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Cellular/Molecular

Dendrodendritic Synaptic Signals in Olfactory Bulb Granule
Cells: Local Spine Boost and Global Low-Threshold Spike

Veronica Egger, Karel Svoboda, and Zachary F. Mainen
Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724

In the mammalian olfactory bulb, axonless granule cells process synaptic input and output reciprocally within large spines. The nature of
the calcium signals that underlie the presynaptic and postsynaptic function of these spines is mostly unknown. Using two-photon
imagingin acute rat brain slices and glomerular stimulation of mitral/tufted cells, we observed two forms of action potential-independent
synaptic Ca*>" signals in granule cell dendrites. Weak activation of mitral/tufted cells produced stochastic Ca>* transients in individual
granule cell spines. These transients were strictly localized to the spine head, indicating a local passive boosting or spine spike. Ca**
sources for these local synaptic events included NMDA receptors, voltage-dependent calcium channels, and Ca** -induced Ca** release
from internal stores. Stronger activation of mitral/tufted cells produced a low-threshold Ca>" spike (LTS) throughout the granule cell
apical dendrite. This global spike was mediated by T-type Ca*" channels and represents a candidate mechanism for subthreshold lateral
inhibition in the olfactory bulb. The coincidence of local input and LTS in the spine resulted in summation of local and global Ca**

signals, a dendritic computation that could endow granule cells with subthreshold associative plasticity.
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Introduction

Granule cells (GCs) are small interneurons in the olfactory bulb
that inhibit the bulbar principal neurons [mitral/tufted cells (M/
TCs)]. Synaptic processing by GCs is exotic from the perspective
of conventional neurotransmission: lacking an axon, their large
spines possess both presynaptic and postsynaptic machinery
(Rall et al., 1966; Woolf et al., 1991a). The reciprocal M/TC-GC
synapse involves a microcircuit contained within the spine
(Shepherd and Greer, 1998): glutamate released from the M/TC
triggers calcium influx into the spine, which leads to exocytosis of
GABA back onto the same M/TC and thus M/TC “self-
inhibition” (Jahr and Nicoll, 1980, 1982; Isaacson and Strow-
bridge, 1998). M/TCs also laterally inhibit one another through
GCs, requiring transmitter release at sites distal to the activated
synapses. Whereas in axon-bearing neurons this function is
served by Na'-dependent action potentials (APs), self-
inhibitory and lateral inhibitory M/TC interactions persist in
vitro in the presence of TTX (Jahr and Nicoll, 1982; Isaacson and
Strowbridge, 1998; Schoppaetal., 1998) or when somatic GC APs
are prevented (Lagier et al., 2004). GCs appear to rarely spike in
vivo (Wellis and Scott, 1990; Cang and Isaacson, 2003; Margrie
and Schaefer, 2003). Thus, a substantial component of GC inhib-
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itory output might occur in the subthreshold regimen (Rall et al.,
1966).

There is little direct physiological data on GC synaptic signal-
ing. Both NMDA receptor (NMDA-R) and voltage-dependent
calcium channel (VDCC)-mediated Ca** entry have been impli-
cated in self-inhibition based on recordings of M/TCs (Isaacson
and Strowbridge, 1998; Schoppa et al., 1998; Chen et al., 2000;
Halabisky et al., 2000; Isaacson, 2001). In our initial studies of GC
calcium signaling, we observed spontaneous transients of un-
known origin that were localized to spines (Egger et al., 2003).
Although NMDA-R-mediated Ca** could account for local ac-
tivation (Koster and Sakmann, 1998; Mainen et al., 1999a;
Kovalchuk et al., 2000), it is controversial whether NMDA-R-
mediated Ca*™ suffices to mediate self-inhibition (Schoppa et al.,
1998; Chen et al., 2000; Isaacson, 2001). Conversely, opening of
the VDCCs (present in both GC spines and dendrites) (Egger et
al., 2003) would require electrical compartmentalization of syn-
aptic voltage transients by spines (Rall and Rinzel, 1973; Brown et
al., 1988). This interesting possibility would depend on more
pronounced isolation than reported previously (Svoboda et al.,
1996; Koch, 1999). Do spines remain isolated when activated by
synaptic input from M/TCs? What sources of Ca®" underlie den-
drodendritically evoked spine transients?

Although it is known that lateral inhibition does not require
TTX-sensitive Na ™ channels, the physiology of subthreshold sig-
naling in GCs remains speculative. It has been hypothesized that
this signal could be restricted to a local dendritic region (Woolf et
al., 1991b; Woolf and Greer, 1994; Isaacson and Strowbridge,
1998). Such “dendritic subunits” have also been predicted based
on compartmental models of other cell types (Koch et al., 1982;
Shepherd and Brayton, 1987; Mel, 1993) and recently demon-
strated in pyramidal cells (Polsky et al., 2004). Can dendroden-
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dritic M/TC inputs generate regional subthreshold activation
patterns in granule cells? What cellular mechanisms underlie
subthreshold lateral inhibition?

Materials and Methods

Preparation, solutions, and instrumentation. In all experiments, we pre-
pared sagittal olfactory bulb brain slices (thickness, 350 wm) of juvenile
Sprague Dawley rats (postnatal days 11-15). The preparation was per-
formed in accordance with Cold Spring Harbor Laboratory guidelines
for animal care. The intracellular solution contained the following (in
mM): 130 K-methylsulfate, 10 HEPES, 4 MgCl,, 4 Na,ATP, 0.4 NaGTP,
10 Na-phosphocreatine, and 2 ascorbate, pH 7.2. For imaging, 100 um of
the calcium-sensitive dye OGB-1 (Oregon Green 488 BAPTA-1) (Molec-
ular Probes, Eugene, OR) was added. The extracellular artificial CSF
(ACSF) was bubbled with carbogen and contained the following (in mm):
127 NaCl, 25 NaHCO3, 1.25 NaH,PO,, 25 glucose, 2.5 KCI, 1 MgCl,, and
2 CaCl,. The junction potential was —5 mV. Pharmacological agents
used in some experiments were APV, thapsigargin (both from Tocris
Cookson, Bristol, UK), and mibefradil (gift from Hoffman-La Roche,
Basel, Switzerland). All experiments were performed at room tempera-
ture (21°C).

Neurons were visualized with infrared-differential interference con-
trast (DIC) optics. Two-photon excitation at 810 nm was provided by a
Ti:sapphire solid-state laser system (Mira and Verdi; Coherent-AMT,
Kitchener, Ontario, Canada). For a more detailed description of the
custom-built two-photon microscope, see Mainen et al. (1999b). So-
matic whole-cell patch-clamp recordings were performed with an Axo-
patch 200B (Axon Instruments, Union City, CA). Pipette resistances
were 4—7 M(), and series resistances 10—35 M().

To generate M/T cell synaptic input onto GCs, a glass electrode filled
with ACSF (R, of =1 M) and connected to an Isoflex stimulator
(A.M.P.L, Jerusalem, Israel) was placed into a glomerulus within the slice
before patching. Next, the direction of M/TC apical dendrites was fol-
lowed downward from the glomerulus into the slice, and a GC vertically
below these M/TCs was patched and held in current-clamp mode (Fig.
1). GCs that required >20 pA of holding current were rejected. In most of
these GCs, a single pulse of stimulation resulted in a measurable EPSP or
even an AP at higher stimulation intensity. Only GCs with considerable
responses (EPSP amplitude >5 mV) were used for additional experi-
ments. After a filling time of ~10 min, calcium transients were imaged in
line-scan mode (temporal resolution, 2 ms) at different locations along
the apical dendrite of GCs and within its spines (Figs. 2, 3). Each spine
was tested with =10 stimuli at a frequency of 0.1 Hz for synaptic calcium
responses. Often, paired stimuli (20 ms interval) were used to enhance
the success rate during searching. In responsive spines, line scans were
performed across spine and adjacent dendrite, again at 0.1 Hz. For com-
parison, responses to APs evoked by somatic current injection (sAP)
were also measured. In most cases, no more spines were screened once a
responsive spine was found, unless its responses were too rare or too
small. There was no noticeable rundown of local synaptic calcium re-
sponses with time (average of 91 = 11% of baseline after 15 min; n = 4
spines).

To test the mitral cell firing patterns evoked by our stimulus protocol,
we patched and recorded from mitral cells after recording from a respon-
sive GC nearby (<50 um), with unaltered placement of the stimulation
electrode. At the stimulus intensities used to evoke GC signals in the
imaging experiments (0.01-10 mA), mitral cell responses were similar to
data reported by others. The average resting potential was —60 mV (n =
8 mitral cells). At the maximal stimulation intensity (10 mA), we could
elicit Na ™ spikes in seven of eight mitral cells. From threshold up to the
maximal stimulation intensity of 10 mA, mitral cells would respond with
a single spike (Shepherd, 1963; Hamilton and Kauer, 1988). Below
threshold, mitral cells displayed lasting depolarizations, fairly indepen-
dent of stimulus intensity (Chen and Shepherd, 1997; Schoppa and
Westbrook, 1999). The transition between subthreshold response and
spike was usually more abrupt than for GCs, which is attributable to the
more depolarized resting potential and possibly also to all-or-none-
activation of glomeruli (Schoppa and Westbrook, 1999; Wachowiak et
al., 2004).
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Figure 1. Glomerular stimulation allows for specific activation of M/TC inputs to GCs. 4,
Schematicand DICvideo image of stimulation paradigm. To achieve stimulation of M/TCinputs,
a stimulation electrode (stim) was placed into a glomerulus (note the faint ring of periglomeru-
lar cells in the video image). The direction of MC apical dendrites within the slice was then used
tofind the region in the MCL that would likely project to the glomerulus. A GCbelow this region
was then patched (rec) and filled with calcium dye. B, Left, EPSPs in a GC recorded at the soma
in response to increasing stimulation strength. Same voltage scale as on y-axis of the right
panel. Black arrow, Stimulation artifact, clipped. Right, Input— output relationship for this GC.
The gray arrow marks the stimulation strength that just saturates the response. This stimulation
strength was then used during the course of experiment. “10 mA” corresponds to the maximal
stimulation strength. €, Same as in B but for a GC that responded with action potentials at
stronger synaptic stimulation. Same time scale as in B. The gray arrow marks the stimulation
strength that was then used during the course of the experiment.

The small size of granule cells promoted fast filling, but, perhaps also
because of their size, cells usually deteriorated abruptly ~25-45 min
after patching, precluding longer recording protocols such as drug wash-
out. All investigated GCs were mature, i.e., bearing spines and capable of
spiking (Petreanu and Alvarez-Buylla, 2002; Carleton et al., 2003).

Data analysis. Imaging and electrophysiological data were recorded
and analyzed with custom software based on Matlab (MathWorks,
Natick, MA) (Scanimage) (Pologruto et al., 2003) and Igor (WaveMet-
rics, Lake Oswego, OR). To measure changes in calcium, fluorescence
was collected while scanning in a line that intersected the region(s) of
interest. Fluorescence F(t) was then averaged over the region(s) of inter-
est. Baseline fluorescence F,, was measured for 50 ms before the stimulus,
and AF/F was calculated as (AF/F)(t) = (F(t) — F,)/F,. (AF/F )4, cor-
responds to the fluorescence transient evoked by stimulation with a sin-
gle AP evoked by somatic current injection, whereas (AF/F),,, reflects a

syn
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Figure2. Single M/TCinputs activated by glomerular stimulation resultin local Ca* influx into GC spines. A, Left, Scan of an

individual granule cell with locations of spines tested for synaptic responses. MCL marks the position of the mitral cell layer. Gray
arrowheads mark unresponsive spines, and colored arrowheads mark responsive spines. Nineteen spines were tested. Right,
Snapshots of the responsive spines and one unresponsive spine shown at the magnification used for line scans (calibration below)
and, to the right, averaged (AF/F),, recorded from these spines. For every spine, averaged successes and failures are shown.
Because the “white spine” represents an unresponsive spine, all respective recordings were averaged. The black trace at the
bottom shows the averaged EPSP recorded at the GCsoma. B, Individual line scans recorded in the “red spine.” Calibration as in A.
Both successes and failures are shown. Gray traces are recorded in the adjacent dendrite, illustrating the localization of synaptic
responses to the spine head. The bottom plot summarizes the amplitudes of all recorded traces in the red spine versus the
amplitudes of the same events in the adjacent dendrite. C, Mean response amplitude (AF/F),, of all active spines in this study
versus their distance from the MCL. D, Scatter plot of decay time constants of AP-evoked signals (AF/F )., versus half-duration of
synaptic signal (AF/F)g, in the same spines. Filled data points, Half-duration of synaptic signal at least twofold longer than the
decay time constant of AP-mediated transient. Data points left of 2.5 s on the y-axis, Synaptic spine signal (AF/F ), too slow for
measurement of half-duration (within a time window of 1 s per line scan). E, Scatter plot of all mean response amplitudes
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To assess statistical significance levels, the
nonparametric  Wilcoxon’s  matched-pairs
signed-ranks test was applied for comparing
paired data sets, and averages = SD are given,
unless stated otherwise.

Results

Using glomerular stimulation for
synaptic activation

We studied synaptically evoked calcium
signals at the level of individual spines us-
ing two-photon imaging in acute rat brain
slices. To activate exclusively M/TC in-
puts, we stimulated M/TC dendritic tufts
within a glomerulus. Stimulation of the
glomerular layer has been used previously
in olfactory bulb preparations to mimic
sensory input and study M/TC input to
GCs (Schoppa et al., 1998; Schoppa and
Westbrook, 1999). The stimulation of in-
dividual glomeruli allowed us to image
M/TC-GC dendrodendritic synaptic input
at the level of individual GC spines. Figure
1 shows the placement of stimulation elec-
trode and recording pipette and character-
istic EPSPs in a GC in response to increas-
ing stimulation strength. The resting
potential of GCs was approximately —70
mV (Egger et al., 2003). To maximize the
chance of finding an activated spine, stim-
ulation intensity was adjusted to the level
at which saturation of the EPSP began
(Fig. 1B). Saturation was determined by
the size of input that could be recruited
given the placement of the stimulation
electrode in a given experiment and there-
fore does not represent an intrinsic param-
eter of the GC (see Materials and Meth-
ods). Under this condition, the average
EPSP amplitude was 23 = 10 mV (Fig. 3E),
and 60 of 599 tested spines (found in 42 of
90 cells) were responsive to at least 1 of

(AF/F),y, in active spines versus in their respective adjacent dendrites.

transient evoked by synaptic inputs to a spine and (AF/F), 1 reflects a
low-threshold spike (LTS) signal evoked by sufficiently large synaptic
inputs.

Additional data analysis, such as amplitude and failure analysis, was
performed only for spines responding with a signal-to-noise ratio >2
(evaluated within windows of 10 points in individual traces), which held
for the majority of spines. Because test stimuli were limited to 10 and
putative responses with a low signal-to-noise ratio were excluded, the
resulting failure rates represent a lower estimate.

Only averaged synaptic transients with small noise levels after slight
smoothing (window of five points) were used for kinetic analysis. The
decay of synaptic signals was determined in terms of their half-duration
(7,,) rather than fitted with a single exponential (7), because they often
displayed an initial plateau phase.

For the evaluation of the voltage dependence of synaptic inputs, data
[EPSP and (AF/F),,,, amplitudes and baseline fluorescences F,] were
normalized to their value at resting potential (—70 mV) before averaging
across spines.

In all the spines that were used for the analysis of summation of global
and local Ca*™ signals, AF/F amplitudes of the individual components
and the summated signals were well below saturation levels.

~10 test stimuli. Most spines were located
on GC apical dendrites in or above the mi-
tral cell layer (MCL), in which reciprocal
synapses are formed. The remainder (n = 5) were located on the
proximal apical dendrites below the MCL. Sodium APs could be
elicited synaptically in 55% of GCs (Fig. 1C); in those cases, we
used subthreshold stimulus amplitudes. All cells in the study re-
sponded with APs to short depolarizations at the soma (sAPs).

Local synaptic activation
Successful synaptic activation of a spine produced robust Ca**
transients (Fig. 2) that occurred stochastically with an average
failure rate of 47 * 28% (range, 5-90%j; see Materials and Meth-
ods). Anatomical data imply a very low number of reciprocal
synaptic contacts per connected M/TC-GC pair (one or two)
(Woolf et al., 1991a), and thus synaptic transmission between
M/TCs and GCs is quite reliable on average. The actual reliability
could be even higher because of failures of AP propagation in
M/TC lateral dendrites in our experiment (Margrie et al., 2001;
Xiong and Chen, 2002).

Ca’" transients had a mean (AF/F )syn amplitude in the spine
of 40 = 21% (range, 15-130%; median, 55%; n = 34 spines).
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Figure3. Large EPSPs evoked by glomerular stimulation cause global Ca** influx. 4, Left,

Scan of an individual granule cell with locations of line scans (white arrowheads). MCL marks
the position of the mitral cell layer. Right, Averaged line scans of AF/F transients in spines
(black) and dendrites (gray) recorded at the locations marked to their left. The black trace at the
bottom shows the averaged EPSP recorded at the soma. B, Consecutive individual EPSPs and
corresponding line scans recorded at the most proximal location. Calibration as in A. Note the
correlated fluctuations in EPSP amplitude and AF/F transient amplitudes. The bottom plot
summarizes the amplitudes of all AF/F transients at this location versus the maximal depolar-
ization obtained by the concomitant EPSPs. C, Averaged AF/F transients caused by LTSs (gray
markers) and sAPs (black markers), binned according to the distance of the recording site to the
mitral cell layer. Data are from 48 cells and 137 dendritic locations. The analogous profiles for
spines do not differ significantly. D, Scatter plot of all mean response amplitudes (AF/F), 1
(open circles) and (AF/F),,, (diamonds) in spines versus the respective adjacent dendrites. E,
Distribution of all mean EPSP amplitudes used in the experiments. The gray bars represent cells
in which only local responses were found, and the white bars represent cells in which a global
LTS signal was observed. F, Changes in mean EPSP amplitude and half-duration that accompa-
nied stochastic fluctuations between EPSPs that were linked to global LTS calcium signals and
those that were not, at constant stimulation strength (as in B). n = 12 cells, several EPSPs
averaged for each condition.

These amplitude values were well below the AF/F amplitudes
achieved by trains of APs in GCs under similar conditions (Egger
et al., 2003) and are therefore far from dye saturation for most
spines. Synapses were found all over the GC dendrites (Fig. 2C).
The location of a spine and its (AF/F),,,, amplitude were uncor-
related (r = 0.01). Synaptic calcium transients were strictly local-
ized to the spine head, with little signal in the adjacent dendrite
(3 = 4%) (Fig. 2 B, E). This localization of (AF/F),,, to the spine
appears stronger than in other excitatory neurons (see
Discussion).

Whereas transients attributable to APs evoked by somatic cur-
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rentinjections typically rose in <20 ms (15 = 7 ms in 87 dendritic
locations; spines not significantly different), most synaptic tran-
sients in active spines rose slowly [mean rise time (AF/F Jsyn> 84 £
28 ms; range, 40-138 ms; n = 22]. The half-duration 7,,, of
(AF/F),, across spines was considerably more variable than the
decay time constant 7 of (AF/F),p at the same sites and distrib-
uted in a bimodal manner, comprising a subset of very slow syn-
aptic transients (Fig. 2 D) (see also Fig. 5B). In most cases, 7, for
synaptic and 7 for sAP-evoked AF/F transients were quite similar.
Using an arbitrary cutoff (half-durations no more different than
twofold), we divided the transients into two groups. For the 28 of
39 “normal” cases, half-durations were similar for synaptic and
AP stimuli and highly correlated (7,/,_,,, of 600 = 300 ms; 7, p of
610 = 360 ms; r = 0.65, p < 0.005). In the remaining 11 cases, the
synaptic 7,, was >1500 ms and often too slow to be determined.
Although the underlying mechanism remains to be elucidated, a
subpopulation of these “slow spines” displayed a high degree of
spontaneous activity (Egger et al. 2003), which appeared to be
enhanced after synaptic stimulation and which contributed to the
slow kinetics of averaged Ca*" signals.

Low-threshold calcium spike

In addition to individual spine responses, larger glomerular EP-
SPs were often accompanied by widespread Ca*" influx in both
dendrites and spines (n = 48 cells) (Fig. 34, C). Several observa-
tions suggested that an active event caused this signal, presum-
ably an LTS (Huguenard, 1996), the signature of which has been
observed previously at the GC soma (Egger et al., 2003; Pinato
and Midtgaard, 2003).

(1) The Ca** influx was all-or-none in nature. We frequently
observed near-threshold EPSPs in which trial-by-trial variations
resulted in stochastic generation of calcium influx (n = 17 cells)
(Fig. 3B). Moreover, (AF/F), 1 signals did not increase gradually
with the EPSP amplitude but with a discontinuous step (Fig. 3B,
bottom).

(2) Compared with EPSPs subthreshold for the LTS signal,
suprathreshold EPSPs in the same cell and at the same stimula-
tion intensity were significantly broader (half-duration of 84 *
37 vs 66 £ 32 ms; n = 13 cells; p < 0.001) and larger (34 = 8 vs
23 = 5mV; n = 13; p < 0.001), indicating the activation of
voltage-dependent channels (Fig. 3F). However, such a differen-
tiation was less obvious across cells because the distributions for
sub- and supra-LTS-threshold EPSP amplitudes and half-
durations overlapped considerably (Fig. 3E).

(3) Similar to sAP-evoked calcium transients (Egger et al.,
2003), (AF/F), 1 signals were of equal amplitude in dendrites
and spines when spines were not also directly synaptically acti-
vated (mean amplitude of spines, 23 *= 16%; average ratio of
spine/dendrite, 1.05 = 0.49; n = 80). This observation also pro-
vided an additional criterion to differentiate between global and
local signals, as illustrated in Figure 3D, because local synaptic
signals were localized to spines.

The properties of low-threshold Ca*™ spikes (Miyakawa et al.,
1992; Markram and Sakmann, 1994; Wei et al., 2001) make the
(AF/F); 1 a likely candidate for AP-independent lateral inhibi-
tion (Isaacson and Strowbridge, 1998) (see Discussion). How-
ever, although regional subthreshold signaling has been long sug-
gested in GCs as a substrate for local lateral inhibition (Woolf et
al., 1991b; Woolf and Greer, 1994; Isaacson and Strowbridge,
1998), we never observed the calcium spike signal (AF/F), s to be
restricted to a small dendritic region or dendritic branch only, in
contrast to other low-threshold Ca?" spikes (Eilers et al., 1995;
Wei et al., 2001). Instead, like the sAP-evoked calcium transients
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(Egger et al., 2003), (AF/F), s appeared throughout all areas of
the dendritic tree of examined GCs, indicating that it was global
in nature (Fig. 34, C).

The amplitudes of (AF/F) s were robust but, on average,
smaller than sAP-evoked responses (AF/F)p in the same den-
dritic location (22 * 17 vs 42 * 25%; n = 137; p < 0.001) (Fig.
3C). The time course of (AF/F), s was comparable with that of
local synaptic transients in active spines [rise time (AF/F)s,
88 * 54 ms in dendrites, # = 53; 85 = 53 ms in spines, n = 36].
The half-duration of global calcium spike signals was signifi-
cantly longer than the decay time constant of action potential-
evoked transients [(AF/F),1g: T,,, of 900 = 520 ms in dendrites,
n = 38; 7, 0f 820 = 410 ms in spines, n = 22; vs (AF/F) ,p: T of
710 = 350 and 690 = 380 ms in same locations; p < 0.01 and p <
0.02].

Mechanism of low-threshold calcium spike

Low-threshold calcium spikes are mediated by T-type calcium
channels (T-channels) (Huguenard, 1996). Previous experi-
ments have shown that T-channels are present in both GC den-
drites and spines, as reflected in a considerable voltage depen-
dence of sAP-evoked Ca*" transients and strong Ca** entry in
response to subthreshold depolarizations above —40 mV (Egger
et al., 2003). Moreover, the T-channel antagonist mibefradil
blocks low-voltage-activated (LVA) signals in GCs (Egger et al,,
2003; Pinato and Midtgaard, 2003). Indeed, in our present study,
mibefradil (10 uMm) blocked (AF/F), 1 similarly in dendrites and
spines (16 * 11 and 9 = 8% of control; n = 8 and n = 6; p < 0.01
and p < 0.025) (Fig. 4A,B). In general, (AF/F), 1¢ in mibefradil
was too small to measure its rise time. This treatment also re-
duced the half-duration of large EPSPs that mediated (AF/F), g
(81 = 41 vs 53 = 38 ms; n = 5; p < 0.05). Mibefradil had no
significant effect on the amplitude of LTS EPSPs (94 = 10% of
control; n = 5). Similar to our previous findings (Egger et al.,
2003), mibefradil reduced transients attributable to somatically
evoked APs (AF/F),p to ~50% of control.

Global Ca*" spike signals (AF/F) s were also reduced by
NMDA-R blockade (50 um APV; 58 = 12% of control; n = 9
dendrites and spines; p < 0.005) (Fig. 4C,D). Although the EPSP
amplitude was not changed by APV (99 = 11% of control; see
also below), its duration was reduced to 41 * 12% (n = 6).
Therefore and because the Ca** spike was entirely blocked by
T-channel blockers, NMDA-Rs most likely contribute extended
depolarization and thus more Ca*"* influx via T-channels but
little direct Ca** to (AF/F), 15 in the dendrite.

Sources of calcium for local synaptic signals

NMDA receptors are a principal pathway for synaptic Ca** in-
flux in spines of hippocampal and cortical pyramidal neurons
(Koster and Sakmann, 1998; Kovalchuk et al., 2000; Nevian and
Sakmann, 2004) and are known to be present at the M/TC-GC
synapse (Trombley and Shepherd, 1992; Isaacson and Strow-
bridge, 1998; Sassoe-Pognetto and Ottersen, 2000). Application
of APV (50 um) reduced the synaptic Ca** influx into GC spines
to 51 = 17% of the mean (AF/F),,,, amplitude (1 = 9 spines; p <
0.002) (Fig. 5A—C). There was no effect on (AF/F),p in the same
set of spines (97 = 20% of control). In most of our experiments
(11 of 13), the application of 50 um APV did not decrease the
EPSP amplitude (Fig. 5B), allowing us to exclude a decrease in
M/TC stimulation efficiency; only those experiments were con-
sidered for analysis of the calcium signal (EPSP amplitude, 97 =
11% of control; p > 0.2; n = 11). A contribution of the NMDA-R
conductance to the EPSP was indicated by a significantly faster
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Figure4. T-type voltage-dependent Ca™ channels mediate the global LTS signal. A, Indi-
vidual experiment in a dendrite, showing the dendritic (AF/F), . Black traces show averaged
control responses (ctrl), and gray traces show averaged responses in 10 .um mibefradil (Mib). B,
Cumulative display of the effect of mibefradil on (AF/F) ;s [n = 14 locations in dendrites (9,
7)) and spines (5, O)], shown in absolute values (top) and as mean percentage change of
control (gray bar, bottom). The effect of mibefradil on LTS EPSP amplitudes is shown as mean percent-
age change of control (white bar, bottom). , Individual experiment in a dendrite, showing the den-
dritic (AF/F) 1. Black traces show averaged control responses, and gray traces show averaged re-
sponsesin 10 pum APV. Bottom, Corresponding averaged EPSPs. D, Cumulative display of the effect of
APV on (AF/F),+s [n = 8locations in dendrites (5, () and spines (3, O)], again shown in absolute
values and as mean percentage change of control (gray bar). The effect of APV on LTS EPSP amplitudes
is shown as mean percentage change of control (white bar).

decay of the EPSPs in APV compared with control (99 = 53 vs
38 = 13 ms, or 43 * 12% of control; n = 11; p < 0.002) (Fig. 5B).
APV also sped up the rise time of (AF/F),,, to 63 = 33% of
control ( p < 0.05; n = 6 spines), whereas it had no effect on the
rise of (AF/F)p in the same spines (106 = 21%). These obser-
vations indicate that the NMDA-R conductance participates in
slowing the time course of synaptic Ca** transients relative to
sAP-evoked events.

Interestingly, in the presence of APV, synaptic calcium tran-
sients were still localized to the spine (Fig. 5A). One possible local
synaptic Ca®" source is release of Ca*" from internal stores
(Finch and Augustine, 1998; Takechi et al., 1998; Emptage et al.,
1999). There is morphological evidence for the localization of the
requisite cellular organelles in most GC spines (Woolf et al.,
1991a). To investigate the possibility that stores might contribute
to GC spine calcium transients, we applied 10 uM thapsigargin,
which depletes internal stores, to the bath while continuing stim-
ulation of the GC input. After 10 min of this treatment, the am-
plitude of (AF/F),,, was stably reduced to 57 % 21% of control

syn
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(n = 5; p < 0.05) (Fig. 6A,B), although
there was no consistent effect on its rise
time (86 = 23% of control). There was a
small effect on the amplitude of (AF/F),p
in the same spines (78 = 8% of control).
Thapsigargin did not change the EPSP am-
plitude (102 = 8% of control; n = 5) (Fig.
6A,B), indicating that the drug acted
postsynaptically on GC Ca’* signals
rather than by inhibiting M/TC stimula-
tion or release. Nor was the thapsigargin
effect attributable to an increase in base-
line fluorescence (F,, 99 = 27% of control;
n=17),excludingarise in basal Ca’" levels
as the mechanism of action. Therefore, we
conclude that release from internal stores
contributes to local synaptic Ca®" signals
in GCs.

What triggered release from calcium
stores in GC spines? Application of 50 um
APV and 100 uM Ni** completely blocked
the synaptic Ca*" transient in all spines
examined [7 = 10% of control; mean (AF/
Fam 2+ 3%; n = 5; p < 0.05; x° test]
(Fig. 5B, D), although it had little effect on
the corresponding EPSP amplitudes (80 =
16% of control; p > 0.09) (Fig. 5B,C).
Thus, internal stores are activated via
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Figure 5. The local synaptic signal (AF/F),, is governed by a variety of Ca % sources, including NMDA-Rs and VDCCs. 4,

Individual experiment in a responsive spine. Top, (AF/F)SYI1 in the spine. Middle, (AF/F)Syn inthe adjacent dendrite. Black traces
show averaged control responses (ctrl), and gray traces show those in 10 um APV. Bottom, Scatter plot of local synaptic response
amplitudes in spine versus dendrite. Black diamonds, Experiments under control conditions (similar to Fig. 2 £). Gray circles, Data
in the presence of 10 pm APV. B, Individual experiment in responsive spine. Top, (AF/F),, in the spine. Black traces show
averaged control responses, gray traces show those in 10 um APV, and black dashed traces show those in 10 m APV and 100 pum
Ni*™. The relatively large size of (AF/F),, and its slow kinetics in this experiment were also observed in a few other GC spines.
Bottom, Corresponding averaged EPSPs. €, Cumulative display of the effect of APV on (AF/F)Syn (n = 9spines), shown in absolute
values (top) and as mean percentage change of control (gray bar, bottom). The effect of APV on EPSP amplitudes is also shown as
mean percentage change of control (white bar, bottom). D, Display of five individual experiments showing the absolute effect of
coapplied 10 um APV and 100 m Ni 2™ on synaptic (AF/F),,, in spines, shown in absolute values (top) and as mean percentage
change of control (gray bar, bottom). The effect of coapplied APV and Ni>* on EPSP amplitudes is shown as mean percentage
change of control (white bar, bottom).

calcium-induced calcium release (CICR) A Erg B C
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way. This manipulation also showed that other possible ligand- P,
gated sources of synaptically gated calcium, in particular 200ms &
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For spines of cultured hippocampal neurons, it has been sug- <
gested that CICR carries most of the Ca®™ signal and is triggered 0 04
by an NMDA-R-mediated Ca*" signal too small for detection ol Tha ol Tha&
(Emptage et al., 1999). Could the APV-sensitive component of — L APV
the Ca*" transient in GC spines be attributable to NMDA-R '
triggered CICR rather than direct NMDA-R mediated Ca*" en- [110V| Y =
try? In the continued presence of thapsigargin, APV reduced (AF/ - 3% 504 50+
F)gyn to 41 = 16% of its amplitude in thapsigargin alone (n = 4). . ; 25- 25
Thus, calcium entry through NMDA-R channels contributes to J LS|
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GC spine signals directly and not just through CICR. The net
effect of coapplied thapsigargin and APV (10 and 50 uM, respec-

tively) was a block of (AF/F)syn to 29 * 13% of control (n = 6;
p <0.05; Mann—Whitney test) (Fig. 6C). There was no significant
effect on (AF/F ) ,p in the same spines (84 = 30% of control; n =
5) or on the EPSP amplitude (96 £ 25% of control). The remain-
signal represents a direct contribution via Ni*"-
sensitive [high-voltage-activated and LVA] VDCCs.

Because VDCCs are present on the dendrite as well as the
spine (Egger et al., 2003), their participation in transients local-

ing (AF/F)

syn

Figure 6. The local synaptic signal is governed by a variety of Ca®* sources, including
release from internal stores. A, Individual experiment showing the effect of 10 m thapsigargin
(Tha) on (AF/F )syn in @ responsive spine and the corresponding averaged EPSP. B, Cumulative
display of the effect of thapsigargin on (AF/F )gyn (1 = 5pines), shown in absolute values (top)
and as mean percentage change of control (ctrl) (gray bar, bottom). The effect of thapsigargin
on EPSP amplitudes is shown as mean percentage change of control (white bar). C, Display of six
experiments showing the effect of coapplied 10 wu thapsigargin and 10 wum APV on (AF/F),
in a spine in absolute values and as mean percentage change of control (gray bar, bottom). The
effect of coapplied thapsigargin and APV on EPSP amplitudes is shown as mean percentage
change of control (white bar).

ized to the spine head implies that the depolarization opening
them is restricted to the spine as well. This localization of depo-
larization could be attributable to a (passive) gain in voltage and
subsequent attenuation via the spine neck resistance (Rall and
Rinzel, 1973; Brown et al., 1988; Tsay and Yuste, 2004): The mean
neck length as estimated from frame scans 128 X 128 pixels in
size (10 X 10 wm) was 2.6 = 1.3 um (n = 19) (data similar to that
of Woolf et al., 1991a). Thus, the spine neck resistance of large
granule cell spines may be considerably higher than that of the
shorter spines of pyramidal or Purkinje cells (Svoboda et al.,
1996) (see Discussion).

Spine voltage boosting could be particularly important in GC
spines because of the presence of T-type calcium channels (Egger
etal., 2003), which are activated at relatively low voltages. To test
the contribution of T-channels to local synaptic Ca>™ transients,
we applied mibefradil (10 um). This manipulation reduced (AF/

F)

syn

amplitudes to 71 = 10% of control (GC at resting potential

of approximately —70 mV before stimulation; p < 0.05; n = 5),

although it had no discernible effect on the rise times of (AF/F)

syn

(101 = 22%) or (AF/F) ,p (103 = 33%) (cf. Egger et al., 2003).
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Figure 7.  The voltage dependence of local synaptic transients is only in part governed by
NMDA receptors. 4, Individual experiment. Top, Averaged (AF/F )syn résponses at various hold-
ing potentials. Bottom, Corresponding averaged EPSPs. Note the reduction in absolute maximal
depolarization by the EPSP with hyperpolarization. B, Plot of individual (AF/F),, response
amplitudes recorded in the same cell asin A. €, Cumulative (AF/F), ,, amplitude data from nine
spinesin seven cells. First, data from individual spines were normalized to the amplitude values
(AF/F)g,in that spine at the resting membrane potential (— 70 mV). Data from all spines were
then averaged within a bin width of 10 mV.

Because coapplied APV and thapsigargin block more of (AF/
F)yyn than APV alone (~70 vs ~50% reduction), Ca’" entry
through VDCCs could also contribute to CICR. Which VDCCs?
The global LTS Ca*" signals invade GC spines and are mediated
by T-channels. Whereas thapsigargin (10 uM) had some effect on
(AF/F)¢\p (78 £ 8% of control; n = 4), which is carried by HVA
and T-channels, it had no effect on (AF/F), 5 (97 = 18%;n =3
cells), which is carried by T-channels alone. Together, these data
suggest that T-channels are not likely to contribute substantially
to synaptically evoked CICR.

Voltage dependence of synaptic signals in responsive spines
To elucidate the role of VDCCs versus NMDA-Rs for local syn-
aptic Ca*" signals, we varied the membrane potential of the GC
within sub-AP-threshold ranges (resting potential, —72 * 3 mV;
n = 24). If there was indeed a local spine voltage boost in GC
spines and most of the Ca*" entry was carried by VDCCs, syn-
aptic Ca*" signals should be reduced by both hyperpolarization
and depolarization because hyperpolarized holding potentials
will prevent VDCC activation and depolarized potentials will in-
activate VDCCs. NMDA-R-mediated Ca®" entry, however,
should also be blocked by hyperpolarization but increase with
depolarization. We demonstrated previously that somatically ap-
plied polarization propagates faithfully into the GC dendrite
(Egger et al., 2003, their Fig. 4C).

Hyperpolarization to —80 to —90 mV produced a pro-
nounced inhibition of synaptic transients (AF/F),,, in all cells
(n = 9 spines in 7 cells; p < 0.001; Kruskal-Wallis test) (Fig. 7).
Although there was an increase in somatic EPSP amplitudes with
hyperpolarization, it did not entirely compensate the voltage
drop induced by hyperpolarization (Fig. 7A). The inhibition of
(AF/F),, by hyperpolarization can be interpreted as a failure to
create sufficient AMPA-R-mediated depolarization to activate
VDCC channels or relieve Mg?* block of NMDA-Rs.

Depolarization to —60 to —50 mV revealed no increase in
calcium transient amplitudes, contrary to what would be ex-
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Figure8. Globalandlocal Ca®" signals summate in individual spines. A, Response “matrix”
for global and/or local activation in an individual spine. All responses shown are individual trials
and were recorded at the same stimulation strength. Black bottom traces represent EPSPs
recorded at the GC soma, black top traces represent AF/Fin a spine, and gray top traces repre-
sent AF/Finthe adjacent dendrite. 00, Neither local nor global activation. 10, Local activation of
the synapse; note the localization of the transient to the spine. 01, Global EPSP/LTS signal
without local synaptic activation; similar transient amplitudes in dendrites. 11, Local and global
activation. Note the broader, different shape and larger amplitude of the global EPSP in its
voltage traces in 01 and 11. B, Cumulative summation data from 12 spines. Scatter plot of
summed averaged local and global signal amplitudes versus actual combined signal amplitude.
The dashed line corresponds to linear summation. , Averaged spine versus adjacent dendrite
AF/F amplitudes of local synaptic activation (gray diamonds; n = 39, including the 12 sum-
mation spines), LTS activation (white circles; n = 80), and spines with combined activation (®;
n = 24, including the 12 summation spines).

pected for exclusively NMDA-R-mediated signals. Instead, a pla-
teau was observed (Fig. 7). The plateau was not attributable to an
increased baseline fluorescence, because the average F, did not
change significantly with voltage (average F, in —60 to —50 mV
interval, 106 = 22% of control at —70 mV; n = 22 measurements
in 9 spines; see Materials and Methods). Thus, the voltage depen-
dence of synaptic transients in GC spines is consistent with the
idea that both NMDA-Rs and VDCCs contribute to spine Ca*™"
signals, with partial inactivation of VDCCs possibly balancing
increased NMDA-R contribution at more depolarized potentials.

Cooperation of local and global mode of activation

To examine interactions of global and local calcium signals at
individual spines, we took advantage of the stochasticity of both
of these signals at many spines. Figure 8 A shows a set of individ-
ual trials representing the four possible responses in the same
single spine: no activation, i.e., failure of local synaptic activation
and no global LTS (00); local synaptic release and no global acti-
vation (10); synaptic failure and global activation (01); and both
local and global synaptic activation (11). The occurrence of the
global LTS signal, (AF/F), s, was always clearly marked by den-
dritic activation and a larger, broadened EPSP. The average local
and LTS-mediated signals were similar in size, although the com-
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bined activation was significantly larger: 10, 34 = 10%; 01, 33 =
13%; 11,74 = 26% (n = 12 spines; 10 or 01 vs 11, p < 0.002). The
ratio of the combined signal (AF/F),, to the sum of the individual
components [(AF/F),, + (AF/F),,] in a spine was 1.11 = 0.16
(n = 12 spines) (Fig. 8 B). Thus, the Ca** signals attributable to
synaptic and global activation summate approximately linearly
within the spine. In other active spines, we always observed a
global LTS Ca*" signal. In these spines, the dendritic component
and a similar fraction of the spine component were attributable to
the Ca*™ spike, as described above (spine, 74 + 30% AF/F; den-
drite, 25 = 14% AF/F; n = 12) (Fig. 8C).

Discussion

Local and global subthreshold calcium signaling

These results provide the first direct documentation of the mech-
anisms of synaptically evoked dendrodendritic calcium signals in
olfactory bulb granule cells, an axonless cell type with dendrites
that act as both presynaptic (transmitter-releasing) and postsyn-
aptic (transmitter-receiving) elements. We observed two forms
of AP-independent calcium signaling with very different proper-
ties. (1) Local Ca** transients were strictly confined to individual
activated spines and were carried by NMDA-Rs, VDCCs, and
release from internal stores. (2) Global LTS encompassed the
entire dendritic tree and were mediated by T-type Ca®" channel
activation (see supplemental Fig. 1, available at www.jneurosci.
org as supplemental material). These two signals provide strong
candidate mechanisms for the two principal AP-independent cir-
cuit functions of olfactory bulb GCs, M/TC self inhibition and
M/TC lateral inhibition (Jahr and Nicoll, 1982; Isaacson and
Strowbridge, 1998; Schoppa et al., 1998; Shepherd and Greer,
1998). Consistent with their differing sources, global and local
signals interacted quasi-independently within individual spines.
Thus, we also observed a third distinct GC activation mode, de-
fined by the coincidence of local and global signals.

Spine transients: chemical and

electrical compartmentalization?

Synaptic Ca*" transients in GC spines attributable to M/TC in-
puts were highly localized to the spine head. We previously ob-
served spontaneous synaptic transients in GC spines that might
have arisen from either M/TC or else centrifugal synapses (Egger
et al., 2003). Here, using glomerular stimulation, we mimicked
the sensory—activation pathway, thus establishing that localiza-
tion is characteristic for M/T cell input to GCs. Because the
shorter spines of other neuronal classes show less compartmen-
talization under similar conditions (Yuste and Denk, 1995;
Koster and Sakmann, 1998; Kovalchuk et al., 2000; Nevian and
Sakmann, 2004), this property may be attributable to the long
neck of GC spines (our unpublished data) (Woolf et al., 1991a).
The strict localization demonstrates that, assuming that these
transients are sufficient for release, M/TC self-inhibition exists in
a pure form in which a local reciprocal microcircuit is activated
without any lateral spread.

The function of such pure self-inhibition, which appears
unique to GCs, is yet unclear. It is worth noting that the recipro-
cal microcircuit presents a more diverse set of mechanisms for
dynamically regulating the strength of negative feedback com-
pared with simple cell-autonomous inhibitory mechanisms (e.g.,
Ca**-activated K™ channels). In the olfactory system, this nega-
tive feedback could be enhanced, for example, via centrifugal
activation of large GC spines (Price and Powell, 1970). However,
persistent top-down excitation of GCs could also result in disin-
hibition of M/TCs via inactivation of GC T-type Ca** channels
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(see below) (Egger et al., 2003). In either case, top-down regula-
tion of M/TC self-inhibition could thus be used to create “search
images” or templates for certain relevant odors: by promoting
inhibition or excitation of certain groups of M/TCs.

Spine Ca®" transients were carried by a variety of sources,
including NMDA-Rs, VDCCs, and CICR, but not Ca®" entry
through AMPA-Rs entry (cf. Jardemark et al., 1997). According
to our data, CICR is triggered by Ca*" entry via both NMDA-Rs
and VDCCs. Although the respective roles of these diverse signals
remain to be elucidated, it is an interesting possibility that sepa-
rable functions are achieved, perhaps via microdomains within
the spine. The fact that localization to the spine head was ob-
served even for the VDCC-mediated component of the spine
calcium signal was surprising, because we knew from previous
work that similar complements of VDCCs are present on both
GC dendrites and spine (Egger et al., 2003). For VDCC-mediated
Ca’" signals to remain localized, there needs to be not only
chemical compartmentalization but also electrical compartmen-
talization; otherwise, synaptic depolarization would also activate
dendritic VDCCs. Although it is possible that VDCCs in spines
have lower activation voltages than VDCCs in dendrites, we ob-
served no consistent differences in the kinetics or amplitudes of
spine and dendritic Ca®™ transients produced by APs (Egger et
al., 2003) or step depolarization to —40 mV (V. Egger and Z. F.
Mainen, unpublished observations). Thus, localization of depo-
larization is most likely attributable to the high input impedance
and low neck conductance of the spine relative to the size of the
synaptic conductance (Rall and Rinzel, 1973; Brown et al., 1988;
Tsay and Yuste, 2004). The intriguing question remains whether
a similar degree of isolation holds for the subset of small GC
spines that receive mostly centrifugal input (Price and Powell,
1970).

Local activation of HVA (N/P/Q-type) channels in self-
inhibition (Isaacson, 2001) would imply a relatively large spine
voltage transient, perhaps even a regenerative event, i.e., a “spine
spike” (Shepherd and Brayton, 1987; Segev and Rall, 1988;
Softky, 1994; Tsay and Yuste, 2004). However, because feedback
inhibition works also independently of Na ™ channels (Jahr and
Nicoll, 1982; Isaacson and Strowbridge, 1998), such spine spikes
would correspond to regenerative Ca>" spikes and would not
necessarily involve sodium APs.

Low-threshold spike: a novel subthreshold global
“presynaptic” signal

In this study, we documented a novel subthreshold mode of Ca**
signaling between different GC spines, a global LTS. Like AP-
evoked Ca** signals (Egger et al., 2003), the LTS was all-or-none
in nature. The LTS signal was of a similar magnitude to AP-
evoked Ca’* signals, and, like the AP-evoked signal, the LTS
spread globally throughout the dendrites, similar to observations
in turtle olfactory bulb GCs by Pinato and Midtgaard (2004).
Thus, the LTS represents a putative “presynaptic” signal that we
propose to underlie AP-independent lateral inhibition between
M/TCs. We saw no evidence for the regionally localized Ca**
signals described in some cell types (Eilers et al., 1995; Schiller et
al., 1997; Wei et al., 2001) and proposed for GCs on theoretical
grounds (Woolf et al., 1991a; Woolf and Greer, 1994); in our
experiments, LTS-mediated lateral inhibition was never spatially
restricted to subregions of the GC dendrite. However, regional
LTS signals might be produced under different conditions, for
example, shunting by ongoing synaptic input to GCs (Koch et al.,
1982), different in vivo activation patterns, modulation by cen-
trifugal input, or developmental changes of network properties.
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Yet another type of regional Ca*" signal, perhaps attributable to
spatially restricted Na ™ spikes (spikelets) (Wellis and Scott, 1990;
Luo and Katz, 2001; Pinato and Midtgaard, 2004), has been ob-
served in frog olfactory bulb GC dendrites (K. Delaney, personal
communication).

T-channels mediate all of the LTS-mediated and ~30% of the
local synaptic Ca*" signal (this study), as well as ~50% of sAP-
mediated Ca’" signals (Egger et al., 2003). Unlike in other
T-channel-bearing neurons such as thalamocortical relay cells,
T-channels appear to play less of a role in sculpting GC firing
properties (Egger et al., 2003). We suggest that T-channel-
mediated Ca’* transients may represent sufficient signals to
evoke vesicular release (cf. Egger et al., 2003). So far, T-channels
have only been implicated in synaptic release in the retina (Pan et
al., 2001). Direct confirmation of this proposal will require mon-
itoring measurement of GC release in conjunction with imaging
experiments, a procedure that has proven technically difficult
because of the low incidence of GC-M/TC synapses (Egger et al.,
2003).

Insofar as T-type Ca*" channels contribute to GC-mediated
lateral inhibition in the olfactory bulb, they could provide a
mechanism for controlling the gain of GC output via persistent
input, or the slow, respiration-related oscillations within the ol-
factory bulb (Macrides and Chorover, 1972), similar to the pre-
viously proposed role for T-channels in the global GC sAP-
mediated Ca*" signal (Egger et al., 2003). These mechanisms
would imply a role for T-channels in gating the entry of olfactory
information to the cortex, analogous to the role they play in
thalamocortical relay cells (Huguenard, 1996).

Independent GC Ca®* signaling modes:

coincidence detection?

In cortical and hippocampal pyramidal cells, backpropagating
action potentials (Magee and Johnston, 1997; Markram et al.,
1997) and distal dendritic calcium spikes (Golding et al., 2002)
can cooperate with local synaptic activity in the induction of
long-term plasticity. Interestingly, our results indicate that sub-
threshold coincidence detection could also be performed by local
and global Ca** signals in GC spines. Consistent with their
mostly distinct sources, these Ca®" signals acted quasi-
independently. That is, we observed approximately linear sum-
mation of local and global subthreshold synaptic signals in the
GC spine (Fig. 8). The apparent linearity could rely on a balance
of increases and decreases attributable to coincidence of signals:
Ca** influx via NMDA-Rs increases attributable to the depolar-
ization provided by the global signal (Schiller et al., 1998),
whereas the contribution of VDCCs decreases because of inacti-
vation and competitive activation by both pathways. The marked
increase of Ca*" influx attributable to subthreshold coincident
global and local (i.e., presynaptic and postsynaptic) activation of
a GC spine would represent a novel mechanism for Hebbian
synaptic plasticity within the spine microcircuit.

References

Brown TH, Chang VC, Ganong AH, Keenan CL, Kelso SR (1988) Biophys-
ical properties of dendrites and spines that may control the induction and
expression of long-term synaptic potentiation. In: Long-term potentia-
tion: from biophysics to behavior (Landfield PW, Deadwyler SA, eds), pp
201-264. New York: Wiley.

CangJ, Isaacson JS (2003) In vivo whole-cell recording of odor-evoked syn-
aptic transmission in the rat olfactory bulb. ] Neurosci 23:4108—4116.

Carleton A, Petreanu LT, Lansford R, Alvarez-Buylla A, Lledo PM (2003)
Becoming a new neuron in the adult olfactory bulb. Nat Neurosci
6:507-518.

J. Neurosci., April 6, 2005 - 25(14):3521-3530 * 3529

Chen WR, Shepherd GM (1997) Membrane and synaptic properties of mitral
cells in slices of rat olfactory bulb. Brain Res 745:189-196.

Chen WR, Xiong W, Shepherd GM (2000) Analysis of relations between
NMDA receptors and GABA release at olfactory bulb reciprocal synapses.
Neuron 25:625—-633.

Egger V, Svoboda K, Mainen ZF (2003) Mechanisms of lateral inhibition in
the olfactory bulb: efficiency and modulation of spike-evoked calcium
influx into granule cells. ] Neurosci 23:7551-7559.

Eilers J, Augustine GJ, Konnerth A (1995) Suprathreshold synaptic Ca*"
signalling in fine dendrites and spines of cerebellar Purkinje neurons.
Nature 373:155-157.

Emptage NJ, Bliss TV, Fine A (1999) Single synaptic events evoke NMDA
receptor-mediated release of calcium from internal stores in hippocampal
dendritic spines. Neuron 22:115-124.

Finch EA, Augustine GJ (1998) Local calcium signalling by inositol-1,4,5-
trisphosphate in Purkinje cell dendrites. Nature 396:753-756.

Golding NL, Staff NP, Spruston N (2002) Dendritic spikes as a mechanism
for cooperative long-term potentiation. Nature 418:326-331.

Halabisky B, Friedman D, Radojicic M, Strowbridge BW (2000) Calcium
influx through NMDA receptors directly evokes GABA release in olfac-
tory bulb granule cells. ] Neurosci 20:5124-5134.

Hamilton KA, Kauer JS (1988) Responses of mitral/tufted cells to ortho-
dromic and antidromic electrical stimulation in the olfactory bulb of the
tiger salamander. ] Neurophysiol 59:1736-1755.

Huguenard JR (1996) Low-threshold calcium currents in central nervous
system neurons. Annu Rev Physiol 58:329-348.

Isaacson JS (2001) Mechanisms governing dendritic gamma-aminobutyric
acid (GABA) release in the rat olfactory bulb. Proc Natl Acad Sci USA
98:337-342.

Isaacson JS, Strowbridge BW (1998) Olfactory reciprocal synapses: den-
dritic signaling in the CNS. Neuron 20:749-761.

Jahr CE, Nicoll RA (1980) Dendrodendritic inhibition: demonstration with
intracellular recording. Science 207:1473-1475.

Jahr CE, Nicoll RA (1982) An intracellular analysis of dendrodendritic in-
hibition in the turtle in vitro olfactory bulb. J Physiol (Lond)
326:213-234.

Jardemark K, Nilsson M, Muyderman H, Jacobson I (1997) Ca*" ion per-
meability properties of (R,S) alpha-amino-3-hydroxy-5-methyl-4-
isoxazolepropionate (AMPA) receptors in isolated interneurons from the
olfactory bulb of the rat. ] Neurophysiol 77:702—708.

Koch C (1999) Biophysics of computation. New York: Oxford UP.

Koch C, Poggio T, Torre V (1982) Retinal ganglion cells: a functional inter-
pretation of dendritic morphology. Philos Trans R Soc Lond B Biol Sci
298:227-264.

Koster HJ, Sakmann B (1998) Calcium dynamics in single spines during
coincident pre- and postsynaptic activity depend on relative timing of
back-propagating action potentials and subthreshold excitatory postsyn-
aptic potentials. Proc Natl Acad Sci USA 95:9596-9601.

Kovalchuk Y, Eilers J, Lisman J, Konnerth A (2000) NMDA receptor-
mediated subthreshold Ca®" signals in spines of hippocampal neurons.
J Neurosci 20:1791-1799.

Lagier S, Carleton A, Lledo P-M (2004) Interplay between local GABAergic
interneurons and relay neurons generates *y oscillations in the rat olfac-
tory bulb. ] Neurosci 24:4382-4392.

Luo M, Katz LC (2001) Response correlation maps of neurons in the mam-
malian olfactory bulb. Neuron 32:1165-1179.

Macrides F, Chorover SL (1972) Olfactory bulb units: activity correlated
with inhalation cycles and odor quality. Science 175:84—87.

Magee JC, Johnston D (1997) A synaptically controlled associative signal for
hebbian plasticity in hippocampal neurons. Science 275:209-212.

Mainen ZF, Malinow R, Svoboda KS (1999a) Synaptic calcium transients in
single spines indicate that NMDA receptors are not saturated. Nature
399:151-155.

Mainen ZF, Maletic-Savatic M, Shi SH, Hayashi Y, Malinow R, Svoboda K
(1999b) Two-photon imaging in living brain slices. Methods
18:231-239.

Margrie TW, Schaefer AT (2003) Theta oscillation coupled spike latencies
yield computational vigour in a mammalian sensory system. J Physiol
(Lond) 546:363-374.

Margrie TW, Sakmann B, Urban NN (2001) Action potential propagation
in mitral cell lateral dendrites is decremental and controls recurrent and



3530 - J. Neurosci., April 6, 2005 - 25(14):3521-3530

lateral inhibition in the mammalian olfactory bulb. Proc Natl Acad Sci
USA 98:319-324.

Markram H, Sakmann B (1994) Calcium transients in dendrites of neocor-
tical neurons evoked by single subthreshold excitatory postsynaptic po-
tentials via low-voltage-activated calcium channels. Proc Natl Acad Sci
USA 91:5207-5211.

Markram H, Liibke J, Frotscher M, Sakmann B (1997) Regulation of synap-
tic efficacy by coincidence of post-synaptic APs and EPSPs. Science
275:213-215.

Mel BW (1993) Synaptic integration in an excitable dendritic tree. ] Neuro-
physiol 70:1086-1101.

Miyakawa H, Ross WN, Jaffe D, Callaway JC, Lasser-Ross N, Lisman JE,
Johnston D (1992) Synaptically activated increases in Ca*" concentra-
tion in hippocampal CA1 pyramidal cells are primarily due to voltage-
gated Ca®" channels. Neuron 9:1163-1173.

Nevian T, Sakmann B (2004) Single spine Ca** signals evoked by coinci-
dent EPSPs and backpropagating action potentials in spiny stellate cells of
layer 4 in the juvenile rat somatosensory barrel cortex. J Neurosci
24:1689-1699.

Pan ZH, Hu HJ, Perring P, Andrade R (2001) T-type Ca’* channels medi-
ate neurotransmitter release in retinal bipolar cells. Neuron 32:89-98.

Petreanu L, Alvarez-Buylla A (2002) Maturation and death of adult-born
olfactory bulb granule neurons: role of olfaction. ] Neurosci
22:6106—-6113.

Pinato G, Midtgaard J (2003) Regulation of granule cell excitability by a
low-threshold calcium spike in turtle olfactory bulb. J Neurophysiol
90:3341-3351.

Pinato G, Midtgaard ] (2004) Dendritic sodium spikelets and low-threshold
calcium spikes in turtle olfactory bulb granule cells. J Neurophysiol
93:1285-1294.

Pologruto TA, Sabatini BL, Svoboda K (2003) ScanImage: flexible software
for operating laser scanning microscopes. Biomed Eng Online 2:13.

Polsky A, Mel BW, Schiller ] (2004) Computational subunits in thin den-
drites of pyramidal cells. Nat Neurosci 7:621-627.

Price JL, Powell TP (1970) An experimental study of the origin and the
course of the centrifugal fibres to the olfactory bulb in the rat. ] Anat
107:215-237.

Rall W, Rinzel J (1973) Branch input resistance and steady attenuation for
input to one branch of a dendritic neuron model. Biophys ] 13:648—-687.

Rall W, Shepherd GM, Reese TS, Brightman MW (1966) Dendrodendritic
synaptic pathway for inhibition in the olfactory bulb. Exp Neurol
14:44-56.

Sassoe-Pognetto M, Ottersen OP (2000) Organization of ionotropic gluta-
mate receptors at dendrodendritic synapses in the rat olfactory bulb.
] Neurosci 20:2192-2201.

Schiller J, Schiller Y, Stuart G, Sakmann B (1997) Calcium action potentials
restricted to distal apical dendrites of rat neocortical pyramidal neurons.
J Physiol (Lond) 505:605-616.

Schiller J, Schiller Y, Clapham DE (1998) NMDA receptors amplify calcium

Egger et al. o Olfactory Bulb Granule Cell Ca?* Signals

influx into dendritic spines during associative pre- and postsynaptic acti-
vation. Nat Neurosci 1:114-118.

Schoppa NE, Westbrook GL (1999) Regulation of synaptic timing in the
olfactory bulb by an A-type potassium current. Nat Neurosci
2:1106-1113.

Schoppa NE, Kinzie JM, Sahara Y, Segerson TP, Westbrook GL (1998) Den-
drodendritic inhibition in the olfactory bulb is driven by NMDA recep-
tors. ] Neurosci 18:6790—6802.

Segev I, Rall W (1988) Computational study of an excitable dendritic spine.
J Neurophysiol 60:499-523.

Shepherd GM (1963) Responses of mitral cells to olfactory nerve volleys in
the rabbit. J Physiol (Lond) 168:89-100.

Shepherd GM, Brayton RK (1987) Logic operations are properties of
computer-simulated interactions between excitable dendritic spines.
Neuroscience 21:151-165.

Shepherd GM, Greer CA (1998) The olfactory bulb. In: The synaptic orga-
nization of the brain (Shepherd GM, ed), pp 133-169. New York: Oxford
UP.

Softky W (1994) Sub-millisecond coincidence detection in active dendritic
trees. Neuroscience 58:13—41.

Svoboda K, Tank DW, Denk W (1996) Direct measurement of coupling
between dendritic spines and shafts. Science 272:716—719.

Takechi H, Eilers J, Konnerth A (1998) A new class of synaptic response
involving calcium release in dendritic spines. Nature 396:757-760.

Tsay D, YusteR (2004) On the electrical function of dendritic spines. Trends
Neurosci 27:77-83.

Trombley PQ, Shepherd GM (1992) Noradrenergic inhibition of synaptic
transmission between mitral and granule cells in mammalian olfactory
bulb cultures. ] Neurosci 12:3985-3991.

Wachowiak M, Denk W, Friedrich RW (2004) Functional organization of
sensory input to the olfactory bulb glomerulus analyzed by two-photon
calcium imaging. Proc Natl Acad Sci USA 101:9097-9102.

Wei DS, Mei YA, Bagal A, Kao JP, Thompson SM, Tang CM (2001) Com-
partmentalized and binary behavior of terminal dendrites in hippocam-
pal pyramidal neurons. Science 293:2272-2275.

Wellis DP, Scott JW (1990) Intracellular responses of identified rat olfactory
bulb interneurons to electrical and odor stimulation. ] Neurophysiol
64:932-947.

Woolf TB, Greer CA (1994) Local communication within dendritic spines:
models of second messenger diffusion in granule cell spines of the mam-
malian olfactory bulb. Synapse 17:247-267.

Woolf TB, Shepherd GM, Greer CA (1991a) Serial reconstructions of gran-
ule cell spines in the mammalian olfactory bulb. Synapse 7:181-192.
Woolf TB, Shepherd GM, Greer CA (1991b) Local information processing
in dendritic trees: subsets of spines in granule cells of the mammalian

olfactory bulb. ] Neurosci 11:1837-1854.

Xiong W, Chen WR (2002) Dynamic gating of spike propagation in the
mitral cell lateral dendrites. Neuron 34:115-126.

Yuste R, Denk W (1995) Dendritic spines as basic functional units of neu-
ronal integration. Nature 375:682-685.



