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Abstract 

 

There are several commercial selenium and tellurium compounds that are useful in synthetic 

chemistry. The introduction of selenium and tellurium into both organic and inorganic compounds 

frequently begins with the elements. This chapter provides an overview of the main reactivity of the 

hexagonal allotropes of selenium and tellurium, which are the most stable form of the elements under 

ambient conditions. While the two elements have very similar chemical properties, there are also 

notable differences. Upon reduction, both elements form mono- and poly-chalcogenides, which are 

useful nucleophilic reagents in several reactions. The elements also react with many main group 

compounds as well as with transition metal complexes. They also form homopolyatomic cations upon 

oxidation. Both selenium and tellurium react with Grignard reagents and organyllithium compounds 

affording organylchalcogenolates, which upon oxidation form dichalcogenides that are themselves 

useful reagents in organic synthetic chemistry as well as in materials applications. This chapter 

provides a short introduction to the various topics that will be developed further in the subsequent 

chapters of this book. 

 

Keywords: Elemental selenium, elemental tellurium, selenides, tellurides, polyselenides, 

polytellurides, organyl selenolates, organyl tellurolates, homopolyselenium cations, 

homopolytellurium cations  



 

 

1. Introduction 

 

The use of selenium and tellurium compounds in diverse applications has grown significantly during 

the past decades. Consequently, chalcogen chemistry has been reviewed several times during the last 

twenty years, as exemplified by a selection of review articles [1-6] and books [7-16], which describe 

recent advances in synthetic inorganic and organic chalcogen chemistry, as well as in more applied 

areas such as medicinal chemistry and materials science. The current monograph is an overview of 

this progress and discusses the use of different classes of selenium and tellurium compounds as 

reagents.  

 

The preparation of selenium and tellurium compounds generally involves simple molecular species 

such as the elements, inorganic or organic chalcogenides and polychalcogenides, selenium and 

tellurium halogenides, selenium and tellurium oxides, as well as organyl phosphine selenides and 

tellurides. These classes are treated in detail in the subsequent chapters of this monograph. In this 

chapter, the introduction of commercially available selenium and tellurium into the reaction system 

is considered. The first step in many reactions of selenium and tellurium is the reduction of the 

elements to form anionic selenides and tellurides, which are the actual reagents.  

 

Alkyl or aryl selenides, tellurides, diselenides, and ditellurides are also common starting materials in 

many organic syntheses. While many of them are commercially available, they can also be 

conveniently prepared from the elements. The dimer PhPSe(µ-Se)2P(Ph)Se, which is known as 

Woollins’ reagent, is also commercially available. This P-Se compound is proving to be an important 



source of selenium in a wide range of synthetic applications. Its chemistry is discussed in detail in 

Chapter 5. 

 

2. Elemental selenium   

 

2.1. General 

Some reactions of elemental selenium are summarized in Figure 1. Many of the products are 

themselves useful reagents in further syntheses. Special examples have been discussed in the 

appropriate chapters of this monograph. 

 

Figure 1. Some reactions of elemental selenium. (i) M/NH3(l) (M = Li, Na, K), Na[BH4], or 
Li[AlEt3H], (ii) Li[AlH4], (iii) M2Se (M = alkali metal), (iv) SeCl4, (v) Br2, (vi)  SO2X2/THF (X = 
Cl, Br), (vii) S8, (viii) AsF5/SO2(l) or SbCl5/SO2(l), (ix) PR3 (R = alkyl or aryl), (x) RMgBr/THF or 
RLi/THF (R = alkyl or aryl), (xi) PhC(NtBu)2Si[N(SiMe3)2]/THF, (xii) {[N(Dip)2]2(CH)2CB}2/C6H6. 
 

 



2.2. Anionic selenides and their derivatives 

Selenides and polyselenide anions are useful nucleophiles in synthetic applications. Alkali metal and 

alkaline earth metal chalcogenides are commonly prepared by mixing the elements at high 

temperatures, by the reaction of chalcogen elements and alkali-metal carbonates in solution, by 

solvothermal reactions, and by oxidation–reduction reactions involving Lewis acids [17,18]. The 

alkali metal or alkaline earth metal selenides and tellurides thus formed can serve as reagents for the 

preparation of transition-metal or main-group element chalcogenides. A large organic cation or an 

encapsulating agent such as the crown-ether complex of an alkali-metal cation may stabilize the 

otherwise unstable anions.  

 

Lithium, sodium and potassium selenides and diselenides have traditionally been prepared by 

dissolving the chalcogen elements and the alkali metals in appropriate molar ratios in liquid ammonia. 

The early work by Bergström [19] and Klemm et al. [20], as well as that by Brandsma and Wijers 

[21] has been followed and developed by numerous studies, as exemplified by Müller et al. [22], 

Björgvinsson and Schrobilgen [23], and Colombara et al. [24]. Thiele et al. [25] have recently 

reviewed the preparation, structures, and properties of different classes of polyselenides, which have 

been stabilized by use of bulky cations. 

 

In addition to alkali metals, polyselenides  can be produced in liquid ammonia or in methylamine by 

other less-noble metals such as Mn and Fe to afford [Mn(NH3)6]Se3, [Mn(NH3)6]Se4, [M(NH3)6]Se6 

(M = Mn, Fe), and disordered phases [Mn(NH2Me)6](S5)0.15(Se2.43S1.57)0.85 and  

[Mn(NH3)6](Se2.29S2.71) [26].   

 

Sandman et al. [27] have shown that alkali-metal selenides can also be produced upon reduction of 

selenium by elemental alkali metals in high-boiling polar aprotic solvents. This concept has been 



developed by Thompson and Boudjouk [28], who have demonstrated that lithium, sodium, and 

potassium selenides and diselenides can conveniently be also prepared in THF by use of ultrasound 

and in the presence of small amounts of a charge-transfer agent such as naphthalene. The 

electrochemical reduction of selenium powder in aprotic media such as acetonitrile or THF also 

provides an effective method to synthesize Se2- and Se22- selectively [29,30]. 

 

Elemental selenium can also conveniently be reduced by using lithium tetrahydridoaluminate [31], 

sodium tetrahydridoborate [32], or lithium triethylhydridoborate [33]. The reaction with lithium 

tetrahydridoaluminate (“lithium aluminium hydride”) has been reported to produce an intermediate 

product “LiAlHSeH”, which can be used in situ to produce a wide variety of organic selenoethers 

and selenones [31]. This reagent is described in more detail in Chapter 8.  

 

Since the distribution of the products in the reduction of elemental selenium with sodium 

tetrahydridoborate seemed to be sensitive to experimental conditions, Cusic and Dance [34] and 

Marques de Oliveira et al. [35] have studied the reaction in detail using 77Se NMR spectroscopy. 

Since HSe- and Se2- co-exist in fast equilibrium, there is no NMR evidence for the presence of Se2-. 

Similarily, no resonance attributable to Se22- has been observed. By contrast, the presence of 

polyselenide anions Sex2- (x = 3-6) is clearly evident in solution, as indicated in Figure 2 by the 77Se 

NMR spectrum of a reaction mixture recorded in DMF [34]. These observations are consistent with 

the detailed 77Se NMR study of Björgvinsson and Schrobligen in liquid ammonia and 

ethylenediamine [23] and with the ESI mass spectrometric study of the polyselenide speciation by 

Raymond et al. [36].  



 
Figure 2. 77Se NMR resonances of (a) Se32- and Se42-, and (b) Se52- and Se62-. All spectra have been 
recorded in DMF [34] (adapted from Cusick J, Dance I. The characterization of [HSe]- and [Sex]2- 
ions by 77Se NMR. Polyhedron 1991, 10, 2629-2640. Copyright 1991 Elsevier SA). 
 

Klayman and Griffin [32] and Marques de Oliveira et al. [35] have shown that the treatment of Sex2- 

solutions with organyl halogenides with careful control of the reaction stoichiometry produces 

organyl selenides and diselenides in high purity. The solvothermal synthesis of CuInSe2 also involves 

Sex2-, which has been produced by the reduction of selenium with NaBH4 [37].  

 

The reduction of selenium by lithium triethylhydridoborate (“superhydride”) also results in the 

formation of a mixture of polyselenides Sex2- [33]. The distribution of polyselenide anions is 

dependent on the molar ratio of selenium and the reducing agent. The treatment of the anions with 

[TiCp2Cl2] affords [TiCp2Se5] [38-40] or dinuclear [TiCp2(µ-Se2)2TiCp2] [Cp = cyclopentadienyl 

ligand C5H5-, or its alkyl-substituted derivatives) [41].  

 



Both [TiCp2Se5] and [TiCp2(µ-Se2)2TiCp2] are useful reagents for the preparation of homo- and 

heterocyclic chalcogen rings by the reaction with Se2Cl2 or SeCl2 [42,43] (see Eqs. 1 and 2). These 

reactions are similar to those of [TiCp2S5] and SnCl2, which afford a large number of homocyclic 

sulfur ring molecules Sn+5 (for reviews, see refs. [44-46]). The hybrid reactions of [TiCp2S5] or 

[TiCp2(µ-S2)nTiCp2] (n = 2, 3) with Se2Cl2 [41] and those of [TiCp2Se5] or [TiCp2(µ-Se2)2TiCp2] with 

SnCl2 (n = 1, 2) [41,47,48] afford heterocyclic selenium sulfides, as do the reactions of [TiCp2SenS5-

n] mixtures with sulfur or selenium chlorides [48,49]. 

 

 [TiCp2Se5] + SenCl2 ® Se5+n + [TiCp2Cl2] (1) 

 [TiCp2((µ-Se2)2TiCp2] + 2 SenCl2 ® Se4+2n + 2 [TiCp2Cl2] (n = 1, 2) (2) 

 

An intriguing application of the reduction of elemental selenium by lithium triethylhydridoborate 

involves the reaction of the reduction product with acyl chlorides or carboxylic acids followed by 

treatment with sugar azides [50] (see Figure 3). A new amide bond is formed and elemental selenium 

is recovered for further use.  

 

Figure 3. The preparation of sugar-derived amides by reduction of elemental selenium with lithium 
triethylhydridoaluminate followed by a reaction with an acyl chloride [50] (reproduced with 
permission from Silva L, Affeldt RF, Lüdtke DS. Synthesis of glycosyl amides using 
selenocarboxylates as traceless reagents for amide bond formation. J Org Chem 2016, 81, 5464-5473. 
Copyright 2016 Americal Chemical Society). 



 

Elemental selenium can also be reduced to Se2- in aqueous alkaline solution [51], though it was 

reported that the yield of the Se2- ion is only moderate owing to disproportionation (see eq. 3). When 

tin(II) chloride was added to the basic media, the yield was significantly improved. It has been 

deduced that tin(II) oxide was de facto the reducing agent. However, when selenium powder was 

irradiated in the microwave oven in a NaOH solution and subsequently treated with CuSO4.5H2O, 

bulk Cu5Se4 could be precipitated from the solution [52]. 

 

 3 X + 6 MOH ® 2 M2X + M2XO3 + 3 H2O (3) 

 

A direct in situ reduction of selenium using aqueous DMF or sodium formaldehydesulfoxylate 

followed by the reaction with lead acetate afforded PbSe powder [53]. NiSe2 has been prepared by 

mixing metallic nickel and elemental selenium in mercaptoethanol at room temperature for a 

prolonged period resulting in a rust-coloured solution, which upon annealing at 350 oC under a 

nitrogen atmosphere produced the phase-pure product [54]. The material is an efficient hydrogen 

evolution reaction catalyst. The reaction of selenium or tellurium and iron(II) bromide in octane-9-

enylamine (“oleylamine”) at 170 oC resulted in the formation of FeE2 (E = Se, Te) nanocrystals [55]. 

The amine acted as a solvent and as a reducing agent for the chalcogen. The iron dichalcogenides 

have attractive electronic properties and can have utility in different device applications. 

 

Hydrazine can also be utilized in the reduction of selenium and tellurium [51,56]. The concurrent 

treatment of the solution with silver nitrate yielded Ag2Se nanowires [56]. 

 



2.3. Selenium halogenides 

Elemental selenium can conveniently be converted to Se2Cl2 or Se2Br2 by mixing the element with 

SeCl4 or Br2, respectively, in a suitable stoichiometric ratio [57,58]. The reaction with SO2X2 (X = 

Cl, Br) in THF affords SeX2 [59]. A more detailed description of selenium halogenides in synthetic 

applications is presented in Chapter 2.  

 

2.4. Heterocyclic selenium sulfides 

Crystalline solid solutions of selenium sulfides SenS8-n can be produced by melting the elements in 

vacuo, quenching the molten mixtures, and extracting the quenched melt with CS2 followed by 

crystallization [45]. The composition of the products has been established by 77Se NMR spectroscopy 

[60] (see Figure 4).  



 

Figure 4. 77Se NMR spectrum of the CS2 solution of quenched sulfur–selenium melt involving 77Se-
enriched selenium (enrichment 92 %) [60,61]. The selenium content in the molten mixture of sulfur 
and selenium is 30 mol% of selenium. The resonances from different individual SenS8-n species have 
been shown in different colours. The closed circles indicate selenium atoms and the empty corners 
sulfur atoms. (Reproduced with permission from Laitinen RS, Oilunkaniemi R. Catenated 
Compounds: Group 16 (Se, Te). Laitinen RS, Oilunkaniemi R. Catenated compounds group 16 (Se, 
Te). In Poeppelmeier, K, Reedijk J. Eds. Comprehensive Inorganic Chemistry II, 2nd Ed., Elsevier, 
Amsterdam 2013, pp 197-231. Copyright 2013 Elsevier SA). 
 

It was deduced that the main components in the CS2 solutions of the crystalline phases extracted from 

quenched molten mixtures of sulfur and selenium are sulfur-rich SeS7 and 1,2-Se2S6 ring molecules 

even in mixtures of high initial selenium content [60]. Other identified main species are 1,2,3-Se3S5, 

1,2,3,4-Se4S4, 1,2,3,4,5-Se5S3, 1,2,3,4,5,6-Se6S2, and Se8, in which the number of homonuclear bonds 

is maximized.  



 

2.5. Homopolyatomic selenium cations 

Elemental selenium can be oxidized to homopolyatomic cations in super acidic media, in acidic melts, 

and in liquid SO2 [1,62]. Suitable oxidizing agents are AlCl3, AsF5, SbCl5, BiCl5, and transition metal 

halogenides OsF6, IrF6, PtF6, VCl6, ZrCl6, HfCl6, NbCl6, TaCl6, and WX6, ReX6 (X = F, Cl). In 

addition, VOCl3, NbOCl3, and WOCl4 can also be used as oxidizing agents. Recently, the selenium 

cations have also been prepared using chemical vapour transport techniques [63] and ionic liquids 

[62]. The known homopolyselenium cations include Se42+, Se82+, and Se102+, but no applications of 

these species in synthesis have been reported. 

 

2.6. Triorganylphospine selenides 

Selenium and organic polyselenides react with phosphines yielding phosphine selenides R3PSe. The 

reaction with phosphines is often used for abstracting selenium atoms from a polyselenium chain, as 

exemplified by the formation of [TiCp2(µ-Se2)2TiCp2] from [TiCp2Se5] [41] (eq. 4). 

 

 2 [TiCp2Se5] + 6 Ph3P ® [TiCp2(µ-Se2)2TiCp2] + 6 Ph3PSe (4) 

 

The interaction of elemental selenium with phosphines [64] is exemplified by the one-pot synthesis 

of diselenophosphinic selenoesters [65]. A more detailed discussion of the preparation and 

application of phosphorus-selenium reagents is presented in Chapter 5. 

 

2.7. Grignard and organyllithium reagents 

Elemental selenium reacts with Grignard reagents [66] or with organyllithium reagents [67] in dry 

THF to afford selenolates RSe- (R = organyl group) (eqs. 5 and 6). The nature of the organic 

substituent is dependent on the substituent in the Grignard reagent. Upon oxidation, the selenolates 



can be converted to organyl diselenides, which are themselves convenient reagents in synthetic 

chemistry (see Chapters 5-11) [66-68]. There are several methods to carry out the oxidation. The best 

yields have been observed by use of potassium hexacyanidoferrate(III) [67,68] (eq. 7). 

 

 2 Se + 2 RMgBr ® 2 RSe- + 2 Mg2+ + 2 Br- (5) 

 Se + RLi ® RSe- + Li+ (6) 

 2 RSe- + 2 [Fe(CN)6]3- ® RSeSeR + 2 [Fe(CN)6]4- (7) 

 

Organyl monoselenides can be prepared from lithium selenolate by treatment with an organyl 

halogenide (eq. 8). By suitable selection of the organic substituent, a number of different selenides 

can be produced, as exemplified in refs. 69,70. 

 

 RSe-Li+ + R’X ® RSeR’ + Li+Cl- (8) 

 

The cyclopentadienyl rings in [V(C5H5)(C7H7] [71] or [Fe(C5H5)2] [72] can be lithiated followed by 

the insertion of selenium or tellurium [71,72]. The treatment of the former complex affords 

dichalcogenides. In the case of the latter, a chain of three chalcogen atoms links the two 

cyclopentadienyl rings in the same complex (see Figure 5). 

 



 

Figure 5. Elemental chalcogens as soft oxidants (E = S, Se, Te). Preparation of (a) 
[{V(C7H7)(C5H4E)}2] [71] and (b) [Fe(C5H4E)2E] [72]. 
 

 

2.8. Selenium and heavy group 14 reagents 

Stable silanechalcogenones containing a terminal Si=E (E = Se, Te) functionality can be formed by 

the reaction of the amidinate-stabilized silicon(II)bis(trimethylsilyl)amide and selenium or tellurium 

[73] [see Figure 6(a)]  and germaneselones by the abstraction of selenium from RR’GeSe4 with 

triphenylphosphine [74]. 1,2,3,4,5-tetraselenagermolane can be prepared by lithiation of RR’GeH2 

followed by the treatment with elemental selenium [see Figure 6(b)]. The formation of RR’GeSe in 

reasonable yields requires very bulky organic substituents. 



 

Figure 6. Synthesis of (a) PhC(NtBu)2Si(Se)N(SiMe3)2 [72] and (b) (Tbt)(Tip)GeSe [73].  

 

Another application of germylenes in the formation of a Ge=Se double bond involves the oxidative 

addition of elemental selenium to a Ge(II) center [75,76] (see Figure 7). The actual reactant, 

aminotroponiminato(trimethylsilathio)germylene was obtained by the reaction of the germylene 

monochloride with Li+(SSiMe3-) [75]. When treated with selenium, the oxidative addition was 

followed by a virtually quantitative condensation step (see Figure 8). By contrast, when Li+(SSiMe3-

) was substituted by Li+(OSiR3-) (R = Me, Ph), only a clean single-stage oxidative addition took place 

[76].  



 

Figure 7. Oxidative addition of selenium to the Ge(II) center [75,76]. (i) 2 Li+(SSiMe3-).THF/hexane 

0 oC, (ii) Se/THF r.t., (iii) Li+(OSiR3-)/toluene r.t. (R = Me, Ph), (iv) Se/THF r.t.  

 

2.9. Selenium-boron chemistry 

Organic diborylenes RB=BR can be stabilized by bulky substituents such as Tbt {2,3,6-

tris[bis(trimethylsilyl)methyl]phenyl} [77]. Selenium can be inserted into the boron-boron double 

bond under the influence of uv-radiation. The formal reactant is TbtB(SeMe)2, but it has been 

postulated that upon irradiation the reactive component is the borylene Tbt-B:, which is formed upon 

elimination of Me2Se2 from TbtB(SeMe)2. The monomer Tbt-B: dimerizes forming Tbt-B=B-Tbt, 

which then reacts with elemental selenium [77]. It has very recently been shown that that the diboryne 

RBºBR (R = 1,2-bis(2,6-diisopropylphenyl)imidazol-2-ylene) reacts with an excess of elemental 

selenium to form RB(µ-Se2)2(µ-Se)BR [78]. By choice of suitable organic groups, it was shown that 

the diborylene RR’B=BRR’ (R = 1,3-dimethylimidazol-2-ylidene, R’ = 5-trimethylsilyl-thien-2-yl), 

reacts with elemental selenium yielding diboraselenirane [79]. All three reactions are compared in 

Figure 8. 



 

Figure 8. Reactions of boron-boron multiple bonds with elemental selenium. (a) Ref. 77. (b) Ref. 78. 
(c) Ref. 79. 
   

2.10. Transition metal selenides 

Transition metal and main group polyselenides can conveniently be prepared and crystallized by 

utilizing the molten salt technique [80-82], in which alkali metal polychalcogenides are used as 

molten fluxes. The reactions are conducted in the temperature range 200-450 oC to ensure the stability 

of the produced materials. Transition metal polyselenides generally have extended 1D or 2D 

structures. There is a recent review on the synthesis of lanthanoid-containing heterometallic 

chalcogenides, which have been prepared by utilizing alkali metal polychalcogenide flux [83]. 

Polynuclear selenium- and tellurium-containing complexes are discussed in more detail in Chapter 

10. 

 

 



3. Elemental tellurium 

 

3.1. General 

Though the chemistry of tellurium and its compounds is mainly similar to that of selenium, there are 

also notable differences [3]. The general bonding features are significantly different compared to 

those of the lighter chalcogen congeners. The homonuclear Te-Te bond energies are lower (149 kJ 

mol-1) than those involving selenium (192 kJ mol-1) or sulfur (266 kJ mol-1). The heteronuclear E-X 

bonds (E = Te, Se, S) follow the same trend (see ref. 84 for the compilation of bond energies). 

Consequently, tellurium compounds are generally more labile and more air- and moisture-sensitive. 

Tellurium also has a weaker tendency for multiple bonding than selenium and sulfur. 

 

By contrast, tellurium shows higher propensity to hypervalency [85] and secondary bonding 

interactions (SBI) [86]. This is due to the decreased energy difference between s(Te-X) and s*(Te-

X) orbitals and stronger n(X)® s*(Te-X) interactions. This accounts for stronger intermolecular 

interactions in tellurium compounds compared to those in related selenium and sulfur species. 

Electrostatic effects further enhance the strength of the secondary bonding interactions due to the 

existence of s-holes in tellurium (see ref. 3 and references cited therein).  

 

An overview of the use of elemental tellurium as a reagent is presented in Figure 9 with some 

illustrative examples.  



 

Figure 9. Illustrative examples on the reactivity of elemental tellurium. (i) M/NH3(l) (M = Li, Na, 
K), NaBH4/THF or Li[AlEt3H], (ii) iBu2AlH/toluene, (iii) [Ti(C5Me5)2TiH]/toluene, (iv) Te, Ir, and 
TeCl4/250 oC, (v) molten mixtures of tellurium, selenium, and sulfur, (vi) SbF5/SO2(l), (vii) PR3 (R 
= alkyl), (viii) RMgX/THF (X = Cl, Br) or RLi/THF, (ix) Ge(Tbt)RGe(Ph2C2)/benzene, (x) 
[MnCp(CO)2{EB(tBu)(C[NMe]2C2H2)}].  
 

 

3.2. Anionic tellurides 

As in the case of selenium, the reduction of tellurium to telluride anions is the most convenient 

method for initial introduction of tellurium into reaction systems. The reduction has been carried out 

in a similar fashion to selenium, i.e. with alkali metals in liquid ammonia [20,21,23] or in dipolar 

aprotic solutions [27], sodium tetrahydridoborate [87-91], and lithium triethylhydridoaluminate 

[92,93]. As the effects due to hypervalence and secondary bonding interactions are more significant 

in the case of tellurium than with the lighter chalcogen congeners [85,86], tellurium shows more 



diverse polyanion chemistry than sulfur and selenium. Polytellurides can therefore exhibit charges 

that deviate from -2. 

 

In addition to selenide and polyselenide anions, Björgvinsson and Schrobilgen [23] have also 

explored the product distribution of tellurium-containing chalcogenide and polychalcogenide anions 

in the liquid ammonia or in the ethylene diamine solution using 125Te and 77Se NMR spectroscopy. 

2,2,2-crypt was added into the solutions to complex with the alkali metal cation and ensure narrow 

NMR resonances. As the stoichiometry of the starting materials was varied (see eq. 9), the presence 

of Ten2- (n = 1-4) and HTe- was inferred. The synthesis of stable salts of HE- (E = Se, Te) in ionic 

liquids using large counter-cations has also recently been reported [94]. Their use in syntheses has 

been discussed in Chapter 8. 

 

 2 K + n Te ® K2Ten (9) 

 

Polytelluride and polyselenide anions could also be prepared from the stoichiometric amounts of K2E 

and E (E = Te, Se) (eq. 10). In the case of mixtures of selenium and tellurium, the reaction affords 

also a series of tellurium selenide anions. The formation of open-chain potassium-cryptated salts of 

TeSe22- and TexSe4-x2-, as well as pyramidal TeSe32- has been reported [95].  

 

 K2E + n E ® K2En+1 (10) 

 

The mixing of Ten2- and Sen2-, which have been prepared upon reduction by metallic lithium in liquid 

ammonia, yielded in addition to open-chain Te2Se22- and pyramidal TeSe32- anions also the 

spirocyclic anion TeSe102-, and extended anionic networks (Te3Se6)n2n- and (Te3Se7)2n- [96].  

 



Basmadijan et al. [87] have shown that the distribution of the reduction products HTe-, Te2-, and Te22- 

upon treating elemental tellurium with sodium tetrahydridoborate NaBH4 in aqueous solution 

depends on the molar ratio of the reactants as well as on the pH of the solution. The reduction by 

sodium tetrahydridoborate is generally applied in the production of various binary tellurides [88-90] 

such as cadmium telluride quantum dots [90] and lead telluride nanocrystals [88]. 

 

3.3. Derivatives of anionic tellurides 

 

Lithium ethylhydridoaluminate is an equally useful reducing agent for elemental tellurium as for 

elemental selenium and sulfur [92,93]. The reaction of thus formed Tex2- with trialkylsilyl chloride 

affords bis(trialkylsilyl)tellurides (R3Si)2Te [92] (see eq. 11), which are convenient reagents in 

synthetic inorganic chemistry (for examples, see refs. 97, 98), in organic chemistry, as exemplified 

in refs. 92, 99, in coordination chemistry [100,101], and as a precursor for producing thin films by 

the ALD technique [102]. The reaction of tellurides with Me3SiCl is slow and the yield is only 

moderate. However, a better result can be obtained if tBuMe2SiCl is utilized instead of Me3SiCl [92]. 

 

 1/x Tex2- + 2 R3SiCl ® (R3Si)2Te + 2 Cl- (11) 

 

The reduction of tellurium by lithium triethylhydridoaluminate in THF followed by treatment with 

TeX4 (X = Cl, Br) (eq. 12) affords Te2X2 [103]. Ditellurium dichloride is a yellow liquid, which, 

though unstable, can be stored for hours in an inert atmosphere. Ditellurium dibromide is orange-red 

liquid, which is more stable than the corresponding chloride. These tellurium(I) reagents have been 

used to prepare the heteroatomic rings 1,2-Te2S5 and 1,2-Te2Se5 by reactions with [Ti(C5H5)2E5] (E 

= S, Se) (eq. 13). 

 



 Tex2- + xTeX4 ® x Te2X2 + 2x X- (X = Cl, Br) (12) 

 [Ti(C5H5)2E5] + Te2X2 ® 1,2-Te2E5 + [Ti(C5H5)2X2] (13) 

 

Na2Te or NaTeH can also be utilized in the syntheses of tellurium macrocycles, as reported by Panda 

[104]. 

  

3.4. Tellurium-containing chalcogen rings  

Tellurium forms both binary and tertiary heterocyclic molecules with selenium and sulfur, though the 

systems involving tellurium are much simpler than the binary system of selenium and sulfur (see 

Section 2.4) [45,61]. As in the case of the SenS8-n molecules, the eight-membered rings TeS7 and 1,2-

, 1,3-, and 1,4-Te2S6 are formed in the binary melt [105], while the ternary species 1,2-, 1,3-, 1,4-, 

and 1,5-TeSeS6 are observed in sulfur-rich, sulfur-selenium-tellurium melts, as indicated by the 125Te 

NMR spectrum of a molten mixture of sulfur (97 mol %), selenium (1,5 mol %), and tellurium (1.5 

mol %) shown in Figure 10. 



 

Figure 10. 125Te NMR spectrum of ternary sulfur–selenium–tellurium melt containing 77Se-enriched 
selenium (1.5 mol%) and 125Te-enriched tellurium (1.5 mol%) (enrichment in both cases 92%). The 
spectrum has been recorded at 145 oC [105] (Adapted with permission from Chivers T, Laitinen RS, 
Schmidt KJ, Taavitsainen, J. Inorg Chem 1993, 32, 337–340. Copyright 1993 American Chemical 
Society). 
 
 

3.5. Homopolyatomic tellurium cations 

Tellurium can be oxidized to several different homopolyatomic cations in the same fashion as 

selenium [1,62,63], e.g. Te42+, Te62+, Te64+, Te82+, Te84+, etc. However, applications of these cations 

for the synthesis of other tellurium compounds have not been reported. 

 

3.6. Triorganylphosphine tellurides 

Triorganylphosphine tellurides can be prepared from the corresponding phosphine and elemental 

tellurium [106,107]. Trialkylphosphine tellurides are sufficiently stable for subsequent synthetic 



work and have been widely used in the synthesis of semi-conducting metal tellurides [108-113]. More 

detailed discussion on the phosphorus-tellurium chemistry is presented in Chapter 5.  

 

3.7. Grignard and organyllithium reagents 

As in the case of selenium, both Grignard reagents and organyllithium reagents are efficient in 

producing organyltellurolates [114], which can easily be oxidized to the corresponding ditellurides 

that are themselves useful reagents in synthetic inorganic and organic chemistry (for some examples 

in different areas of chemistry, see refs. 115-118). The reactions of ditellurides are discussed in 

Chapters 5-11 and the ligand chemistry of tellurolates in Chapter 11. 

 

3.8. Silane- and germanetellones 

Recent years have seen progress in developing synthetic strategies to prepare silicon-tellurium and 

germanium tellurium double bonds. A stable dialkylsilylene reacts with elemental tellurium or 

selenium to form a silanetellone and silaneselone, respectively [119], as shown in Figure 11. 

 

Figure 11. Preparation of silanechalcogenones [119]. 

 

Tokitoh et al. [120] carried out a direct telluration of germylene Tbt(R)Ge: containing very bulky 

substituents on germanium (Tbt = 2,4,6-tri[tris(trimethylsilyl)methyl]phenyl; R = 2,4,6-

triisopropylphenyl or bis(trimethylsilyl)methyl) and obtained thermally stable germanetellones (see 



Figure 12), which were moisture-sensitive. The presence of a Ge=Te double bond was verified by the 

X-ray structure determination. The treatment of the germanetellone with mesitonitrile oxide or 2,3-

dimethyl-1,3-butadiene resulted in [3+2] or [4+2] cycloaddition products, respectively. 

 

 Figure 12. Formation of germanetellone and its cycloaddition reactions [120]. 

 

 

3.9. Group 13 chemistry with tellurium 

Tellurium is the heaviest element known to form a double bond with boron [121]. The reaction 

involves the insertion of tellurium into the Mn=B bond in the base-stabilized complex 

[Mn{=B(tBu)C[(MeN)2(CH2)]2}(C5H5)(CO)2], as shown in Figure 13. Lighter chalcogens react in a 

similar fashion. 



 

Figure 13. The formation of a B=Te double bond [121]. 

 

An excess of elemental tellurium in refluxing toluene reacts with M(tBu)3 (M = Al, Ga) to form the 

cubane [M(tBu)(µ3-Te)]4 and tBuTeTetBu [122,123] (see Figure 14). The structure of the tetrameric 

cage molecule was deduced by comparison of the spectroscopic properties with those of [M(tBu)(µ3-

Se)]4 and [M(tBu)(µ3-S)]4. The crystal structure of [Ga(tBu)(µ3-S)]4is known [124]. 

 

 

Figure 14. The reaction of M(tBu)3 (M = Al, Ga) with an excess of tellurium [122]. 

 

Elemental tellurium and selenium also react with diisobutylaluminium hydride iBu2AlH in toluene at 

120-130 oC [125]. Mass spectrometric and NMR spectroscopic information indicated the formation 

a mixture of the dimer (iBu2AlE)2 and the oligomer (iBu2AlE)n together with an unspecified product 

containing carbon, chalcogen, and aluminium. These in situ reagents react with amides to give 



chalcogenamides (see Figure 15). While selenoamides are relatively stable, telluroamides easily 

decompose. 

 

Figure 15. The reaction of tellurium and selenium with diisobutylaluminium hydride and amides (E 
= Te, Se; R, R’, R” = organyl groups) [125]. 
 

 

3.10. Titanocene chemistry 

Bis(pentamethylpentadienyl)hydridotitanium reacts with tellurium or selenium powder to afford 

titanium complexes that contain monochalcogenido(2-) or dichalcogenido(2-) ligands (see Figure 16) 

[126,127]. 

 

Figure 16. The reaction of [Ti(C5Me5)2H] with tellurium [127]. 

 

While both tellurium and selenium react with [Ti(C5Me5)2H], the reaction proceeds more smoothly 

in the case of tellurium, if tributylphosphine telluride is used as a tellurium source [126,127]. 

Interestingly, [Ti(C5Me5)2Te2] is mononuclear, while the related complex, which involves the 



methylcyclopentadienyl ligand coordinated to titanium, is dinuclear [Ti(C5H4Me)2(µ-

Te2)2Ti(C5H4Me)2] [96]. This appears to be due to steric effects.  

 

3.11. Solid-state and hydrothermal reactions 

Intriguingly, solid-state (hydrothermal) reactions of tellurium with transition metals and 

tellurium(IV) tetrahalides can produce materials that incorporate unusual homoatomic tellurium 

rings. For example, prolonged heating of a mixture of elemental tellurium with a late transition metal 

and tellurium tetrachloride in an evacuated ampoule at 250-300 oC produces 

[{M(TeX4)(TeX3)}2(Te10)] and, [{M(TeI4)(TeI2)}2(TeI4)(Te2I2)(Te10)] (M = Rh, Ir; X = Cl, Br), as 

well as [{Ru(TeI4)(TeI2)}2(Te10)], which all contain a neutral tellurium cage molecule Te10 [128,129] 

The same methodology involving tellurium, suitable metals, and tellurium tetrahalogenides yields 

[Ru(Te9)][InCl4]2 and [Ru(Te8)]Cl2 [130], [M(Te6)]X3 (M = Rh, Ir; X = Cl, Br, I) and 

[Ru2(Te6)(TeBr3)4(TeBr2)2] [131], all of which are one-dimensional coordination polymers 

containing an uncharged homonuclear tellurium ring. 

 

The hydrothermal reaction of tellurium or selenium with silver and hydrogen iodide at 220 oC 

afforded [(AgI)2(Te6)] or the isomorphous selenium analogue [(AgI)2(Se6)] [132].  

 

 

4. Summary 

 

Progress in the synthetic chemistry of selenium and tellurium is largely due to the development of a 

variety of reagents that can be applied both in inorganic and organic chemistry, as well as in materials 

science. Many of these useful reagents are available commercially, for instance elemental selenium 

and tellurium, selenium and tellurium dioxide, selenium and tellurium tetrahalogenides, some 



inorganic and organic selenides and tellurides, as well as diselenides and ditellurides. They can be 

used to synthesize more complex species, which can themselves act as precursors for further 

applications. 

 

This chapter is an overview of the different reactions involving elemental selenium and tellurium. 

The synthetic details and reactions of their derivatives will be discussed in greater detail in Chapters 

2-11. The first step in synthetic strategies often involves the reduction of the elements to chalcogenide 

or polychalcogenide ions, since they are stronger nucleophiles than the elements themselves. The 

most convenient reducing agents are alkali metals in liquid ammonia, sodium tetrahydridoborate, and 

lithium triethylhydridoaluminate (“superhydride”). Alkali metal and alkaline earth metal 

chalcogenides can also be prepared by direct mixing of the elements at high temperatures, by the 

reaction of chalcogen elements and alkali metal carbonates in solution, by solvothermal reactions, or 

by oxidation–reduction reactions involving Lewis acids. 

 

Unlike commercially available SeX4 and TeX4 (X = Cl, Br, I), the less-stable reagents, such as SeCl2 

or SeBr2 need to be prepared and used in situ. This can conveniently be accomplished by the treatment 

of elemental selenium with sulfuryl chloride or bromide in THF. Both dihalides are stabilized in 

coordinating solvents. Tellurium dihalogenides cannot be prepared by the same route. Elemental 

selenium and tellurium also react with the Grignard reagents or organyllithium compounds affording 

organyl chalcogenolates that can easily be oxidized into organyl dichalcogenides. They play a role 

among the key reagents in organic and organometallic syntheses. 

 

There are several methods to oxidize elemental selenium and tellurium to homo- and 

heteropolychalcogen cations. Their most significant feature is that they have been a source of new 



understanding of chemical bonding in main group compounds and have provided information of the 

relationships between the electronic structures and molecular structures.  
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