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NEURAL DISTRIBUTED AUTOASSOCIATIVE MEMORIES: A SURVEY

Introduction. Neural network models of autoassociative, distributed memory allow storage
and retrieval of many items (vectors) where the number of stored items can exceed the vector
dimension (the number of neurons in the network). This opens the possibility of a sublinear
time search (in the number of stored items) for approximate nearest neighbors among vectors
of high dimension.

The purpose of this paper is to review models of autoassociative, distributed memory
that can be naturally implemented by neural networks (mainly with local learning rules and
iterative dynamics based on information locally available to neurons).

Scope. The survey is focused mainly on the networks of Hopfield, Willshaw and Potts,
that have connections between pairs of neurons and operate on sparse binary vectors. We
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discuss not only autoassociative memory, but also the generalization properties of these
networks. We also consider neural networks with higher-order connections and networks
with a bipartite graph structure for non-binary data with linear constraints.

Conclusions. In conclusion we discuss the relations to similarity search, advantages
and drawbacks of these techniques, and topics for further research. An interesting and still
not completely resolved question is whether neural autoassociative memories can search for
approximate nearest neighbors faster than other index structures for similarity search, in
particular for the case of very high dimensional vectors.

Keywords: distributed associative memory, sparse binary vector, Hopfield network, Willshaw
memory, Potts model, nearest neighbor, similarity search.

INTRODUCTION

In this paper, we review some artificial neural network variants of distributed
autoassociative memories (denoted by Neural Associative Memory, NAM) [1-
159].

Varieties of associative memory [93] (or content addressable memory) can
be considered as index structures performing some types of similarity search. In
autoassociative memory, the output is the word of memory, most similar to the
key at the input. We restrict our initial attention to systems where the key and
memory words are binary vectors. Therefore, autoassociative memory answers
nearest neighbor queries for binary vectors.

In distributed memory, different vectors (items to be stored) are stored in
shared memory cells. That is, each item to be stored consists of a pattern of
activation across (potentially) all the memory cells of the system and each
memory cell of the system contributes to the storage and recall of many
(potentially all) stored items. Some of types of distributed memory have attracti-
ve properties of parallelism, resistance to noise and malfunctions, etc. However,
exactly correct answers to the nearest neighbor queries from such memories are
not guaranteed, especially when too many vectors are stored in the memory.
Neurobiologically plausible variants of distributed memory can be represented
as artificial neural networks. These typically perform one-shot memorization of
vectors by a local learning rule modifying connection weights and retrieve a
memory vector in response to a query vector by an iterative procedure of activity
propagation between neurons via their connections.

In the first Section, we briefly introduce Hebb's theory of brain functioning
based on cell assemblies because it has influenced many models of NAM. Then
we introduce a generic scheme of NAMs and their characteristics (discussed in
more details in the other sections). The following three Sections discuss the
widespread matrix-type NAMs (where each pair of neurons is connected by two
symmetric connections) of Hopfield, Willshaw, and Potts that work best with
sparse binary vectors. The next Section is devoted to the function of
generalization, which differs from the function of autoassociative memory and
emerges in some NAMs. The following Section discusses NAMs with higher-
order connections (more than two neurons have a connection) and NAMs
without connections. Then some recent NAMs with a bipartite graph structure
are considered. The last Section provides discussion and concludes the paper.
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GCELL ASSEMBLIES AND GENERIC NAM

Hebb's paradigm of cell assemblies. According to Hebb [65], nerve cells of the
brain are densely interconnected by excitatory connections, forming a neural
network. Each neuron determines its membrane potential as the sum of other
active neurons' outputs weighted by connection weights. A neuron becomes
active if this potential (the input sum) exceeds the threshold value. During
network functioning, connection weights between simultaneously active neurons
(encoding various items) are increased (the Hebbian learning rule). This results
in organization of neurons into cell assemblies — groups of nerve cells most
often active together and consequently mutually excited by connection weights
between neurons in the assembly. At the same time, the process of increased
connection within assemblies leads to mutual segregation of assemblies. When a
sufficient part of a cell assembly is activated, the assembly becomes active as a
whole because of the strong excitatory connection weights between the cells
within the assembly.

Cell assemblies may be regarded as memorized representations of items
encoded by the distributed patterns of active neurons. The process of assembly
activation by a fragment of the memorized item may be interpreted as the
process of pattern completion or the associative retrieval of similar stored
information when provided with a partial or distorted version of the memorized
item.

Hebb's theory of brain functioning — interpretation of various mental
phenomena in terms of cell assemblies — has turned out to be one of the most
profound and generative approaches to brain modeling and has influenced the
work of many researchers in the fields of artificial intelligence, cognitive
psychology, modeling of neural structures, and neurophysiology (see also
reviews in [39, 40, 54, 75, 98, 104, 120, 121, 134]).

A generic scheme and characteristics of NAMs. Let us introduce a generic
model of the NAM type, inspired by Hebb's paradigm, that will be elaborated in
the sections below devoted to specific NAMs. We mainly consider NAMs of the
distributed and matrix-type, which are fully connected networks of binary
neurons (but see Sections "NAMs with Higher-Order Connections and without
Connections", "NAMs with a Bipartite Graph Structure for Nonbinary Data with
Constraints" for other NAM types). Each of the neurons (their number is D)
represents a component of the binary vector z. That is, each of the D neurons
can be in the state 0 or 1. Each pair of neurons has two mutual connections (one
in each direction). The elements of the connection matrix W(Dx D) represent

the weights of all these connections. In the learning mode, the vectors y from
the training or memory set (which we call the "base") are "stored" (encoded or
memorized) in the matrix W by using some learning rule that changes the
values of w;, (initially each w; is usually zero).

In the retrieval mode, an input binary vector x (probe or key or query
vector) is fed to the network by activation of its neurons: z=x. The input sum
of the i -th neuron

Si = Zj:],DWi/'Zj
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is calculated. The neuron state is determined as

z(t+1)=1 (active) for s,(1) =T ()
and
z,(t+1)=0 (inactive) for s,(1)<T;(¢); T,

is the value of the neuron threshold.

For parallel (synchronous) network dynamics, the input sums and the states
of all D neurons are calculated (updated) at each step ¢ of iterative retrieval.
For sequential (asynchronous) dynamics, z, is calculated for one neuron i,
selected randomly. For simplicity, let us consider random selection without
replacement, and one step of the asynchronous dynamics to consist of update of
the states of all D neurons.

The parameters W and T are set so that after a single, or several, steps of
dynamics the state of the network (neurons) reaches a stable state (typically, the
state vector does not change with ¢, but cyclic state changes are also considered
as "stable"). At the stable state, z is the output of the network.

The query vector x is usually a modified version of one of the stored
vectors y. In the literature, this might be referred to as a noisy, corrupted, or
distorted version of a vector. While the number of stored vectors is not too high,
the output z is the stored y closest to x (in terms of dot product

Simdot (Xv Y) = <Xay> )

That is, z is the base vector y with the maximum value of (x,y). In this
case, NAM returns the (exact) nearest neighbor in terms of sim, . For binary
vectors with the same number of unit (i.e. with value equal to 1) components,
this is equivalent to the nearest neighbor by the Hamming distance ( dist,;,, ).

The time complexity (runtime) of one step of the network dynamics is
O(D?) . Thus, if a NAM can be constructed that stores a base of N > D vectors

so that they can be successfully retrieved from their distorted versions, then the
retrieval time via the NAM could be less than the O(DN) time required for

linear search (i.e. the sequential comparison of all base vectors y to x). Since

the memory complexity of this NAM type is O(D?), as D increases, one can

expect an increasing in the size N of the bases that could be stored and retrieved
by NAM.

Unfortunately, the vector at the NAM output may not be the nearest
neighbor of the query vector, and possibly not even a vector of the base. (Note
that if one was not concerned with biological plausibility, one can quickly check
whether the output vector is in the base set by using a hash table to store all base
vectors.) In some NAMs, it is only possible to store many fewer vectors N than
D, with high probability of accurate retrieval, especially if the query vectors are
quite dissimilar to the base vectors.

For NAM analysis, base vectors are typically selected randomly
independently from some distribution of binary vectors (e.g., vectors with the
probability p of 1-components equal to 1/2, or vector with pD 1-components,
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for some p from interval (0,1)). The assumption of independence simplifies

analytical approaches, but is likely unrealistic for real applications of NAMs.
The query vectors are typically generated by as modifications of the base
vectors. Distortion by deletion randomly changes some of the 1s to Os (the
remaining components are guaranteed to agree). A more complex distortion by
noise randomly changes some Is to Os, and some Os to 1s while (exactly or
approximately) preserving the total number of 1s.

For a random binary vector of dimension D with the probability p of a

component to be 1, the Shannon entropy

H = Dh(p),
Where
h(p)=-plog p—(1-p)log(l-p).

For D>>1, a random vector with pD of 1s has approximately the same
entropy. The entropy of N vectors is NDh(p). When N vectors are stored in
NAM, the entropy per connection is [40, 41].

a = NDh(p)/ D* = Nh(p)/ D.

Knowing /(p), it is easy to determine N for a given « .

When too many vectors are stored, NAM becomes overloaded and the
probability of accurate retrieval drops (even to 0). The value of a for which a
NAM still works reliably depends on the mode of its use (in addition to the
NAM design and distributions of base and query vectors). The mode where the
undistorted stored base vectors are still stable NAM states (or stable states differ
by few components from the intended base vectors), has the largest value of o .
(We denote the largest value of o for this mode as "critical", «_., and the

the stored vectors become unstable.

crit ?
corresponding N as N, .) For a>a_,
Note that checking if an input vector is stable does not allow one to extract
information from the NAM, since vectors not stored can also be stable.

The information (in the Shannon information-theoretic sense) that can be
extracted from a NAM is determined by the information efficiency (per connec-
tion) £ . This quantity is bounded above by some specific a (the entropy per
connection that still permits information extraction), which in its turn is bounded
above by o_,. A NAM may work in recognition or correction mode. In
recognition mode, the NAM distinguishes whether the input (query) vector is

from the base or not, yielding extracted information quantified by E

recog *

When NAM answers the nearest neighbor queries (correction mode),
information quantified by £, is extracted from the NAM by correction
(completion) of the distorted query vectors. The more distorted the base vector
used as the query at the NAM input, the more information E_  is extracted from
the NAM (provided that the intended base vector is sufficiently accurately
retrieved). However, more distorted input vectors lower the value of «, at
which the NAM is still able to retrieve the correct base vectors, and so lowers
E__ (which is constrained to be less than a__). We refer to these information-

corr corr
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theoretic properties of NAMs as their information characteristics.
Let us now consider specific variants of the generic NAM. Hereafter we use
the terms "NAM" and "(neural) network" interchangeably.

HOPFIELD NAMS

Hopfield networks with dense vectors. In the Hopfield NAM, "dense" random
binary vectors (with the components from {0,1} with the probability p=1/2 of

1) are used [68]. The learning procedure forms a symmetric matrix W of
connection weights with positive and negative elements. The connection matrix
is constructed by successively storing each of the base vectors y according to

the Hopfield learning rule:
Wy =Wy + (0 =Py, —q)

with parameter g=p=1/2; w, =0. (For brevity, we use the same name for
generalization of this rule with g <1/2, though Hopfield did not propose it,

Subsection "Hopfield networks with sparse vectors").

The dynamics in [68] is sequential (in many subsequent studies and
implementations it is parallel) with the threshold 7 =0. It was shown [68] that
each neuron state update decreases the energy function

-1 / 2)Zi,j=1,D ZWiZ;

so that a (local) minimum of energy is eventually reached and such a network
comes into a stable activation state.

As D — oo, various methods of analysis and approximation of experimental
(modeling) data obtain «_, ~0.14 [68, 8, 5, 71, 35] which gives N_, ~0.14D
. are achieved at rather small
- see refs in [107].

As for EX™ for distortion by noise, 0.092 was obtained by the method of

corr

crit
since /(1/2)=1. Note that similar values of o,
finite D . For rigorous proofs of (smaller) o

approximate dynamical equations of the mean field [71], and 0.095 by
approximating the experiments to D — oo [35].

By the coding theory methods in [112] it was shown that asymptotically (as
D — ) it is possible to retrieve (with probability approaching 1) exact base
vectors with query vectors distorted by noise (so that their dist, <D /2 from

the base vectors), for N=D/(2InD) stored base vectors if non-retrieval of

Ham

some is permitted. If one requires the exact retrieval of all stored base vectors,
the maximum number of vectors which can be stored decreases to
N=D/(4In D). These values of N were shown to be the lower and upper
bounds in [25, 20]. Note that in [47] «
(obtained by a non-Hebbian learning rule); a pseudoinverse rule (e.g. [125, 140])
gives o, =1.

For correlated base vectors, the storage capacity N,

crit

=2 was obtained for "optimal" W

crit

crit
depends on the
structure of the correlation. When the base vectors are generated by a one-
dimensional Markov chain [107], N_.  is somewhat higher than it is for

crit
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independent vectors. This and other correlation models were considered in [108].

Hopfield networks with sparse vectors. Hopfield NAMs operating with
sparse vectors p <1/2 appeared to have better information characteristics [154]
(see also Sections "Willshaw NAMs", "Potts NAMs") than those operating with
dense vectors ( p=1/2). For example, they attain values N > D.

In the usual Hopfield NAM and learning rule (with g=p=1/2 and
threshold 7 =0 ) the number of active neurons is kept near D /2 by the balance
of negative and positive connections in W. Using the Hopfield rule with
q=p<1/2 one can not set 7 =0. This is especially evident for the Hebb
learning rule (which we obtain from the Hopfield rule by setting ¢=0). All
connections become non-negative, and 7 =0 eventually activates all neurons.
Similar behavior is demonstrated by the Hopfield NAM and learning rule with
qg=p<1/2. The problem of network activity control (i.e. maintaining some
average activity level chosen by the designer) can be solved by applying an
appropriate uniform activation bias to all neurons [9, 21]. This is achieved by
setting an appropriate positive value of the time-varying threshold 7'(¢) [21] to
ensure, for example, pD < D/2 active neurons (to match pD in the stored
vectors) for parallel dynamics.

Note that the Hopfield rule with ¢ = p <1/2 provides better information
characteristics than the pure Hebb rule with ¢ =0 [41, 35]. However, the Hebb

rule requires modification of only (pD)* connections per vector, whereas the
Hopfield rule modifies all connections per vector.

As D—>ow and p—>0 (pD>>1, and often p~InD/ D) the theoretical
analysis (e.g., [154, 41, 34] and others) gives

o, =(oge)/2=1/(2In2) =0.72

for the Hopfield rule with ¢ = p, the Hebb rule, and the "optimal" W [47]. In

1/2

[34] they use a scaled sparseness parameter &= (Inp) '~ to investigate

max
crit

max
crit

o =0.43 only.
In [122] it was shown that E™ =1/(4In2)~0.36 (by the impractical

recog
exhaustive enumeration procedure of checking that all vectors of the base are
stable and all other vectors with the same number of 1-components are not
stable). This empirical estimate coincides with the estimate [41]. For retrieval by
a single step of dynamics,

convergence of o, to o . For £ <<1 they obtained « ;" ~0.72. However

for £ =0.1 (correspondingto p=10" andto D >10"), o

E™ =1/(8In2)~0.18

corr

for distortion by deletion of half the 1-components of a base vector [40, 41, 119,
146].
Let us note again, all these results are obtained for D — « and p — 0. For

these conditions, multi-step retrieval (the usual mode of NAM retrieval as
explained in Subsection "A generic scheme and characteristics of NAMs") is not
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required since NAM reaches a stable state after a single step. In terms of N,
since #(p) — 0 for p — 0, it follows that N >> D, that is

N, =a,D/h(p)—> oo
much faster than D — .

The same is valid for N corresponding to E .

In the experiments [146], for the Hebb rule and multi-step retrieval E_
values up to 0.09 were obtained. Detailed studies of the information
characteristics of the finite- and infinite-dimensional networks with the Hopfield
rule, can be found in [34, 35]. Different degrees of distortion by noise for vectors
with pD unit components were used. The dynamic threshold ensured pD
active neurons at each step of the parallel dynamics. It was shown [35] that with
this choice of threshold the stable states are static (some vector) or cycles of
length 2 (two alternating vectors on adjacent steps of the dynamics). (This is the
same behavior as for the fixed static threshold and is valid for all networks with
symmetric connections.) It has been demonstrated experimentally [35] that even
if after the first step of dynamics

simy,, (y,z) <simy, (y,X)

(where y is the correct base vector, z is the network state, and x is the
distorted input), the correct base vector can sometimes be retrieved by the
subsequent steps of the dynamics. Conversely, increasing sim, (y,z) at the first
step of the dynamics does not guarantee correct retrieval [S]. These results apply
to both the dense and sparse vector cases. The study [35] used analytical
methods developed for the dense Hopfield network and adapted for sparse
vectors, including the statistical neurodynamics (SN) [5, 34], the replica method
(RM) [8], and the single step method (SS) [80].

All these analytical methods rather poorly predicted the behavior of finite
networks for highly sparse vectors, at least for the parallel dynamics studied.
(Note that all these methods (SN, RM, SS) provide accurate results for D — o
and p — 0, where retrieval by a single step of dynamics is enough.) Empirical
experimentation avoids the shortcomings of these analytical methods by directly
simulating the behavior of the networks. These simulations allow ¢, and

information efficiency, E

corr ?

to be estimated as a functions of p,D and the level
of noise in the input vectors. The value of E__ monotonically increases as D
increases for a constant p. For p = 0.001 — 0.01, which corresponds to the
activity level of neurons in the brain, the maximum value of E _ ~0.205 was
obtained by approximating experimental results to the case D — o [35] (higher
than E" =0.18 for p > 0).

In [38] the time of retrieval in the Hopfield network was investigated (using
the number of retrieval steps observed in simulation experiments; this number
somewhat increases with D). They conclude that for random vectors with small
p, large D, and large N, Hopfield networks may be faster than some other

algorithms (e.g., the inverted index) for approximate and exact nearest neighbor
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querying.
An increase in the number N

crit

of stable states corresponding to the stored

vectors proportional to (D/InD)*> for p~InD/D is shown asymptotically in

[4] (although non-rigorously, see also [34]). Note, this result also follows from
N=aD/h(p) by approximating #h(p)=-plogp for small enough p
(-Inp>>1).

In [67] they give a rigorous analysis of a Hopfield network variant (neurons
are divided into parts, see Section "Potts NAMs"), with the Hebb learning rule
and p slightly less than InD/ D, for retrieval by a single step of parallel
dynamics with fixed 7. The lower and upper bounds of N were obtained for
which the memory vectors are stable states (with probability approaching 1 as
D — ), and can also be exactly retrieved from query vectors distorted by
noise. The lower and upper bounds of N found in [67] are of the same order as
those found in [4]. For this mode of network operation, if we approximate the
number of retrieval steps as InD, we may estimate speed-up as D/ (In D)’
relative to linear search (see Subsection "A generic scheme and characteristics of
NAMs").

For both dense and sparse vectors, the NAM capacity N™ grows with
increasing D . Also, in order to maintain an adequate information content for a
sparse vector ( Dh(p) for h(p)<<1), it is necessary to have a sufficiently high
D. The number of connections grows as D squared (because Hopfield
networks are fully connected), which is unattainable even on modern computers
at D of millions. Besides, the neurobiologically plausible number of
connections per neuron is on the order of 10,000. Therefore, the development of
"diluted" networks that perform NAM functions without being fully connected is
attractive, e.g. [105, 150, 151, 41, 142]. This partial connectivity can be used to
reduce the memory complexity of NAM from quadratic to linear in D [98, 99].

WILLSHAW NAMs

Willshaw networks with sparse vectors. NAMs with binary connections from
{0,1} are promising since they require only one bit per connection. Such
networks were proposed both in heteroassociative [157] and autoassociative
versions (e.g. [118, 156, 16, 152,49, 115, 119, 122, 24, 48, 41, 42, 43, 44, 81]).
The learning rule (let's call it the Willshaw rule) becomes:

Wi =W, V(yi /\yj),

where v is disjunction, A is conjunction. Various strategies for threshold
setting can be used, e.g., setting threshold 7' to ensure pD active neurons, as in
Subsection "Hopfield networks with sparse vectors".

Note that this NAM can not work with dense vectors, since storing only a
small number of dense vectors will set almost all the connection weights to 1.
Moreover, for the same reason, the Willshaw networks (unlike the Hopfield
networks) cease to work at any constant p and o as D — oo . The number N

of random binary vectors able to be stored and retrieved in the Willshaw NAM
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grows with decreasing vector density. Even for not very large networks and not
very sparse vectors (p~\/5/D), N can exceed D (e.g. D = 4096 allowed

storage and retrieval of up to N = 7000 vectors distorted by noise in the
experiments of [16]). The particular N values reached (for D and p fixed)
vary depending on the degree of the query vector distortion and on the desired
probability of retrieval.

The maximum theoretical a., =In2~0.69 is reached as D —>o for

p~InD/ D [40, 119, 41]. In [122] they obtained

EX™ =In2/2~0.346

recog

(using a computationally expensive exhaustive enumeration procedure). In [42,

43] the same «a_, and E'. ~were obtained analytically for the sparseness

crit recog
parameter f =log(l1/ p)/(pD) equal to 1, i.e. for pD somewhat less than
log D . (The probability of a connection to be modified after storing N vectors
is 1-(1-p*)" ~1—exp(—Np*) =1-exp(—aDp’ / h(p))
=1-exp(—aplog(l/ p)/(Bh(p))) =~1-exp(—a/P)<1 (we used p—0); thus
the network can be analyzed for fixed o and B at D — 0 .) The same upper

bound of E is given as the maximum entropy of W leamnt by the Willshaw
rule. In [119] the efficiency

E™ =In2/4~0.173

corr

was theoretically shown for single-step (as well as multi-step) retrieval and
distortion by deletion.

For multi-step retrieval in finite Willshaw NAMs (with distortion by
deletion) £, upto 0.19 (at D =20000) was obtained experimentally in [146].

Experiments in [146, 44] show that in the Willshaw NAM (unlike the Hopfield
NAM), the values «, . and E__ for not too large D are higher than for D — o

corr corr

(see also [42]). Note that the quality of retrieval in the Willshaw NAM is higher
than in the Hopfield NAM; the retrieved vectors more often coincide exactly
with the stored vectors of the base.

From the detailed analytical and experimental study of the values of a__ in

corr

[44] (at various levels of sparsely, parameterized as f , degrees of distortion by
noise, and D up to 100000), it was found that £, ~0.13 per connection can be
reached in the experiments (for small networks, N =640, pD =20, f=0.25).
It was also shown that the results of the analytical methods SS [80] and GR [48]
are far from the experimental results (in most cases, worse than them). Due to
the connections being binary, the efficiency per bit of connection implemented
in computer memory is higher than that for the Hopfield network (where
E__~0.205 per connection [41]).

A review of NAM studies in [81] concludes that for Willshaw networks
having connection matrix W with probability of a nonzero element close to 0 or
1, compression of W improves information characteristics compared with the

14 ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Ku6. u Bbru. Texs. 2017. Ne 2 (188)



Neural Distributed Autoassociative Memories: A Survey

usual uncompressed Willshaw NAM. Such compressed W are obtained when
the base vectors have the number of 1s sublogarithmic or superlogarithmic in
D . Their comparison of the retrieval time in compressed Willshaw networks
and the inverted index has shown the advantage of the inverted index for most
parameters.

An analytical and experimental comparison of the Willshaw, the GB
(Subsection "Willshaw-Potts network™), and the Hopfield networks (with the
Hebb rule [4]) for vectors with p of the order of InD/D and distortion by

deletion was carried out in [59]. They investigate single-step retrieval
theoretically (asymptotically, for D — co with probability approaching 1). For

all models, the lower bound of N of the order (D/InD)* is obtained, and for

the Willshaw network the matching upper bound is shown. In experiments, the
results are worse for a fixed threshold than for a variable threshold. The
Hopfield network performed worse, in terms of empirical probability of retrieval
versus N , compared with the other NAMSs, probably because of the non-optimal
Hebb learning rule and non-optimal threshold selection.

For the diluted Willshaw networks [24, 6, 41, 99] the optimal pD

(providing approximately the same capacity N ) is higher than for the fully
connected networks.

Willshaw networks in the index structures for nearest neighbor search. In
[159] the base of binary sparse vectors is divided into disjoint sets (of the same
cardinality) and each is stored in a Willshaw NAM with its own W . When the
query vector X is input, sim,, (X, Wx) is calculated for the matrices W of all

sets, and the vectors of sets with the maximum similarity are used as the nearest
neighbor candidates (verified by linear search). Analysis and experiments for
bases of random vectors with small random distortions of query vectors showed
that up to a certain number of vectors in each network the nearest neighbor is
found with a high probability (in experiments, without error) and faster than by
linear search only. If this number of vectors per network is exceeded, both the
probability of finding an incorrect nearest neighbor and its distance to the correct
vector increase. A somewhat lower speedup relative to linear search is shown for
real, nonrandom data, versus synthetic, random data. In [60] similar results were
obtained analytically (asymptotically for D -—>o and error probability
approaching zero) and experimentally for bases of sparse and dense random
vectors (for the Hopfield rule).

POTTS NAMs

Potts networks. The NAM from [77] can be considered as a network of neurons
that are divided into non-overlapping parts ("columns"), with d neurons in each
column and only one active neuron in the state z=d —1, for the remaining
column neurons z=-1. That is, the sum of activations over all the neurons is
zero in each column. The Hebb rule is used for learning.

For the more convenient version of this model with the neurons having the
states from {0,1} and single active neuron per column, the Hopfield rule is used.
The connection matrix W for the entire network is constructed so that w, =0

for neurons i and j in the same column (this implies that w, =0). That is, the

ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Ku6. u Bbru. Texs. 2017. Ne 2 (188) 15



V.1 Gritsenko, D.A. Rachkovskij, A.A. Frolov, R. Gayler, D. Kleyko, E. Osipov

network is structured as a multipartite graph. Network dynamics (parallel or
sequential) activates the one neuron in each column with the maximum input
sum s (one of these neurons is randomly activated for neurons with equal s,
but see the GB network below).

For the number of columns D, the value of N_. /D of the Potts network

crit
was estimated by [77] to be d(d —1)/2 times more than 0.14 (i.e., ¢, for the
Hopfield network with p=1/2). However, to approximate the number of

connections in the Hopfield network, the Potts network must have D/d
columns. Note also that one "Potts vector" contains only (D/d)logd bits of
information [79].

The Potts network with parallel and sequential dynamics, and with single-
step and multi-step retrieval was analytically explored in [109]. For exact
retrieval (asymptotically, as D — oo, with probability approaching 1), the upper
and lower bounds of N were estimated both for the mode of querying with
stable stored vectors and for the correction mode querying with distorted query
vectors. In both cases,

N=cD/InD,

where the constant ¢ increases quadratically in d, but with different ¢
depending on the degree of distortion and the desired probability of state to be
stable or vector to be retrieved.

Willshaw-Potts network. For binary connections with the Willshaw learning
rule, the Potts network becomes the Willshaw-Potts network [79]. When a vector
is stored, a clique (a complete subgraph) is created in the connection graph. As
for the Hopfield network, only static stable states or cycles of length 2 were
experimentally observed for parallel dynamics. According to [79], the
information characteristics of this network are close to the Willshaw network at
the same vector sparsity. Since the information content of Willshaw-Potts
vectors is low, the N_, is higher than for the Willshaw network.

crit

This network was rediscovered as the GB network in [58] with various
modifications [3, 59] and hardware implementations (for example, [117] with
non-binary connections). The GB network is oriented for exact retrieval of
vectors with distortion by deletion (columns without values activate all neurons).
The peculiarities of the GB network include: connections of neurons with
themselves; the possibility for several neurons in a column (with the maximum
input sum) to be in the active state; the contribution from each column to the
input sum of a neuron is not more than 1; various options for threshold
management; the possibility of working with vectors having all zero components
in some columns, etc. A theoretical GB analysis for single-step retrieval, as well
as an experimental comparison with the Hopfield and the Willshaw networks for
multi-step retrieval is given in [59], see also Subsection "Willshaw networks
with sparse vectors".

Processing of realistic data. To represent arbitrary binary vectors in the
Potts network, they are divided into segments of dimension logd and each

segment is encoded by the activation of one neuron of its d -dimensional
column [97]. Components of integer vectors can be represented in a similar way.
Simulated data are typically generated as independent random samples. This
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ensures that the vectors to be stored are very nearly equally and maximally
dissimilar. However, data generated from situations in the world is very unlikely
to be so neatly distributed. When working with (unevenly distributed) real data,
NAM is used non-optimally (many connections are not modified, others are
"oversaturated"). To overcome this in the GB network, a free column neuron is
allocated when the number of connections of a neuron (encoding some value)
exceeds the threshold [19]. During retrieval, all column neurons that encode a
certain value are activated.

For better balancing the number of connections, in [64] the number of
neurons in the column allocated to represent a vector component is proportional
to the frequency of its 1-value in the vectors of the base. During storage, the
various neurons representing the component are activated in turn. The authors of
[64] also propose an algorithm for finding (with a high probability) all vectors of
the base closest to the query vector distorted by deletion; the algorithm often
significantly reduces the number of required queries.

GENERALIZATION IN NAMs

The Hebbian learning in matrix-type distributed memories naturally builds a
kind of correlation matrix where the frequencies of joint occurrence of active
neurons are accumulated in the updated connection weights. The neural
assemblies thus formed in the network may have a complex internal structure
reflecting the similarity structure of stored data. This structure can be revealed as
stable states of the network — in the general case, different from the stored data
vectors. That is, it is possible for vectors retrieved from a network to not be
identical to any of the vectors stored in the network (which is generally
undesirable).

Similarity preserving binary vectors. Similarity of patterns of active
neurons (represented as binary vectors) are assumed to reflect the similarity of
items (of various complexity and generality) they encode. The similarity value is
measured in terms of the number or fraction of common active neurons (or
overlap, i.e. normalized dot product of the representing binary vectors).
Moreover, the similarity "content" is available as the identities of common active
neurons (the IDs of the common 1-components of the representing binary
vectors).

Note that such data representation schemes by similarity preserving binary
vectors have been developed for objects represented by various data types,
mainly for (feature) vectors (see survey in [131]), but also for structured data
types such as sequences [102, 72, 85,86] and graphs [127, 128, 148, 136, 62,
134]. A significant part of this research is developed in the framework of
distributed representations [45, 76, 106, 126, 89], including binary sparse
distributed representations [102, 98, 103, 127, 128, 113, 114, 137, 138, 139, 148,
135, 136, 61, 134, 129, 130, 131, 132, 31, 33] and dense distributed representa-
tions [75, 76] (see [82, 84, 87, 88, 83] for examples of their applications).

Complex internal structure of cell assemblies for graded connections.
When binary vectors reflecting similarity of real objects are stored in a NAM by
variants of the Hebb (or Hopfield) rule, the weights of connections between the
neurons frequently activated together will be greater than the mean value of all
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the weights. On the other hand, rare combinations of active neurons will have
smaller weights. Thus, neuron assemblies (cell assemblies in terms of Hebb
[65]) formed in the network may have a very complicated structure. Hebb and
Milner introduced the notions of "cores" and "fringes" ([65] pp. 126—134; for
more recent research see [101]) to characterize qualitatively such complex
internal structure of assemblies.

The notions of core (kernel, nucleus) and fringe (halo) of assemblies have
attracted attention to the function of assemblies distinct from the function of
associative memory. This different function is not just memorization of
individual activity patterns (vectors), but emergence of some generalized
internal representations, that were not explicitly presented to the network as
vectors for memorization.

Some assembly cores may correspond to "prototypes" representing subsets
of attributes (encoded by the active neurons represented by the 1-components of
the corresponding vectors) often present together in some input vectors. Note
that some of these subsets of components/attributes may never be present in any
single vector. Stronger cores, corresponding to stable combinations of a small
number of typical attributes present in many vectors employed for learning, may
correspond to some more abstract or general object category (class). Cores
formed by more attributes may represent more specific categories, or object
prototypes. However, object tokens (category instances) may also have strong
cores if they were often presented to the network for learning. Note that some
mechanisms may exist to prevent repeated learning of vectors that are already
"familiar" to the network. Also, the rate of weight modification may vary based
on the "importance" of the input vector.

The representations of real objects have different degrees of similarity with
each other. Similarities in various combinations of features often form different
hierarchies of similarities that reflect hierarchies of categories of different
degrees of generalization (object — class of objects — a more general class,
etc.). So, assemblies formed in the network (cores and fringes of different
"strength") may have a complex and rich hierarchical structure, with multiple
overlapping hierarchies reflecting the structure of different contents and values
of similarity implicitly present in the base of vectors used for the unsupervised
network learning by the employed variant of the Hebb rule. Thus, many types of
the category-based hierarchies (also known as generalization or classification or
type-token hierarchies) may naturally emerge in the internal structure of
assemblies formed in a single assembly neural network (NAM).

Complex internal structure of a neural assembly allows a virtually
continuous variety of hierarchical transitions. To reveal various types of
categories and prototypes and instances formed in the network, the
corresponding assemblies should be activated. To activate only stronger cores,
higher values of threshold should be used. Lower threshold values may
additionally activate fringes.

Research of generalization function in NAMs. Additional stable states that
emerge in NAM after memorizing random base vectors and do not coincide with
the base vectors are known as false or spurious states or memories, e.g., [69,
155]. In [155] they regarded the emergence of spurious attractors in the Hopfield
networks as a side effect of the main function of distributed NAMs, consisting
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not in memorizing individual patterns, but in formation of prototypes. Such an
interpretation is close to the earlier work [13, 11, 12] that considered formation
of concepts, prototypes, and taxonomic hierarchies as a natural generalization of
correlated patterns memorized in a distributed memory.

Research of hierarchically correlated patterns and states in Hopfield
networks has been initiated by physicists who studied the "ultrametric"
organization of ground states in spin-glasses (e.g., [123, 32, 63]; see also [6] and
its references). While these earlier works required explicit representation of
patterns at various hierarchical levels to be used in the learning rule, more
neurobiologically plausible and practical Hebb and Hopfield rules applied to
(hierarchically) correlated sparse binary patterns themselves (obtained with
some simple correlation model) were considered, e.g., in [153, 66]. [153]
theoretically showed "natural" formation of stable cores and fringes as well as
traveling through different levels of hierarchies by uniform changing of the
threshold. More complex probabilistic neuron dynamics and threshold control
expressing neuronal fatigue was modeled in [66]. Dynamics of transitions
between stable memory states that models human free recall data and can also be
used with hierarchically organized data was considered in [143]. The "neuro-
window" approach of [74] may be considered as using multiple thresholds to
activate cores or fringes. Revealing the stable states corresponding to emergent
assemblies is used for data mining (binary factor analysis) in [36, 37].

Generalization in NAMS with binary connections. The Willshaw learning
rule does not form assemblies with the complex internal structure needed for
generalization functions, such as emergence of generalization (type-token)
hierarchies. The Willshaw learning rule causes the connectivity of an assembly
(corresponding to a vector) to become full after a single learning act (vector
storage) and not change thereafter. To preserve the capability of forming
assemblies with a non-uniform connectivity in NAMs with binary connections, a
stochastic analogue of the Hebbian learning rule for binary connections was
proposed in [100, 98]:

Wy =W V(3 A Y AG),

where &, is a binary random variable equal to 1 with the probability that

determines the learning rate.

The connectivity value for some set of neurons is determined here by the
number of their 1-weight connections. Neurons that have more than some
fraction of 1-weight connections with the other neurons of the same assembly
may be attributed to the core part of the assembly.

In [15] they experimentally studied formation of assemblies with cores and
fringes using the above mentioned "stochastic Willshaw" rule (D = 4096,
pD = 120 — 200, about 60 neurons in the core and 60—140 neurons in the

fringe). Tests have been performed on retrieving a core by its part; a core and its
full fringe by the core and a part of the fringe (the most difficult test); and, a core
by a part of its fringe. As expected, experiments with correlated base vectors
have shown a substantial decrease of storage capacity compared to random
independent vectors. A special learning rule was proposed to increase the
stability of fringes.
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Formation of prototypes with the stochastic Willshaw rule was also
investigated in [7, 23]; a model of paired-associate learning in humans is
considered in [141].

Generalization in modular NAMs. A modular structure of neural networks
where the Hebb assemblies are formed inside the modules was proposed and
developed in [50-56]. The modular assembly neural network is intended for
recognition of a limited number of classes. The network is artificially partitioned
into several modules (sub-networks) according to the number of classes that the
network is required to recognize. Each module network is full-connected,
connections are graded. The features extracted from all objects of a certain class
are encoded into activation of the patterns of neurons within the corresponding
sub-network. After learning, the Hebb assemblies are formed in each module
network. In this modular structure, the network acquires the capability to
generalize the description of each class within the corresponding module (sub-
network), i.e. separately and completely independently from all other classes. In
[56] it was shown that the number of connections in each module can be reduced
without loss of the recognition capability.

NAMs WITH HIGHER-ORDER CONNECTIONS
AND WITHOUT CONNECTIONS

Neural networks in the previous sections have connections of order n=2 (a
connection is between two neurons). In this section we consider values of »
other than 2, for the NAMs with the structure of the Hopfield network (unlike
Section "Hopfield NAMs" where we only considered the case n=2).

Neural networks with higher-order connections. In the higher-order (order
n>2) generalization of the Hopfield network, n neurons are connected by
single connection instead of just two (for example, [124, 17, 46, 1, 70, 94, 26,
95, 96, 30]). For the neuron with states from {—1, + 1} ( p = 1/2), the network

dynamics can be defined as
Zi = Slgn(z_hm/’"# M}UI wiJn Zj] woJn ) :

The analogue of the Hebb learning rule becomes

Wy = Vo 2 Yt

Other learning rules can also be used.
The number of stable states corresponding to the stored random binary
vectors (possibly slightly different from them) is estimated in the mentioned

papers to be N, ~a,,(n)D"". As in NAMs with connections between pairs of

rit

neurons, o_. depends on the specific type of learning rule and network

crit
dynamics. a_, does not exceed 2 and decreases with increasing n [94]. For the
absence of errors (with a probability approaching 1), the number of stored

vectors
N~ % D' /InD
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(for example, [46, 26, 95, 30]). In [95] they obtain c, >2(2n—-3)!! So, the
exponential in n growth of N is due to the exponential growth of the
connection number, and the characteristics per connection deteriorate with
increasing 7.

The generalization of Krotov-Hopfield. For networks with higher-order
connections, the network energy in [95] is written as

>y

with a smooth function F(u). For polynomial F(u) and n=2, this gives the
energy of the usual Hopfield network ([68] and Subsection "Hopfield networks
with dense vectors"). For small 7, many memory vectors y" have
approximately the same values of F(x) and make a comparable contribution to

the energy. For n— oo, the main contribution to the energy is given by the
memory vector y with the largest (z,y). For intermediate »n, a large

contribution is made by several nearest memory vectors.
In [30] it is proved that for F(u)=exp(u) this memory allows one to

<D/2 from

the stored vectors) by a single step of the sequential dynamics, for some
0<a<In2/2, depending on the distortion, with probability converging to 1 for
D—oo.

In [95] they consider the operation of such a network in the classification
mode, where each stored base vector corresponds to one of the categories to be
recognized. In particular, to classify the handwritten digits of the MNIST base
into 10 classes, in addition to the "visible" neurons to which 28x28 images (with
pixel values in [-1, + 1]) are input, there are 10 "classification" neurons. The
value of the output is obtained by a non-linearity g(s) applied to the input sum

retrieve N =exp(aD) randomly distorted vectors (within dist

Ham

s, for example, tanh(s) (instead of the sign(s) function used in the memory
mode). The outputs of visible neurons are fixed, and the outputs of classification
neurons are determined by a single step of the dynamics.

Vectors of N memory states are formed by learning on the training set. The
N = 2000 memory vectors minimizing the classification error for the 60,000
images of the MNIST training set were obtained with the stochastic gradient
descent algorithm.

For a single step of the dynamics this structure is equivalent to a perceptron
with one layer of N hidden neurons [95]. The nonlinearity at the output of the
visible neurons is f(u) = F(u), and that at the output of hidden neurons is g(u).
The learned memory vectors (with components normalized to [-1, + 1]) are
encoded in the weight vectors of the connections between the visible neurons
and the hidden neurons. It is shown that when 7 changes the visualized memory
vectors change. For small 7, the memorized vectors correspond to the features
of the digit images, and for large n they become prototypes of individual digits
[95, 96].

Neural networks with first-order connections. In a neural network with
connection order n =1, each neuron is connected only with itself. They can be
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considered as networks without connections, where learning changes the state of
the neurons themselves (with "neuron plasticity" [39]). Thus, memory is a single
vector of the dimension of the vectors of the base.

For binary connections, we get the Bloom filter (see the reviews [22, 149]),
which exactly recognizes the absence of an undistorted query vector in the
stored database by absence of at least one of its 1-components in the memory
vector. If the 1-components of the query vector are a subset of 1-components of
the memory vector, the vector is recognized as the base vector, but it is
necessary to check this, since there is a false positive probability due to "ghosts"
(vectors not from the base, the 1-components of which belong to the memory
vector). Ghosts can be considered as analogous to spurious memories (Subsec-
tion "Research of generalization function in NAMs").

An analysis of the probability of their appearance under certain restrictions
on stored random vectors is given in [144]. In [158], they reduce the probability
of false positives. In [57], a Bloom filter version is analyzed which recognizes
the absence of distorted query vectors. The autoscaling Bloom filter approach
proposed in [92] suggests a generalization of the counting Bloom filter approach
based on the mathematics of sparse hyperdimensional computing and allows
elastic adjustment of its capacity with probabilistic bounds on false positives and
true positives. In [90], the formation of sparse memory vectors (with an
additional operation of context-dependent thinning [134]) is considered, and in
[91] the probability of correct recognition is estimated. The use of graded
connections (the formation of the memory vector is done by addition), including
subsequent binarization, and the classification problem for vectors not from the
base, are considered in [89, 91].

For real-valued vectors and connections, the recognition of random
undistorted vectors is analyzed in [10, 126]. In [73] they allow distortion of
vectors. In [126, 73], the analysis of non-random base vectors is given.

NAMs WITH A BIPARTITE GRAPH STRUCTURE FOR NONBINARY DATA WITH CONSTRAINTS

In some recent papers (e.g., [78, 145, 110, 111]), in order to create NAMs which
can store and retrieve (from rather noisy input vectors) the number N of (not
always binary) vectors with N near exponential in D, the vectors considered
are not arbitrary random but satisfy (linear) constraints. The neural network has
the structure of a bipartite graph. One set of neurons (not connected with each
other) is used to represent the vectors of the base, neurons of the other set
represent constraints. A rectangular matrix of connections between these two
sets is learned on the vectors of the base. The connection vector of each
constraint neuron represents the vector of that particular constraint. Iterative
algorithms with local neuron computations are used for retrieval.

Iterative algorithms for learning constraint matrix and vector recovery. In
[78, 145], they consider the problem of the exact retrieval (with high probability)
of vectors that belong to a subspace of dimension less than D. The graded
weights of the bipartite graph connections representing linear constraints are
learned from the vectors of the base (which have only non-negative integer
components). Iterative algorithms are used for learning. The weights are
constrained to be sparse, which is required for analyzing the retrieval algorithm.
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The input (query) vectors x are obtained from the vectors y of the base by
additive noise: x=y+e, where e are random sparse vectors with (bipolar)

integer components. During retrieval, activity propagates first from the data
neurons to the constraint neurons and then in the opposite direction, and so on
for multistep retrieval. Non-linear transformations are used in neurons. In a
stable state, the data neurons represent a base vector, and all constraint neurons
obtain a total weighted zero input from the associated data neurons.

In [78] the vectors are divided into intersecting parts. Any part of the vector
belongs to a subspace of smaller dimension than the vector dimension of that
part. A subset of the constraint neurons corresponds to each part. They are not
looking for an orthogonal basis of constraints, but for vectors orthogonal to the

corresponding parts of the data vectors from the base: W*'y"*) =0, where k is

the part number. To do this, the objective function is formulated and optimized
with a stochastic gradient descent (several times for each part). During retrieval,
they first independently correct errors in each part by performing several steps of
the network dynamics. The correction is based on the fact that

W(k)y(k) =W®e®

Then, exploiting intersection of the parts, the parts without errors are used to
correct the parts with errors.
In [145], y from a subspace of dimension d <D are considered. Training

forms a matrix W of D —d non-zero linearly independent vectors orthogonal to
the vectors y of the base: Wy =0 for all y of the base. An iterative algorithm

of activity propagation in the network retrieves vy .

Algorithms [78, 145], described above, are claimed to store the number N
of vectors (generated from their respective data models) exponential in D
(0(a”), a>1) with the possibility of correcting a number of random errors that
is linear in the vector dimension, D . However, to ensure a high probability of
retrieval, a graph with a certain structure must be obtained, which is not
guaranteed by the learning algorithms used.

NAMs based on sparse recovery algorithms. To create autoassociative
memory on the basis of a bipartite graph, in [110, 111] they use connection
matrices W which allow them to reconstruct a sparse noise vector e which
additively distorts the vector y of the base to form the query vector x. Then the
required base vector is obtained as y =x—e. The noise vector is calculated
using sparse recovery methods (that is, methods that find the solution vector
with the least number of non-zero components). These methods require
knowledge of the linear constraints matrix W such that Wy =0 for all vectors
y of the base. For some models of vectors (i.e. constraints or generative proces-

ses for the base vectors), such W can be obtained in polynomial time from the
base of vectors generated by the model. In contrast to [78, 145], finding W is
guaranteed with high probability, and adversarial rather than random errors are
used as noise.

In [110] real-valued vectors are used as the base, satisfying a set of non-
sparse linear constraints. The data model, where the vectors of the base are given
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by linear combinations of vectors with sub-Gaussian components, allows storing
the number of vectors N up to exp(D”*). The data model with a basis of
orthonormal vectors provides N up to exp(d), where 1<d <D . Both models

allow for accurate recovery from vectors with significant noise.
In [111], as in [145], the vectors of the base are from a subspace defined by
sparse linear constraints. They consider both real-valued vectors and binary

vectors from {—1,+1}” satisfying W models of a certain type (sparse-sub-

Gaussian model). Learning is based on solving the dictionary learning problem
with a square dictionary [111]. An iterative retrieval algorithm uses the fact that
W is an expander graph with good properties [111]. The memory capacity and
resistance to distortion is increased relative to [110].

Note the drawback of the methods considered in this section is that bases of
real data may not correspond to the data models used.

In addition to being an interesting model of biological memory, neural network
autoassociative distributed memories (NAMs) have also been considered as
index structures that give promise to speed up nearest neighbor search relative to
linear search (and, hopefully, to some other index structures). This mainly
concerns sparse binary vectors of high dimension, because the number of such
vectors that it is possible to memorize and retrieve from a significantly distorted
version may far exceed the dimensionality of the vectors in some matrix-type
NAMs, and the ratio N/ D may be similar to the speed-up relative to linear
search (see the first four Sections).

Distributed NAMs have some drawbacks relative to traditional computer
science methods for nearest neighbor search. The vector retrieved by a NAM
may not be the nearest neighbor of the query vector. This could be tolerable if
the output vector is an approximate nearest neighbor from the set of stored
vectors. However, in NAMs the output vector may not even be a vector of the
base set ("spurious memories"). (Up to a certain number of stored vectors and
query vector distortion these problems remain insignificant.) For dense binary
vectors, the number of vectors able to be reliably stored and retrieved is (much)
smaller than the vector dimension. Also, NAMs are usually analyzed for the
average case of random vectors and distortions, whereas real data are not like
that, which results in poorer performance. However, available comparisons with
the inverted index for sparse binary vectors in the average case do not clearly
show the advantage of one or other algorithm in query time (Subsections "Hop-
field networks with sparse vectors", "Willshaw networks with sparse vectors")

An obvious approach to improve the memory and time complexity of the
matrix-type NAMs from quadratic to linear in vector dimension is the use of
incompletely connected networks with constant (but rather large) number of
connections per neuron.

An interesting direction is index structures for similarity search in which
NAM modules are used at some stages. The index structure of Subsection
"Willshaw networks in the index structures for nearest neighbor search" uses
several NAMs to memorize parts of the base, and the similarity of the result of
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single-step retrieval with the query vector is used to select the "best" NAM on
which to perform an exact linear search against its stored vectors.

Some studies are aimed at more efficient use of NAMs when working with
real data. For example, the GB network with binary connections uses different
neurons to represent the same component of the source vector, which allows for
more balanced use of connections.

In Section "Generalization in NAMs" we discussed the use of NAMs for
generalization rather than exact retrieval from associative memory. In the NAMs
that use versions of the Hebb learning rule, storage of vectors (even random
ones) is accompanied by emergence of additional stable states. For correlated
vectors, their common 1-components become "tightly" connected and stable
states corresponding to them arise. Revealing these stable states can be used for
data mining, e.g. for binary factor analysis [36, 37]. Research of complex
(possibly hierarchical) structure of stable states (discussed in terms of cores and
fringes of neural assemblies) may appear useful both for modeling brain function
and for applications.

Real data in many cases are not binary sparse vectors of high dimension
with which the NAMs considered in the first four Sections work best. So,
similarity preserving transformations to that format are required (Subsection
"Similarity preserving binary vectors"). However, the obtained vectors (as well
as the initial real data) are not random and independent, so the analytical and
experimental results available for random, independent vectors usually can not
predict NAM characteristics for real data.

Using data vectors (often non-binary) that satisfy some linear constraints
(instead of random independent vectors) allows bipartite graph based NAM
construction with capacity near exponential in the vector dimension (Section
"NAMs with a Bipartite Graph Structure for Nonbinary Data with Constraints").
However, again, this requires data from specific vector models (to which real
data often do not fit).

In NAMs with higher-order connections, connections are not between a
pair, but between a larger number of neurons (this number being the order). So,
the NAM becomes of tensor-type instead of matrix-type. These NAMs (Section
"NAMs with Higher-Order Connections and without Connections") allow
storing the number of dense vectors exponential in the order. However, this is
achieved by the corresponding increase in the number of connections, and
therefore in memory and in query time.

The higher-order NAMs are generalized in [95, 96], where, roughly, the
sum of polynomial functions of the dot products between all memory vectors
and the network state is used as the input sum of a neuron. Such a treatment
makes it possible to draw interesting analogies with perceptrons and kernel
methods in the classification problem. However, for nearest neighbor search, this
seems impose a query time exceeding that of linear search.

Overcoming these and other drawbacks and knowledge gaps, and improving
NAMs are promising topics for further research.

Let's note other directions of research in fast similarity search of binary
(non- sparse) vectors. Examples of index structures for exact search are [28]
(with a fixed query radius and analysis for worst-case data; however impractical
due to the small query radius required for sub-linear query time and moderate
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memory costs) and [116] (practical, with variable radius of the query and
analysis for random data).

Theoretical algorithms for approximate search (providing: sublinear search
time, a specified maximum difference of the result from the result of the exact
search, and no false negatives) in [2] are modifications of more practical
algorithm classes related to Locality Sensitive Hashing and Locality Sensitive
Filtering (see [18, 14, 147]). However, the latter allow false negatives (with low
probability). Unlike NAMs, these algorithms provide guarantees for the worst-
case data, but require a separate index structure for each degree of distortion of
the query vector. The bounds on the ratio of binomial coefficients [2] is useful
for NAMs.

We note that the index structures for the Hamming distance [28, 116] work
with vectors of moderate dimension (up to hundreds), and for binary sparse high
dimensional vectors Jaccard similarity index structures are used [147, 2, 27, 29].
A survey of these and other similar index structures is presented in the
forthcoming [133], see also [132] for another type of index structures.
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HEWUPOCETEBAS PACIIPEJIEJIEHHAS
ABTOACCOLMATUBHAS [TAMSATB: OB30P

B Hacrosiiem 0030pe pacCMOTPEHBI MOJIENIM aBTOACCOLIMATUBHOM paclpeIeiICHHON MaMsTH,
KOTOpBIE MOTYT OBITh €CTECTBEHHBIM 00pa3oM pealn30BaHbl HEHPOHHBIMU ceTAMH. Monenu
WCIIONB3YIOT JUIS 3alIOMHHAHUST BEKTOPOB B OCHOBHOM JIOKaJbHOM IIpaBHiIe O0YYEHHS ITyTeM
MoIH(UKAINY 3HAYCHUI BECOB MEKHEHPOHHBIX CBS3€H, KOTOPHIE CYIECTBYIOT MEXKIY BCeE-
MU HeWpoHamu (TIOJIHOCBSA3HBIE ceTH). B pacmpenesieHHON NaMATH pas3IndyHbIe BEKTOPHI
3allOMUHAIOT B OJIHUX M TeX K€ sdeiKkax MaMsATH, KOTOPBIM B pacCMaTpUBAaEcMOM CIly4yae
HEHPOHHOI CEeTH COOTBETCTBYIOT OJHHU M Te€ k€ CBs3H. OOBIYHO HCCIEAYIOT 3allOMHHAHME
BEKTOPOB, CJIy4aifHO BBIOPAHHBIX M3 HEKOTOPOTO pacIpe/eieHuUsI.

IIpu nmomaue Ha BXOJ aBTOACCOLUMATHUBHON MaMsITH MCKaXEHHBIX BAPHAHTOB 3aIIOMHEH-
HBIX B HEW BEKTOPOB OCYIIECTBISIETCS M3BJCYCHUE (BOCCTAHOBIICHHUE) ONMIKANIIETO 3arOM-
HEHHOTO BEKTOpa. DTO peaqu3yeTcs 3a CueT UTEPaTUBHOM IMHAMUKM HEHPOHHOM CeTH Ha
OCHOBE JIOKQJIbHO JOCTYITHOH B HEHpoHax MH(OpPMAINH, MOTYUYSHHON IO CBSI3SIM OT APYTHUX
HEeHpoHOB ceTu. BIoTh 70 ompeneneHHOro KOJM4ecTBa 3allOMHEHHBIX B CETH BEKTOPOB U
CTEIeHH UX UCKaXEHHs Ha BXOJE, B pe3yJIbTaTe JUHAMHUKHU CETh C CHMMETPUYHBIMU CBSI35IMU
NPUXOJUT B YCTOMUMBOE COCTOSIHUE, COOTBETCTBYIOIIEE 3allOMHEHHOMY B CETU BEKTOpY,
UMEIOLIEMY HauOOJIbIlIee CXOJACTBO C BXOAHBIM BEKTOPOM (CXOJCTBO OOBIYHO H3MEPSIOT B
TEPMHUHAX CKaJIIPHOTO IPOU3BENICHHUS).

Taxue HelpoceTeBble BapUaHThl AaBTOACCOILMATUBHOM MMaMATH MO3BOJIIOT 3aIlIOMHUTH C
BO3MOXXHOCTBIO BOCCTAHOBJICHHS TAKOTO KOJIMYECTBA BEKTOPOB, KOTOPOE MOXKET IIPEBBIIIATh
pPa3MepHOCTh BEKTOPOB (COBIAJAIOUIYI0 C KOJHMYecTBAa HEHpoHOB B ceTH). s BEKTOpPOB
0O0JIBIION Pa3MEPHOCTH TO OTKPHIBAET BO3MOXHOCTB IMOMCKA MPHOIMKESHHOTO OJIMKaNWIIero
cocela ¢ BPEMEHHOM CJIOKHOCTBIO, CYOITMHEHHON OT KOJMYECTBa 3allOMHEHHBIX B HEHPOH-
HOM ceTn BekTopoB. K HemocTaTkam Takoi mamsiTH OTHOCHTCS TO, YTO BOCCTAHOBJIEHHBIM
JIMHAMUKOM CETH BEKTOP MOXKET HE OBITh OJIMKANIIUM KO BXOJHOMY MIJIH JJaK€ MOXKET BOOO-
e He IpUHAaUIekKaTh K MHOXKECTBY 3alIOMHEHHBIX BEKTOPOB U 3HAYUTENIFHO OTJIMYATHCS OT
mo0oro u3 HuX. MccnenoBaHus pa3IMIHBIX THIIOB HEHPOCETEBOI aBTOACCOIMATHBHON TaMsi-
TH HaIpaBJICHb! HA BBISBIIEHUE JTUANa30HOB [1apaMETPOB, IIPU KOTOPBIX yKa3aHHBIE HE0CTa-
TKH TPOSABISIOTCS C MaJlOM BEpPOSTHOCTHIO, a JOCTOWHCTBA BBIPAXKEHBI B MaKCHUMaJbHOU
CTEIeHHU.
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OCHOBHOE BHHMAaHHE YACJICHO CeTsAM ¢ mapHbiMu cBs3simu Turma Hopfield, Willshaw,
Potts u pabore ¢ OMHApHBIMH pa3peKCHHBIMH BEKTOpaMH (BEKTOPAMHU C KOJHYECTBOM €[IH-
HUYHBIX KOMIIOHEHTOB, MQJIBIM 10 CPAaBHEHHIO C KOJUYECTBOM HMX HYJIEBBIX KOMIIOHEHTOB),
T.K. TOJIBKO UIsI TaKUX BEKTOPOB YyHAACTCA 3allOMHUTH C BO3MOXXHOCTHBIO BOCCTAHOBJICHHSA
0O0JIBIIIOE KOJTHYIECTBO BEKTOPOB. [IoMHMO (DYyHKIIMH aBTOACCOLMATUBHON MaMSTH, IS 3TUX
ceTel Takke obOcyxnaercs QyHKIUS 0000meHus. OOCYXKIAIOTCS TaKKe HEMOTHOCBS3HBIC
cetn. Kpome Toro, paccMoTpeHa aBroaccoudaTHBHAs NMaMATh B HEHPOHHBIX CETSIX CO CBA3S-
MU BBICHICTO MOPAAKAa — TO €CTh CO CBA3SIMH HE MEKIY ITapaMu, a MEXKIY 6OJ'ILHII/IM KOJIn4e-
CTBOM HEMPOHOB.

PaccmoTpena Taxke aBTOAcCOLMATUBHAS NMaMATh B HEHMPOHHBIX CETAX CO CTPYKTYPOH
IBYIOJIBHOTO Tpada, e OZHO MHOXKECTBO HEHPOHOB NPEICTABILSIET 3aIIOMUHAEMBIE BEKTO-
pBI, @ Opyroe — JHMHEHHbIE OrPaHUYEHHS, KOTOPBIM OHU HMOAYUHSIOTCSA. DTH CETH BBINOJIHS-
0T q)yHKL[I/II-O aBToaCCOHI/IaTI/IBHOﬁ namMATH U OJid HC6I/IHaprIX JAaHHBIX, YAOBJICTBOPAIOIINX
3aIaHHOM MOJIENH OTPaHNYEHUN.

OO0cyKnalTcsl OTHOLICHHE PAacCMOTPEHHBIX B 0030pe MoJiesiell HelipoceTeBol aBToac-
COLIMATHBHON paclpeelIeHHON MaMsATH K IpoOJIeMaTHKe OUCKA 10 CXOJCTBY, TOCTOMHCTBA
U HEOOCTAaTKH PACCMOTPEHHBIX METOAOB, HAIIpaBJICHUS ):[aﬂbHeﬁHJPlX HCCHCﬂOBaHHﬁ. OI[I/IH
13 MHTEPECHBIX M BCE €lIe HE IOJHOCTHIO pa3pelIeHHBIX BOIPOCOB 3aKIIOYaeTCS B TOM,
MOXET JIU HeI\/’IpOHHaﬂ aBToacColMaTuBHas IIaMATh HCKAaTbhb HpI/I6J'II/I)KCHHLIX GHH)KaﬁmHX
cocezielt ObICTpee APYruX MHAEKCHBIX CTPYKTYp UIA ITOMCKA MO CXOACTBY, B YaCTHOCTH, JUIS
Clly4as BEKTOPOB O4Y€Hb OOJIBIINX pa3MEpHOCTEH.

Knrwuesvie cnoea: pacnpeodenenHas accoyuamuHas NAMsmMv, DAPEHCEHHbLL OUHAPHBIL
sexmop, cemv Xonguioa, namame Yurnwoy, modeiv [lommca, druxcaiiwuil coceo, nouck
no €x00cmay.

B.I I puueHKol, uneH-kopecionaeHT HAH VYkpainu, nupekrop,
e-mail: vig@irtc.org.ua

JI.A. PaukosceKuii', I-p TeXH. HayK, TIPOB. HAYK. CIBPOO.

BiJUI. HEHPOMEPEIKEBUX TEXHOJIOTIH 00poOIIeHHs iHpOopMaAIlii,
e-mail: dar@infrm kiev.ua

A.A. ®ponoé’, n-p 6iox. Hayk, mpod.,

(haKkyabTeT ENEKTPOTEXHIKU Ta IHPOPMATHKH,

e-mail: docfact@gmail.com

P. I'einep’, PhD (IICHXOIOTis), ZOCTiIHIK,

e-mail: r.gayler@gmail.com

JI. Kneiixo®, acripanr, pakyinbreT iHpOpMaTHKH,

€JIEKTPUYHOT Ta KOCMUYHOI TEXHIKH.

e-mail: denis.kleyko@ltu.se

E. Ocunoe’, PhD (iudopmaruka), mpod., paxyasrer inhopmaTHK,
€JIEKTPUYHOT Ta KOCMUYHOI TEXHIKH

e-mail: evgeny.osipov@ltu.se

' MixHapoaHHii HAyKOBO-y460BHil [IEHTp IHGOPMAIIOHIX TEXHOIOTIiT
ta cucteM HAH Vkpainu ra MOH Ykpaiuu, np. Axagemika [ymkosa, 40,
M. Kuis, 03187, Ykpaina

* Texuiunmii yaisepcurer Octpasn, 17 listopadu 15,

708 33 Ocrpasa-Ilopy6a, Uecbka PecnyOiika

* Mens6ypH, mrat Bikropis, ABctparis

* Texnonoriunmit yrisepcurer Jlyieo, 971 87 Jlyieo, IlBeris

HEWMPOMEPEXHA PO3IIOJZIEHA
ABTOACCOUIATHUBHA ITAM’ATb: OI'JIA/]

VY 1pOMY OTJISi/Ii PO3MISHYTO MOJIENI aBTOACOI[IaTUBHOI PO3MOAIIICHOT MaM’sTi, SKi MOXYTh
OyTH HpPUPOIHUM UYMHOM peayi3oBaHi HEHPOHHMMH MepexxaMH. Mogjesli BUKOPHUCTOBYIOTh
JUISL 3amam’sITOBYBaHHS BEKTOPIB B OCHOBHOMY JIOKaJbHOMY TIPaBHJII HABYAHHS IUIIXOM
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Moudikalii 3HaYeHb Bar MXKHEHPOHHUX 3B’SI3KiB, SIKi iICHYIOTh MiXK BCiMa HeiipoHamu (ITOB-
HO3B’sI3HI Mepexi). Y po3nofiseHiii mam’aTi pi3Hi BEKTOPH 3amaM’ STOBYIOThCS B OHUX 1 THX
caMHX €JIeMEHTax mam’sTi, IKAUM B IIbOMY BHIIaJIKy HEHPOHHOI MepeXi BiIMOBIIAIOTH OJHI 1
Ti 5K 3B’S3KH. 3a3BUYail TOCHIIPKYIOTh 3alaM’ITOBYBaHHsI BEKTOPiB, BUIIAJKOBO BUOPaHUX 3
JIESIKOTO PO3IIOILTY.

SIKmo Ha BXiJ aBTOACOLIATHBHOI IMaM’sTi IMOJAIOThCA CIOTBOPEHI BapiaHTH 3a-
mam’sITOBaHUX B Hifl BEKTOPIB, 3MIMCHIOETHCS BUTAT (BiJHOBJICHHS) HAWOIMKUYOTO paHilie
3amaM’sITOBaHOTo BekTopa. Lle peamiyeThes 3a paXyHOK iTepauiiHOl IUHAMIKM HEHpOHHOI
MepeXi Ha OCHOBI JIOKaJIbHO JIOCTYMHOI B HeipoHax iHQopMariii, OTpuMaHOi BiJ iHIIHUX
HelpoHiB Mepeski. Jlo IeBHOI KiIBKOCTI 3amaM’sTOBAaHUX B Mepexki BEKTOPIB 1 CTyHeHs X
CIIOTBOPEHHS Ha BXO[li, B Pe3yJbTaTi TUHAMIKH Mepeka 13 CHMETPUYHIMH 3B’ I3KaMH [IPUXO-
IUTh B CTIMKWH CTaH, BINOBITHHN 3amaM’ITOBAHOMY B MeEpexi BEKTOpY, SKUH Mae
HaHOINbIIY CXOXKICTh 3 BXiAHUM BEKTOPOM (CXOXICTh 3a3BHYail BUMIPIOIOTH SIK CKaJISIPHUH
JI0OYTOK).

Taki HelpoMepe)kHi BapiaHTH aBTOACOLIATHBHOI MaM’sTi JAO3BOJSAIOTH 3amaM’sTaTd 3
MOJKJIUBICTIO BIJIHOBJICHHS TaKy KUIBKICTh BEKTOPIB, SIKa MOXKE MEPEBHIYBATH PO3MIipPHICTh
BEKTOpiB (10 30ira€rbCs 3 KINBKICTIO HEHWPOHIB B Mepexi). s BEKTOPiB BEJIHKOI
PO3MIPHOCTI II¢ BiIKPHBAE MOXKIIHMBICTH TOIIYKY HAOJIMIKEHOrO HAHOIMKYOro cyciga 3
CKJIAJIHICTIO, CyOJIiHEHHOIO BiJ KITbKOCTI 3aliaM’ATOBAaHUX B HEHPOHHIN Mepexi BekTopiB. J[o
HEJIOJIIKIB TaKoi 1maM’sITi BiTHOCUTBCS T€, 110 BiHOBJICHUI TUHAMIKOIO MEPEKi BEKTOP MOXKE
He OyTH HaWOIMKYMM 10 BXiZHOrO a00 HAaBiTh MOXKE B3araji He HaJeXaTdh J0 MHOXHHU
3amam’iTOBaHUX BEKTOPIB 1 3HAYHO BIAPI3HATHCS Bil Oyab-iKoro 3 HUX. JlociimKeHHS
pi3HMX THUMNIB HEHPOMEPEe)KHOi aBTOACOLIAaTUBHOI IaM’ATi CIpPSIMOBAaHO HA BHSBICHHS
Jliara3oHiB MapaMeTpiB, PH SKAX 3a3HAYCHI HEJIOJIKU MPOSBISIOTHCS 3 MAJIOK IMOBIPHICTIO,
a JIOCTOTHCTBA BUPAKEHI B MAaKCUMaJIbHOMY CTYIICHI.

OCHOBHY yBary HpHUAIJICHO MepekaMm 3 mapHuMu 3B s3kamu Ty Hopfield, Willshaw,
Potts i poOoTi 3 OiHApHUMHU PO3PIIKEHUMH BEKTOpaMH (BEKTOpaMH 3 KiIBbKICTIO OMHUYHUX
KOMIIOHEHTIB, K€ € MAJUM Yy TIOPiBHSHHI 3 KIJBKICTIO iX HYJbOBHX KOMIIOHEHTIB), TaK SIK
TIIBKH JUIS TaKUX BEKTOPIB BJAETHCS 3amaM’sITATH 3 MOXKIIUBICTIO BiJTHOBJICHHS BEIIUKY
KUTBKICTh BekTOpiB. KpiM ¢yHKIT aBTOACOIiaTUBHOI HaM’sATi, U1 IMX MEPEX TaKOXK
00roBOproeThCS PyHKIIISI y3araibHeHHss. OOTrOBOPIOIOTHCS TAKOXK HETIOBHO3B’I3KOBI MEPEXKi.
KpiM TOro, po3riisiHyTO aBTOACOLIATHBHY I1aM’sTh B HEHPOHHHX Mepekax 31 3B’s3KaMH BU-
I[OT0 TTOPSIIKY — TOOTO 31 3B’sI3KaMH HE MK TTapaMH, a MK BEJIMKOIO KiNbKiCTIO HEHPOHIB.

Po3risiHyTO TakoX aBTOACOLIATHBHA IaM’ATh B HEHPOHHHX Mepekax 3i CTPYKTYpPOIO
JIByZIOJIBHOTO rpada, e 0Ha MHOXKHMHA HEHPOHIB HaJa€e BEKTOPH, SKi 3amam’sITOBYIOTECS, a
iHIIA — JIIHIAHI 0OMEXEHHS, SIKHM BOHH IiKOPIOIOThCS. L{i Mepexi BUKOHYIOTh (YHKIIIO
aBTOACOLIaTMBHOI ITaM’SITi TaKOX JJIs HeOlHAPHUX JaHMX, sIKi BiJIOBIAAIOTh 3aaHiid MoIei
00OMeKeHb.

OOroBOpIOIOTECS  MOXKJIIMBOCTI BHUKOPUCTAHHS pPO3TISIHYTMX B ONILAL  Mojelnel
HEHpPOMEpe)KHOI aBTOACOMIATHBHOI PO3MOAUIEHOT MaM’sTi y NpoOieMaTHii MONIyKYy 3a
CXOXICTIO, JOCTOTHCTBa 1 HENONIKA PpO3MNISHYTHX METONIB, HANPSIMKH TOAAJIBIINX
Jocaimkens. OAKH 13 HiKaBUX 1 Bee 1€ He TOBHICTIO BUPILIEHUX MUTAaHb MOJISTae B TOMY, YU
MOXKe HEWpOHHA aBTOACOLIaTHBHA MaM’STh INYKaTH HaOJNIDKEHWX HaHOIMKYMX CYCiliB
IIBUJIIE IHIMX iHIEKCHUX CTPYKTYp Ul IOIIYKY 3a CXOXICTIO, 30KpeMa, Yy BHUIAIKY
BEKTOPIB JIyXKe BETUKIX PO3MiIPHOCTEMH.

Knrwuogi cnosa: posnodinena acoyiamuena nam ’smov, po3pioxceHuil OGIHAPHULL 8eKMOp, Me-
peoica Xonghinoa, nam’sme Yinuwoy, modensv Ilomca, Hatibaudcuuii cycio, NOULYK 3a cXoxcic-
mio.
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