Skip to main content
Log in

Efficacy of HfN as sintering aid in the manufacture of ultrahigh-temperature metal diborides-matrix ceramics

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

HfB2 and (ZrB2 + HfB2)-based ceramics containing 19.5 vol% SiC particulate were developed from commercially available powders by hot-pressing. With the assistance of 3 vol% HfN as sintering aid, after hot-pressing at 1900 °C and 50 MPa of applied pressure, full density in both the composites was successfully achieved. The materials revealed a homogeneous microstructure, characterized by faceted diboride grains (2 μm average size) and SiC particles regularly dispersed. Limited levels of secondary phases were found. The thermomechanical properties of the composites were promising: about 22 GPa microhardness and 500 GPa Young’s modulus for both. The HfB2-SiC composite showed values of strength of 650 ± 50 and 465 ± 40 MPa at 25 and 1500 °C, respectively. Likewise, the (ZrB2-HfB2)-SiC composite exhibited values of strength of 765 ± 20 and 250 ± 45 MPa at 25 and 1500 °C, respectively. The excellent response at high temperature in air was attributed to the refractoriness of the phases constituting the composites and to the resistance to oxidation enhanced by the presence of the SiC particulate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Opeka, I.G. Talmy, E.J. Wuchina, J.A. Zaykoski, and S.J. Causey: Mechanical, thermal and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc. 19, 2405 (1999).

    CAS  Google Scholar 

  2. K. Upadhya, J-M. Yang, and W.P. Hoffmann: Materials for ultrahigh temperatures structural applications. Am. Ceram. Soc. Bull. 58, 51 (1997).

    Google Scholar 

  3. S.R. Levine, E.J. Opila, M.C. Halbig, J.D. Kiser, M. Singh, and J.A. Salem: Evaluation of ultra high temperature ceramics for aeropropulsion use. J. Eur. Ceram. Soc. 22, 2757 (2002).

    CAS  Google Scholar 

  4. R. Loehman. Ultrahigh-temperature ceramics for hypersonic vehicle applications. Industial Heating, January (2004).

    Google Scholar 

  5. C.R. Wang, J-M. Yang, and W.P. Hoffmann: Thermal stability of refractory carbide/boride composites. Mater. Chem. Phys. 74, 272 (2002).

    CAS  Google Scholar 

  6. A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas, and D.T. Ellerby: High-strength zirconium diboride-based ceramics. J. Am. Ceram. Soc. 87, 1170 (2004).

    CAS  Google Scholar 

  7. J.D. Bull, D.J. Rasky, and J.C. Karika: Stability characterization of diboride composites under high velocity atmospheric flight conditions. In 24th Int. SAMPE Technical Conference (Toronto, Canada, lOct. 20–22, 1992), pp. T1092–1106.

    Google Scholar 

  8. J.J. Melendez-Martines, A. Dominguez-Rodriguez, F. Monteverde, C. Melandri, and G. de Portu: Characterization and hightemperature mechanical properties of zirconium boride-based materials. J. Eur. Cer. Soc. 22, 2543 (2002).

    Google Scholar 

  9. S-K. Woo, I-S. Han, H-S. Kim, E-S. Kang, J.H. Yang, and C-H. Kim: Sintering of zirconium diboride through Fe-based liquid phase. J. Kor. Ceram. Soc. 33, 259 (1996).

    CAS  Google Scholar 

  10. F. Monteverde and A. Bellosi: Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride. Scripta Mater. 46, 223 (2002).

    CAS  Google Scholar 

  11. H. Pastor: Metallic borides: Preparation of solid bodies—sintering methods and properties of solid bodies, in Boron and Refractory Borides, edited by V.I. Matkovich, (Springer Verlag, New York, NY, 1997), pp.457–493.

    Google Scholar 

  12. G-J. Zhang, Z-Y. Deng, N. Kondo, J-F. Yang, and T. Ohji: Reactive hot pressing of ZrB2-SiC composites. J. Am. Ceram. Soc. 83, 2330 (2000).

    CAS  Google Scholar 

  13. F. Monteverde and A. Bellosi: Advances in microstructure and mechanical properties of zirconium diboride-based ceramics. Mater. Sci. Eng. A 346, 310 (2003).

    Google Scholar 

  14. J. Bull, M.J. White, and L. Kaufman: Ablation resistant zirconium and hafnium ceramics. U.S. Patent No. 5 750 450 (1998).

    Google Scholar 

  15. F. Monteverde and A. Bellosi: Oxidation of ZrB2 based ceramics in dry air. J. Electrochem. Soc. 150, B552 (2003).

    Google Scholar 

  16. J.W. Hinze, W.C. Tripp, and H.C. Graham: The high-temperature oxidation behaviour of a HfB2+20v/o SiC composite. J. Electrochem. Soc. 122, 1249 (1975).

    CAS  Google Scholar 

  17. W.C. Tripp, H.H. Davis, and H.C. Graham: Effect of an SiC addition on the oxidation of ZrB2. Am. Ceram. Soc. Bull. 52, 612 (1973).

    CAS  Google Scholar 

  18. F. Monteverde and A. Bellosi: Microstructure and properties of a HfB2-SiC composite for ultra-high temperature applications. Adv. Eng. Mater. 6, 331 (2004).

    CAS  Google Scholar 

  19. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall: A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J. Am. Ceram. Soc. 64, 533 (1981).

    CAS  Google Scholar 

  20. A. Roine: HSC Chemistry for Windows 5.1, Outokumpu Research Oy, Pori, Finland.

  21. W. Lengauer, S. Binder, K. Aigner, P. Ettmayer, A. Guillou, J. Debuigne, and G. Groboth: Solid state properties of group IVb carbonitrides. J. Alloys Compd. 217, 137 (1995).

    CAS  Google Scholar 

  22. F. Monteverde, A. Bellosi, and S. Guicciardi: Processing and properties of zirconium diboride based composites. J. Eur. Ceram. Soc. 22, 279 (2002).

    CAS  Google Scholar 

  23. R.A. Cutler: Engineering properties of borides, in Engineered Materials Handbook, Vol. 4, edited by S.J. Schneider (ASM International, Materials Park, OH, 1991), pp. 787–803.

  24. S. Baik and P.F. Becher: Effect of oxygen contamination on densification of TiB2. J. Am. Cer. Soc. 70, 527 (1987).

    CAS  Google Scholar 

  25. S. Torizuka, K. Sato, H. Nishio, and T. Kishi: Effect of SiC on interfacial reaction and sintering mechanism of TiB2. J. Am. Ceram. Soc. 78, 1606 (1995).

    CAS  Google Scholar 

  26. H. Pastor: Titanium carbonitride based hard alloys for cutting tools. Mater. Sci. Eng. A 105, 401 (1988).

    Google Scholar 

  27. D.N. Øvrebø and F.L. Riley: Densification of zirconium diboride, in Conference & Exhibition of 6th ECerS, Extended Abstracts Vol. 2, British Ceramic Proceedings No. 60 (IOM Communications Ltd., London, U.K., 1999), pp.19–20.

  28. H. Wang, Z.Y. Fu, P. Gu, W.H. Wang, and R.Z. Yuan: Mechanical properties and microstructure of TiB2 ceramic influenced by ZrB2 additive. Trans. Non-ferrous Met. Soc. China 12, 909 (2002).

    Google Scholar 

  29. L-H. Li, H-E. Kim, and E.S. Kang: Sintering and mechanical properties of titanium diboride with aluminium nitride as a sintering aud. J. Eur. Ceram. Soc. 22, 973 (2002).

    CAS  Google Scholar 

  30. M-J. Pan, P.A. Hoffman, D.J. Green, and J.R. Hellmann: Elastic properties and microstructure behaviour of particulate titanium diboride-silicon carbide composites. J. Am. Ceram. Soc. 80, 692 (1997).

    CAS  Google Scholar 

  31. S.K. Mishra, S. Das, and P. Ramchandraras: Microstructure evolution during sintering of self-propagating high-temperature synthesis produced ZrB2 powder. J. Mater. Res. 17, 2809 (2002).

    CAS  Google Scholar 

  32. C. Schmalzreid, R. Telle, B. Freitag, and W. Mader: Solid state reactions in transition metal diboride based materials. Z. Metallkd. 92, 1197 (2001).

    Google Scholar 

  33. S. Torquato: Modelling of physical properties of composites materials. Int. J. Solids Struct. 37, 411 (2000).

    Google Scholar 

  34. D. Kalish, E.V. Clougherty, and K. Kreder: Strength fracture mode and thermal stress resistance of HfB2 and ZrB2. J. Am. Ceram. Soc. 52, 30 (1969).

    CAS  Google Scholar 

  35. J.B. Quinn and G.D. Quinn: Indentation brittleness of ceramics: A fresh approach. J. Mater. Sci. 32, 4331 (1997).

    CAS  Google Scholar 

  36. Q. Yang, W. Lengauer, T. Koch, M. Scheerer, and I. Smid: Hardness and elastic properties of TiCXN1-X, ZrCXN1-X, and HfCX N1-X. J. Alloys Compd. 309, L5 (2000).

    Google Scholar 

  37. G.R. Irwin: Fracture, in Handbuch der Physik. Vol. 6 (Springer- Verlag, Berlin, Germany, 1958), p. 551.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Monteverde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monteverde, F., Bellosi, A. Efficacy of HfN as sintering aid in the manufacture of ultrahigh-temperature metal diborides-matrix ceramics. Journal of Materials Research 19, 3576–3585 (2004). https://doi.org/10.1557/JMR.2004.0460

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0460

Navigation