The presented above steps of the method are quite clear if 
we assume that the probability of a differential is the sum of 
the probabilities of all the DCs which belong to this differen-
tial. The most problematic in practice is the implementation of 
stage 3. The next section will demonstrate how the proposed 
approach can be implemented in the case of the encryption 
transformations of the Kalyna algorithm.

6. Probabilities of two-round differentials for the Kalyna 
cipher 

6. 1. Super boxes of the Kalyna cipher
The Super box consists of the ByteSub, MixColumns, 

AddKey, and ByteSub operations and works with one col-
umn of the data block. The Super box of Kalyna works with 
a 64-bit block and it is impossible to research such a super 
box in a “power” way.

4 different substitutions are used as 8-to-8-bit S-boxes. 
The substitutions are formed randomly with the control of 
the following parameters: the maximum value in the differ-
ence table (for all substitutions this value is equal to 8), the 
maximum value in the table of linear approximations (for 
all substitutions this value is 26), the degree of nonlinearity 
(for all substitutions this value is 7). The difference tables 
of the S-boxes are important in the differential probability 
estimation. The number of maximum values, “8”, in the 
difference tables for these 4 substitutions is 15, 9, 7 and 9.  
Obviously, the substitution with 15 maximum values in 
the difference table will allow us to construct a two-round 
differential that will have the maximum probability. There-
fore, further we will consider the worst case, when only one 
such substitution is used in the BS transformation of the 
cipher (Fig. 1).

It is expected that this version in comparison with the 
original will have higher probabilities of the differentials and, 
accordingly, lower level of security.

The number of cells in the substitution difference 
table, excluding the first row and the first column, is 

Fig. 1. Substitution S0 of the cipher Kalyna (in hexadecimal format)
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255×255=65,025. Table 2 shows the statistical information 
about the difference table for the selected substitution.

Table 2

Statistical information for the difference table of 	
the 8-to-8-bit substitution

Values Number of values in the difference table

“8” 15

“6” 246

“4” 3,423

“2” 24,996

“0” 36,345

Table 2 demonstrates that 56 % of the difference table’s 
values are “0”, and 44 % are non-zero values.

Denote the fixed matrix that is used in the MixColumns 
(MC) by M

M =

1 1 5 1 8 6 7 4

4 1 1 5 1 8 6 7

7 4 1 1 5 1 8 6

6 7 4 1 1 5 1 8

8 6 7 4 1 1 5 1

1 8 6 7 4 1 1 5

5 1 8 6 7 4 1 1

11 5 1 8 6 7 4 1

































.

Thus, the main transformations of the Kalyna’s super box 
are presented.

6. 2. Search for maximum probability DC 
The computational experiments performed for reduced 

models and presented in [9, 12] confirmed the following 
regularities. First, to find DC, which has the maximum 
probability, you should look for the path of difference trans-
formation with the minimum total number of active substi-
tutions. For Kalyna, this value is 9. Second, the maximum 
must be the number of duplicate values of the difference at 
the inputs of both levels of substitutions. During the analysis 
of the matrix multiplication operation, such a path of differ-
ence transformation was determined for the Kalyna cipher. 
Expression (1) shows the procedure of multiplication of the 
column by the matrix M. 

x

x

M

x

x

x

ex

x

x

x

0

0

0

0

0

0

0

5

3

9

4

4

































× =

































. 				    (1)

The input column contains the same non-zero values of 
the difference x in the first two bytes and the zero difference 
in the remaining bytes.

The specified path of the difference contains the min-
imum total number of active substitutions – 2+7=9, with  

3 difference value x and 2 difference value 4x at the inputs of 
both levels of substitutions.

Taking into account the data from Table 2, there are 
15 variants of the value of the difference x at the output 
of the first level of permutations, for which a transition 
of difference may occur with a probability of 8/256. The 
probability that for the value of the difference 4x also there 
will be a transition with a probability of 8/256 is 15/255. 
Then the expected number of cases where two first-level 
difference transitions and two out of seven transitions of the 
second-level difference of the substitutions will have a prob-
ability of 8/256, will be

⋅ = ≈
15 225

15 0,88.
255 255

The expected number of cases where even at least one 
another transition of the second-level difference will have a 
probability of 8/256 will be even lower. However, as can be 
seen from Table 2, there are many transitions with a proba-
bility of 6/256 in the difference table. Therefore, for the re-
maining 5 values of the difference in the input of the second 
level of permutations (5x, 3x, x, ex, 9x) with a probability 
close to 1,there will be transitions with probability 6/256. 
Then the final probability of such a basic DC will be

⋅   ⋅ =      

4 5 9

64

8 6 243 2
.

256 256 2

The second stage of the method is completed.

6. 3. Number and probabilities of additional DCs
Now the number and probabilities of additional DC 

should be estimated.
Taking into account Table 2, there are ≈ ⋅ ≈254 0,44 112  

possible additional variants of the difference at the output of 
substitutions of level 1. It is important that the values at the 
output of these two substitutions should be the same, since 
otherwise there will not be zero difference in the first byte of 
the output of MC difference. 

In accordance with expression (1), at the input of level 2 
of the substitutions there will be 6 different non-zero values 
of the difference. The probability that for each of these six 
separate active substitutions there will be a transition to the 
output value determined by basic DC is 0.44. Then the prob-
ability that for all 6 cases the necessary transitions of the 
difference will be possible will be ( )6

0,44 ;  and the expected 
number of additional DCs will be ( )6

112 0,44 0,8.⋅ ≈  Thus, 
most likely that there will be only one additional DC. Ac-
cording to the data from Table 2, most transitions will have 
a probability of 2/256 in this additional DC. Even if half of 
these transitions will have a probability of 4/256, then, com-
pared with the probability of the basic DC, the probability of 
additional DCs will be insignificant: 

   ⋅ =      

4 5 5

64

4 2 2
.

256 256 2

The upper bound of the probability of a 2-round differen-
tial is the result of summing the values obtained in subsec-
tions 6.2 and 6.3: 

−⋅
+ ≈

9 5
47,3

64 64

243 2 2
2 .

2 2
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7. Discussion of the results obtained using known and 
new methods

The upper bound values of the probabilities of differentials 
can be obtained for SPN-ciphers using the theorem from [13].

Theorem ([13]). If n S-boxes are used in the SPN- 
cipher, and the linear transformations provide the number of 
branches equal to n–t, then the probability of a differential 
covering 2 and more rounds will be bounded above by the 
value of pn-t-1, where p is the maximum probability of a non-
zero difference transition through the S-box.

For the ciphers that use nested SPN structures, the the-
orem is proved in [3]. According to this theorem, the value 
of the differential probability is bounded above by the value 

p n t n t( ( ))( ( )),1 1 2 21 1− + ⋅ − + 				    (2)
 

where n1 is the number of S-boxes in each super box, n2 is the 
number of super boxes in the block, n1–t1 and n2–t2 are the 
branch number provided by the lower and upper levels of the 
diffusion transformations, respectively.

For the Rijndael-128 cipher, according to these theorems, 
the upper bound of the probability of a 2-round differential  
is ( )− −=

46 242 2 ,  and the upper bound of the probability of the 
4-round differential – ( )− −=

424 962 2 .  The methods proposed 
in [4, 9] allow getting a more accurate estimation for the 
upper bound of the probability of a 2-round differential: 

−≈ 28,3
32

13
2 .

2
 Then the corresponding upper bound of the  

 
probability of the 4-round differential will be ( )− −=

428,3 113,22 2 .
Using the value obtained in Section 6 for a 2-round 

differential and the presented above theorem from [13], the 
upper bounds of the probabilities of differentials for variants 
of the Kalyna cipher with the size of block 128, 192 and  
256 bits can be substantially elaborated (Table 3).

The upper bounds of the probabilities of the 2- and 
4-round differentials for the Kalyna cipher presented in Ta-
ble 3, obtained using the method proposed in section 6, are 
the most accurate of the known.

The studies presented in this paper are a continuation of 
the studies presented in [4, 9, 12].

The main advantage of the method adapted for the Kaly-
na cipher is the possibility to get a more accurate value for 
the upper bound of the probability of a 2-round differential 
(the first column of Table 3). The disadvantage of the adapt-
ed method is the assumptions that were made, such as, for 
example, the use of one substitution instead of four in the 
original algorithm. The result of this assumption can be that 
the real probability of 2-round differentials could be even 
smaller than the obtained value.

Table 3

The upper bounds of the probabilities of differentials for 	
the Kalyna cipher 

Eval-
uation 
options

2-round 
differential

4-round 
differential, 
Kalyna-128

4-round 
differential, 
Kalyna-256

4-round 
differential, 
Kalyna-512

Using (2) ( )− −=
85 402 2 ( )− −=

240 802 2 ( )− −=
440 1602 2 ( )− −=

840 3202 2

Proposed 
method −47,32 ( )− −=

247,3 94,62 2 ( )− −=
447,3 189,22 2 ( )− −=

847,3 378,42 2

8. Conclusions

1. The adaptation and application of the previously 
proposed method of [9, 12] for the Rijndael-like Kalyna ci-
pher, which in 2015 was adopted as the Ukrainian standard 
DSTU 7624: 2014, were made. 

2. The application of the adapted method has made it 
possible to get a more precise value of the upper bound of the 
probability of 2-round differentials for the Kalyna cipher. 
This upper bound is −≈ 47,32 ,  instead оf −402  with using (2). 

3. The more precise value of the upper bound of the prob-
ability of 2-round differentials made it possible to get a more 
precise boundary value of the probability of 4-round differ-
entials. For Kalyna-128, the value is specified 14,62  times, 
for Kalyna-256 – 29,22  times, for Kalyna-512 – 58,42  times.
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Запропоновано модель детектора об’єктiв i 
критерiй ефективностi навчання моделi. Модель 
мiстить 7 перших модулiв згорткової мережi 
Squeezenet, два згортковi рiзномасштабнi шари, та 
iнформацiйно-екстремальний класифiкатор. Як 
критерiй ефективностi навчання моделi детектора 
розглядається мультиплiкативна згортка частин-
них критерiїв, що враховує ефективнiсть виявлен-
ня об’єктiв на зображеннi та точнiсть класифiка-
цiйного аналiзу. При цьому додаткове використання 
алгоритму ортогонального узгодженого кодування 
при обчисленнi високорiвневих ознак дозволяє збiль-
шити точнiсть моделi на 4 %. 

Розроблено алгоритм навчання детектора об’єк-
тiв за умов малого обсягу розмiчених навчальних 
зразкiв та обмежених обчислювальних ресурсiв, 
доступних на борту малогабаритного безпiлотного 
апарату. Суть алгоритму полягає в адаптацiї верх-
нiх шарiв моделi до доменної областi використання 
на основi алгоритмiв зростаючого розрiджено кодую-
чого нейронного газу та симуляцiї вiдпалу. Навчання 
верхнiх шарiв без вчителя дозволяє ефективно вико-
ристати нерозмiченi данi з доменної областi та 
визначити необхiдну кiлькiсть нейронiв. Показано, що 
за вiдсутностi тонкої настройки згорткових шарiв 
забезпечується 69 % виявлених об’єктiв на зображен-
нях тестової вибiрки Inria Aerial Image. При цьому 
пiсля тонкої настройки на основi алгоритму симуля-
цiї вiдпалу забезпечується 95 % виявлених об'єктiв на 
тестових зображеннях.

Показано, що використання попереднього навчан-
ня без вчителя дозволяє пiдвищити узагальнюючу 
здатнiсть вирiшальних правил та прискорити iте-
рацiйний процес знаходження глобального максиму-
му при навчаннi з учителем на вибiрцi обмежено-
го обсягу. При цьому усунення ефекту перенавчання 
здiйснюється шляхом оптимального вибору значення 
гiперпараметру, що характеризує ступiнь покриття 
вхiдних даних нейронами мережi

Ключовi слова: зростаючий нейронний газ, детек-
тор об’єктiв, iнформацiйний критерiй, алгоритм 
симуляцiя вiдпалу
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1. Introduction

Unmanned aviation is widely used in the tasks of in-
spection of technological and residential facilities, protec-

tion and reconnaissance activities, as well as in the sphere 
of transportation of small size loads. One of the ways to 
increase the functional efficiency of the unmanned aerial 
vehicle (UAV) is to introduce technologies of artificial in-
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