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Abstract: Continuous and robust measurements are
needed for the high end-product quality and efficient and
eco-friendly process in paperboard manufacturing. As
the online measurements enable the optimization of the
manufacturing process making it more cost effective and
environmentally friendly, these measurements must be
validated carefully and continuously. This paper presents
the development of a mass-balance based soft sensor for
online estimation of a two-ply paperboard ash content.
The developed soft sensor considers the basis weight,
moisture and fiber measurements to derive the ash con-
tent of the paperboard at the reel. The development of the
soft sensor was success (Mean Absolute Percentage Error
was 11.80) and during the long-term simulation with mea-
sured data, this robust online estimator showed the level
and changes in ash content accurately, enabling also the
continuous validation of the hardware sensor.
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Introduction

In the paper and paperboard manufacturing, the demands
for the end-product quality and the process efficiency are
high, but also the goals for more sustainable production
process with reduced energy consumption and wastes are
tightening. Low or varying quality causes excessive costs
in a form of downgraded or discarded product batches.
The optimization of the manufacturing process and main-
taining the high and less varying quality of the end-
product require continuous and robust process monitor-
ing. The traditional laboratory analyses of manually taken
samples include several disadvantages (Viitamé&ki and Ri-
tala 2018); The procedure is time-consuming and there is a
long delay before receiving the results. In other words, the
results of infrequent laboratory analyses always present
the past information from the manufacturing process, lim-
iting its usability in online applications. In addition, the
analyses may be based on too few samples from the sta-
tistical point of view, and there can be challenges with
linking the laboratory data to dynamic process informa-
tion (Karlstrom etal. 2019). The online quality measure-
ments, on the other hand, eliminate these disadvantages
by increasing the measurement frequency enabling almost
continuous measuring, minimizing the delays for receiv-
ing the results, and giving a more representative overview
of the quality within an entire machine reel. Online quality
monitoring enables quicker reaction in case anomalies are
detected and therefore unnecessary downgrading or dis-
carding the entire batches of the products can be avoided.

In a modern industrial process, hundreds or thou-
sands of sensors are routinely measuring and automati-
cally recording the data with a frequency of minutes or
even seconds. Hence, a great volume of data is collected
in a relatively short period of time for process monitor-
ing, evaluation, and control. This has initiated a great in-
terest in academy and industry to transform the data into
information to business and operation decision-making
(Chiang et al. 2017). Indeed, advanced data analysis has
also been studied in several application within the pulp
and paper industries; some of the examples comprise a

@ Open Access. © 2022 Tomperi etal., published by De Gruyter. [c) IS2 This work is licensed under the Creative Commons Attribution 4.0 International

License.


https://doi.org/10.1515/npprj-2021-0046
mailto:jani.tomperi@oulu.fi
mailto:markku.ohenoja@oulu.fi
mailto:mika.ruusunen@oulu.fi
mailto:risto.ritala@tuni.fi
mailto:teijo.juntunen@tuni.fi
mailto:markku.mantyla@valmet.com
mailto:jussi.graeffe@valmet.com
mailto:mikko.viitamaki@valmet.com

176 —— ). Tomperi et al.: Mass-balance based soft sensor for monitoring ash content

mill-wide root-case analysis of paperboard indents (Fu
and Hart 2016), identifying energy savings (Harding 2020),
fault detection in pulping (Karlsson 2020), and modeling
grade changes in a paperboard machine (Skoglund et al.
2018).

Although the online measurements may enable the
optimization of the manufacturing process making it more
cost effective and environmentally friendly, the online
measurements must be carefully validated. Some of the
technical challenges related to data analytics are related to
selecting meaningful data (variables and time-resolution)
and efficiently coupling that with domain knowledge (Chi-
ang et al. 2017). The previous research has highlighted the
need for validated, accurate measurements; for example,
Avelin etal. (2009) discusses how only the small portion
of 254 sensors along the fiber line and the paper machine
were reliable enough for online applications of statisti-
cal models. Hence, different means to validate the sensory
data and replace uncertain measurements are needed. For
example, data reconciliation and gross error detection are
applied together to improve accuracy of measured data
(Narasimhan and Jordache 2000). Data reconciliation in
pulp and paper applications has been discussed, for ex-
ample in papers by Avelin et al. (2009) and Wilson (2008).

Soft sensors (virtual sensors) can be used redundantly
for monitoring the functionality of the hardware sensors
or for estimating the process variables that are difficult,
unsafe, costly, or impossible to measure reliably with the
hardware sensors, utilizing the easy-to-measure variables
as the inputs of the model (Souza et al. 2016). Therefore,
when applied as an additional redundant measurement,
soft sensors can offer one option to assess also the valid-
ity of data. In the case related to paperboard manufactur-
ing, developing many single-grade models or one model
for every paperboard grade is an important soft sensor de-
sign decision because intergrade quality variations tend to
be easier to model but intragrade variations are more rel-
evant to practical quality management (Viitamé&ki and Ri-
tala 2018). Examples of soft sensors developed for paper
properties include strength properties prediction (Raffaele
and Ondruch 2020, Alonso et al. 2009), ash content predic-
tion for web break situations (Nobakhti and Wang 2010),
and moisture estimation (Viitam#ki and Ritala 2018, Di-
jkstra 2011). Nobakhti and Wang (2010) developed a soft
sensor estimating base sheet ash content for improved
web break situation awareness and control. The model
was based on four variables (headbox total consistency,
headbox ash, whitewater total consistency and whitewa-
ter ash) and Least absolute value regression. In this case,
a mass-balance approach was deemed to be impossible as
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the whitewater flow, and therefore the amount of drained
pulp away from the wire, was not measured.

In this paper, a development of a mass-balance based
soft sensor for online estimation of the ash content at a
reeling stage of a paperboard manufacturing process is
presented. A single soft sensor for multiple paperboard
grades is presented that applies existing paperboard qual-
ity measurements in a novel way together with the utiliza-
tion of known physical dependencies between the mea-
sured variables. The main goal of the research work is to in-
spect the functionality and to compare the similarity of the
developed online estimator with the available data mea-
sured with a hardware sensor. Additionally, it is also ex-
plored by simulations if it would be possible to replace the
hardware ash measurement with the developed soft sen-
sor and hence avoid usage of a measurement technique
based on radioactive emission.

The paper is structured as follows: In Materials and
methods section and its subsections, a general description
of the online quality measurements to acquire the data is
given, the acquired data set is described, and the develop-
ment steps of the soft sensor are presented. In Results and
discussion section, the training and testing data are de-
picted, the soft sensor performance in the training set and
in the testing set are presented, together with a discussion
of practical considerations and future perspective. Finally,
Conclusions section concludes the research presented.

Materials and methods

Quality measurements in paperboard
manufacturing

Sensors measuring the paperboard quality online are at-
tached to measurement platforms that move across the
paperboard web and continuously scan and measure the
product characteristics from edge to edge. The primary
measurements are the basis weight, moisture content and
ash percentage, which are validated via internal protocols
of production plants (comparison between online and off-
line measuring system). This research work utilizes the ba-
sis weight, moisture content and ash content online mea-
surements at the reeling stage of paperboard machine.
In addition, the online fiber amount measurement at the
same position is considered.

The ash content of the paperboard consists of for in-
stance filling, coating, pigmenting and other added mate-
rials. The online ash measurement is based on the energy
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selective absorption of x-rays. The sensor measures the ab-
sorption of the x-rays in the web, and the sensor data is au-
tomatically transformed into ash measurement and stan-
dardized. (Holik 2006) Typically the online ash measure-
ment accuracy is in the range of 0.5 to 1% (Hu et al. 2020).

Basis weight is the most important quality variable
measured at the paper or paperboard manufacturing. The
basis weight is the mass of one square meter of paperboard
in grams (g™?2). The basis weight consists of dry weight
and the water weight of the paperboard. Dry weight is the
mass of one square meter of paperboard in grams (g™?)
after drying. The water weight is defined as the difference
of masses of paperboard measured before and after dry-
ing or calculated based on the moisture content measure-
ment. The online non-contact basis weight measurement
is commonly based on the absorption of beta radiation or
infrared (IR) absorption measurement. (Holik 2006)

Moisture content, another important quality variable,
can be calculated indirectly by dividing the water weight
with the basis weight value obtained. That is, the moisture
of paperboard is given as a percentage of original mass.
The most common online moisture measurement princi-
ple at paperboard manufacturing is based on IR technique.
The principle of the IR measurement is based on the spe-
cific absorption of water molecules at the near infrared
(NIR) range. The IR method can be used for paperboards at
basis weight range of 10-500 g™?. Frequent automatic in-
ternal calibration is required in order to remove the sensor-
related errors (dirt etc.). (Holik 2006)

Spectroscopic measurement can also be used for de-
termining the amount of fiber in the paper web (Méantyla
2017). The method utilizes a fiber-specific absorption band
and several baseline wavelengths which are chosen for
their response to water and fiber (organic dry matter).
The measurement technique utilized in this research was
based on the NIR spectroscopic method. Here, the sensor
that measured the water weight (moisture content), also
measured the amount of fibers of the paperboard. How-
ever, this feature of the NIR measurements was not un-
der internal use and was therefore without continuous val-
idation and calibration at the mill. Therefore, the fiber
measurement was deemed to carry the highest uncertainty
within the studied measurements.

Dataset

The data used in this research was collected using mea-
surements at a two-ply kraft paperboard machine with
product basis weight ranging from circa 125 to 240 g™ dur-
ing two separate collection campaigns between January
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and August 2020. The data was acquired at five seconds
interval and saved to the automation system of the mill.
For training data of the soft sensor, the shortest possible
subset of data where all paperboard grades were present
was selected. Hence, for the testing, a vast amount data
was left available for exploring the robustness of the devel-
oped soft sensor. The both, training and testing, subsets of
data included the produced paperboards in range of mea-
sured dry weight between circa 115 and 220 g™? and ash
content between 0% and 7 %. The training data set omit-
ted production breaks and it was almost free from severe
measurement errors. Therefore, the data was deemed to be
suitable for identifying the soft sensor. The length of the
training set was circa 5 days (80 001 data points) and the
length of the dataset for testing the soft sensor was circa
25 days.

Theoretical framework of the soft sensor

The development of the soft sensor for online monitor-
ing of ash content was carried out following the steps and
equations presented below and utilizing the selected train-
ing data described in the previous section. The proposed
concept for the soft sensor is illustrated in Figure 1 with
the model identification stage presented as dashed lines
and the soft sensor testing presented as solid lines. Fig-
ure 1 also shows the data flow in case of training and test-
ing stages. In Figure 1, the white background illustrates the
measurements, the light grey background illustrates the
training stage, and the dark grey background illustrates
the testing stage of the identified model. The subscript m
denotes the weight (gm"z), whereas the subscript c refers to
content (w-%). The measurements utilized in the soft sen-
sor development were from the same measurement plat-
form at the reeling stage of the paperboard machine, and
thus there is similar lag between the measurements.

The development of the ash soft sensor includes two
steps, namely the fiber measurement calibration and the
ash content estimation, and it bases on the mass balance
of instantaneous values of the four properties with their
dependencies written as in Equation (1).

Basisweight = Fiber + Water + Ash. 1)

The ash content and moisture are typically expressed
as percentages (%) so they need to be converted into
masses (g™2) by multiplication of basis weight and mois-
ture content, and basis weight and ash content, respec-
tively. The Waterweight,, is the weight of water in paper-
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Figure 1: The framework of the real-time soft sensor for monitoring the ash content.

board based on the measured moisture content at the reel-
ing stage as determined in Equation (2):

measured
c

x Basisweight™*?/100,  (2)

Waterweight™ered

m = Moisture

where Moisture,. is the measured moisture content (%)
and the Basisweight,, is the total weight of the paperboard
(g™?) measured at the reeling stage. The dry weight (g™?)
of the paperboard is determined by subtracting the mea-
sured water weight from the basis weight (g™?2) as in Equa-
tion (3).

Dryweightrcnalculated _ BaSiSWQight;l"easured
_ Watel’WeightrrZeasured, (3)

where Basisweight,, is the total weight of the paperboard
(g™2) measured at the reeling stage and the Waterweight,,
is the weight of water determined with Equation (2).
The absolute amount of Ash (g™?) is calculated as in
Equation (4).
Ashfrtlzlculated _ Dryweightcalculated % Ashzneasured/loo’ (4)

m

where Dryweight,, is the dry weight (g™2) of the paper-
board calculated in Equation (3) and the Ash, is the ash
content (%) measured at the reeling stage.

In the first phase, the uncertainties in fiber measure-
ment are solved. The errors can be seen by comparing the
calculated fiber from the mass balance and the measured
fiber from the reel. Hence, the fiber measurement requires
calibration. Here, the online data from the training dataset
is utilized. However, calibration can also be based on lab-
oratory data from the basis weight, water weight (mois-
ture) and ash aligned with the online fiber measurement
data. The calibration of fiber measurement is performed
with the following equations.

The amount of fiber (g™?) is calculated as in Equa-
tion (5) and compared with the amount of fiber (g™2) mea-
sured at the reeling stage. The difference (g™?2) between
the calculated and measured fiber amount is calculated as
in Equation (6).

Fib errcnalculated = Drywei gh trcnalculated _ As hfrclzlculated’ (5)

where Dryweight,, is the dry weight (g™2) of the paper-
board at the reeling stage and Ash,, is the absolute amount
of ash (g™?) calculated in Equation (4).

Fiberifference.m=c _ pipgymeasured _ pipgpcaladated (g

A linear fitting with the measured and calculated
amount of fibers is carried out to determine the coefficients
A and B for calculating the corrected fiber (gm'z) values as
in Equation (7). As there are one dependent variable (cor-
rected amount of fiber) and only one independent variable
(measured amount of fiber), the procedure is a simple lin-
ear regression.

Fiber," rected _ 4 » Fibermeas”md +B, @

where A is the slope of the fitting line, Fiber,, (mea-
sured) is the amount of measured fiber (g™?), and B is the
y-intercept of the fitting line. Hence, the corrected fiber val-
ues were determined and compared with the calculated
fiber values as in Equation (8).

Fib er;dnszerence_c—c = Fib errcnalculated _Fib errc:rrected ) (8)

The second step uses the mass balance (Equation (1)),
but with the corrected fiber measurement (i.e. the lin-
ear model coefficients and measured fiber) and the on-
line measurements from the basis weight and water weight
(moisture). The calculated and estimated ash content (%)
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Figure 3: The measured ash content (%) at the reel and the amount
of calculated ash (gm'z) (right axis) with the range of paperboard dry
weight (g™?2) (left axis) during the circa 25 day testing period.

is determined using the corrected amount of fiber (g™?)

from Equation (7) and dry weight (g™?) from Equation (3)
as shown in Equation (9).

As heczstlmated calculated Fib errcr:)rrected ) /

m

D)yweight;fk”l“ted) x 100, (9)

= ((Dryweight

where Dryweight,, is the dry weight (g™?) of the paper-
board determined in Equation (3) and Fiber,, is the cor-
rected amount of fiber calculated in Equation (7). The
calculated and estimated ash content (%) are compared
with the ash content (%) measured at the reel as in Equa-
tion (10).

As h?ifference - As histimated _A sh::neasured ) (10)

Results and discussion

Data

The range of paperboard dry weight (g™?) during the train-
ing stage is presented in Figure 2 with the calculated
amount of ash (g™2) and the ash content (%) measured
at the reel. It can be observed that the selected training
data included paperboard grades with a dry weight range
from circa 115 g™? to 218 g™?. No cleaning or smoothing

Day

Figure 4: The measured amount of fiber (g™2), the calculated
amount of fiber (g™2), and their difference (g™2).

of the data was performed and hence at day 2 there is a
spike in the measured dry weight and at day 3 a notable
spike is shown in the measured ash content. These and
other spikes shown last generally only a few minutes and
may be resulted from an error of hardware measurements
or measurement internal standardization. The spikes are
also shown in corrected fiber and calculated ash content
figures presented in Soft sensor training section. The ash
content measured at the reel and the amount of calculated
ash (g™?) during the testing period are presented in Fig-
ure 3 with the range of paperboard dry weight (g™?).

Soft sensor training

The soft sensor development for the redundant online
ash measurement was carried out following the steps de-
scribed above. The calculated fiber, the measured fiber and
their difference are presented in Figure 4. As seen, there is
a notable difference between the measured and calculated
fiber, indicating poor calibration of the IR-based fiber mea-
surement. As mentioned in Quality measurements in pa-
perboard manufacturing section, this additional feature of
IR measurement was utilized at the mill for the first time,
and thus lacking routine calibration. Therefore, a linear fit-
ting with the measured and calculated fiber was carried
out to determine the coefficients for calculating the cor-
rected fiber values (Figure 5). The coefficients A = 0.965 and
B =-2.56 g™ were achieved based on the linear fitting and
new corrected fiber values were determined as described
earlier. The comparison of the corrected fiber and calcu-
lated fiber is presented in Figure 6. The difference after the
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Figure 6: The calculated amount of fiber (gm'z) and the corrected
amount of fiber (g™2), and their difference (g™2).

calibration is small, in average 0.015 g™ during the train-
ing period (Table 1).

The calculated ash content was determined as in
Equation (9) and compared with the measured ash content
(see Figure 7). As seen, the difference is small, on average
only 0.01 percentage points (standard deviation 0.2) with
training data (Table 1). The calculated Mean Absolute Per-
centage Error (MAPE) during the training period was 0.078.
Therefore, the accuracy of the developed soft sensor is
within the appointed target value +-0.5 percentage points
in the training data, namely exhibiting the same scale of
accuracy as a hardware sensor (see Hu et al. 2020). How-
ever, there are short periods when the difference is larger,
due to some unknown process conditions or stock prop-
erties that cause abrupt spikes or changes to the measured
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Table 1: The calculated values of the differences presented in Fig-
ures 4,6,7,9,10 and 11.

Training Testing

Mean Median 26 Mean Median 20
Calculated fiber 8.387  8.224 2.546 7.843 7.749 2.964
(Figures 4 & 9)
Corrected fiber  0.015 -0.048 0.758 0.145 0.148 1.930
(Figures 6 & 10)
Calculatedand  0.010 -0.028 0.444 0.118 0.099 1.292

estimated ash
(Figures 7 & 11)

o4 } 1

Ash_, calculated (%) |4
—Ashc. measured (%)

%

Ash

A
0 . . . "

2 T T T

diffrence |,Ashc, calculated - Ashc. measured) |

0
c'/°

Ash
P
{
g
<7
E:

Day

Figure 7: The calculated and the measured ash content (%) and their
difference during the training period.

values. It should be also noted that the calculations related
to the training procedure utilize the measured online ash
content information. The ash content information would
also be available through regular laboratory ash analyses
as an alternative reference measurement.

In Figure 8, the Normal Probability Plot (NPP) of the
developed soft sensor error values (shown in Figure 7) dur-
ing the training period is presented. The NPP is a graphi-
cal technique for assessing the normality assumption of a
data set (NIST 2021). There, data with a normally distribu-
tion appears approximately along the reference line and
departures from abnormal distribution introduces curva-
ture in the plot. Quantiles of the data are matched here to
the quantiles of the normal distribution. The data is sorted
and plotted on the x-axis and the y-axis represents the
quantiles of the normal distribution converted into prob-
ability values. As seen in the Figure 8, the modelling error
NPP of the developed soft sensor with training data indi-
cates that residuals are reasonably normally distributed,
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Figure 8: The Normal Probability Plot of the training error.
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Figure 9: The measured fiber (g™2), the calculated fiber (g™?), and
their difference (g™2) during the testing period.

excluding the few data point considered as outliers result-
ing left-skewed tails to the plot. Furthermore, the estimates
are almost unbiased (Table 1).

Soft sensor testing

The performance of the developed soft sensor was evalu-
ated by determining the estimated ash content and com-
paring it with the measured ash content using the test data
described in Dataset section. Again, the calculated fiber
was determined as described earlier and is presented with
the measured fiber in Figure 9. As seen in the difference
trend, there is a notable and varying difference between
the measured and the calculated fiber. No refitting was per-
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Figure 10: The corrected fiber (g™2), the calculated fiber (g™2), and
their difference (g™?) during the testing period.
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Figure 11: The estimated and the measured ash content (%) and
their difference during the testing period.

formed, instead the corrected fiber values (Figure 10) for
the testing data were calculated using the predetermined
coefficients A and B, and thereafter the average difference
between the calculated fiber is only 0.145 g™ (Table 1). Al-
though this error is ten times higher than in the absolute
error with training data (0.015), the relative error between
the corrected and measured fiber is small considering the
length of the testing data (circa 25 days) and the variations
in the process conditions (basis weight ranging between
125 and 240 g™?).

The difference between estimated and measured ash
content is presented in Figure 11. During the testing with
measured data, the determined mean difference was only
0.12 percentage points (Table 1) with standard deviation
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0.65. The calculated MAPE was 11.80. It should be noted
that the large spikes and some unexplainable distur-
bances have increased the calculated error values. The
drift seen in Figure 11 in estimated values is probably due
to a fouling of the IR fiber sensor which data was utilized in
the calculations. One interesting event takes place just be-
fore day 12; the dry weight is constant, but there is a signifi-
cant change (increment) in the measured ash content. This
is propagated into calculated fiber as a decreased value
as well as to the predicted ash content. Another remark-
able occurrence of the error is after day 18 where the cal-
culated ash content starts to drift (overestimation of the
ash content). However, the further root cause analyses for
the observed errors was excluded from this research. The
observed examples above give indication to the possible
utilization of the developed ash measurement validation
framework together with fault detection and diagnostics
methods such as (Weidl and Dahlquist 2002) and (Karls-
son 2020).

In Figure 12, the Normal Probability Plot of the ash
content error values (shown in Figure 11) with test data is
presented. Here, the NPP reveals reasonably normally dis-
tributed modeling error within the center line but includes
also a right-skewed tail. Skewed tails to the plot are here
due to the few outliers seen in Figure 11, which are caused
by the errors in measurement used in the calculations de-
scribed above. However, based on the NPP, the proposed
model structure seems to be feasible choice for the task.

Practical implications

The earlier studies with statistical models have shown
that the paper properties can be predicted with good re-
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liability. However, with prolonged periods of operation,
their performance was significantly reduced (Avelin et al.
2009). In the approach presented in this paper, the known
physical dependencies between the measured variables
are utilized to build the mass-balance based robust soft
sensor capable of describing the intragrade variations in
paperboard ash content. The approach also includes a
new way to utilize the existing measurement hardware at
the paperboard machine allowing online determination
of amount of fiber. In general, the achieved result of the
single soft sensor for multiple grades can be considered
very good as the independent test data involved a long
time period with a large variation of paperboard grades
and process conditions. The measured data was utilized
without preprocessing that potentially reduces the man-
ual work needed for implementation and maintenance the
soft sensor. In addition, no recalibration of the soft sen-
sor was made before or during the simulation with mea-
sured test data comprising approximately one month. The
routine laboratory analyses and measurement quality pro-
tocols in paperboard machines consider shorter intervals,
meaning that also updates to the model coefficients could
take place within the studied test data. Alternatively, au-
tomated update methods or alarms for manual calibra-
tion (Lu and Chiang 2018) could also be considered to
improve the soft sensor performance and robustness fur-
ther.

The developed soft sensor seems to be suitable for es-
timating the ash content of the paperboard robustly. Thus,
it potentially can also indicate the abnormal behavior of
the hardware sensor, therefore having possible use in data
reconciliation and fault detection. According to the results,
the accuracy of the soft sensor is occasionally high enough
to replace the hardware sensor during normal process sit-
uations. In abnormal process situations, such as recover-
ing from sheet breaks, the ash content could be alterna-
tively estimated utilizing headbox and whitewater mea-
surements (Nobakhti and Wang 2010). Utilizing the de-
veloped mass-balance based soft sensor together with an-
other soft sensor based on independent measurements,
an ensemble model could be then built, allowing these
several redundant estimators simultaneously to further re-
duce estimation uncertainty, thus bringing new tools to
improve the process performance. As this soft sensor is in-
tended to operate mainly without manual labor opposite
to laboratory analyses, it is therefore usable in large scale
autonomous processes. Validated measurement also gives
more opportunities to advanced data analytics and real-
time quality control.
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Conclusions

In this paper, the development of a soft sensor for esti-
mating the ash content at the reel of a two-ply paperboard
manufacturing process was described. The developed soft
sensor is based on mass balances utilizing typical online
quality measurements and novel fiber measurement at the
reel as inputs and their known dependencies. The training
of the soft sensor was success and the functionality dur-
ing the long testing period was very good, especially con-
sidering the fact that a single soft sensor for multiple pa-
perboard grades was used and no recalibration was per-
formed before or during the testing period. Even though
the online ash measurement was utilized in the develop-
ment of the soft sensor, it should be noted that the calibra-
tion of the soft sensor is independent on it. The calibration
can be carried out also with the regularly performed labo-
ratory analysis of the paperboard ash percentage. The de-
veloped framework can be applied in the paperboard ma-
chines to reveal the abnormal behavior of the hardware
sensor or after some improvements to replace the hard-
ware sensor for ash measurement. Utilizing the developed
soft sensor, the measurement reliability is increased and
hence it enables the improved process performance.
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