## Wei-Guo Duan, Yi-Peng Guo, Long Lin\* and Wei-Na Wu

# Crystal structure of dichlorido-(N'-(1-(3-ethylpyrazin-2-yl)ethylidene)-4methoxybenzohydrazide- $\kappa^3 N, N', O$ )cadmium(II), C<sub>16</sub>H<sub>18</sub>N<sub>4</sub>O<sub>2</sub>Cl<sub>2</sub>Cd



Table 1: Data collection and handling.

isotropic displacement parameters (Å<sup>2</sup>).

| Crystal:                                                                   | Yellow block                                    |
|----------------------------------------------------------------------------|-------------------------------------------------|
| Size:                                                                      | $0.15 \times 0.12 \times 0.10$ mm               |
| Wavelength:                                                                | Mo Kα radiation (0.71073 Å)                     |
| μ:                                                                         | 1.49 mm <sup>-1</sup>                           |
| Diffractometer, scan mode:                                                 | Bruker APEX-II, $arphi$ and $\omega$ -scans     |
| $\theta_{\max}$ , completeness:                                            | 25°, >99%                                       |
| N(hkl) <sub>measured</sub> , N(hkl) <sub>unique</sub> , R <sub>int</sub> : | 15734, 3244, 0.028                              |
| Criterion for I <sub>obs</sub> , N(hkl)gt:                                 | $I_{\rm obs} > 2 \; \sigma(I_{\rm obs})$ , 2958 |
| N(param) <sub>refined</sub> :                                              | 229                                             |
| Programs:                                                                  | Bruker programs [1], SHELX [2]                  |

Table 2: Fractional atomic coordinates and isotropic or equivalent

https://doi.org/10.1515/ncrs-2019-0608 Received August 21, 2019; accepted October 2, 2019; available online October 18, 2019

### Abstract

 $C_{16}H_{18}N_4O_2Cl_2Cd$ , monoclinic,  $P2_1/n$  (no. 14), a = 9.833(2) Å, b = 17.404(4) Å, c = 11.694(3) Å,  $\beta = 112.901(3)^{\circ}$ ,  $V = 1843.5(8) \text{ Å}^3$ , Z = 4,  $R_{gt}(F) = 0.0280$ ,  $wR_{ref}(F^2) = 0.0728$ , T = 296(2) K.

## CCDC no.: 1957183

The crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

## Source of material

4-Methoxybenzohydrazide (0.166 g, 1 mmol) and 2-acetopyrazine (0.122 g, 1 mmol) were dissolved in methanol (20 mL). The reaction mixture was refluxed for 1 h and cooled to room temperature. Then cadmium(II) chloride (0.183 g, 1 mmol) was added. After stirring for 1 h, the mixture was

\*Corresponding author: Long Lin, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000,

P.R. China, e-mail: linlong@hpu.edu.cn. https://orcid.org/0000-0003-1645-5600

Wei-Na Wu: College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P.R. China. https://orcid.org/0000-0002-0874-0703

a Open Access. © 2019 Wei-Guo Duan et al., published by De Gruyter. 🞯 🛛 This work is licensed under the Creative Commons Attribution 4.0 Public License.

| Atom | x           | у           | z           | U <sub>iso</sub> */U <sub>eq</sub> |
|------|-------------|-------------|-------------|------------------------------------|
| Cd1  | 0.47352(2)  | 0.55740(2)  | 0.23571(2)  | 0.03739(10)                        |
| Cl1  | 0.25031(9)  | 0.48710(5)  | 0.19936(9)  | 0.0560(2)                          |
| Cl2  | 0.53495(14) | 0.66448(6)  | 0.37506(10) | 0.0720(3)                          |
| D1   | 0.4117(2)   | 0.61886(13) | 0.0430(2)   | 0.0481(5)                          |
| 02   | 0.4183(3)   | 0.82675(14) | -0.3953(2)  | 0.0546(6)                          |
| V1   | 0.6492(3)   | 0.46230(14) | 0.3418(2)   | 0.0361(5)                          |
| 12   | 0.8846(3)   | 0.38111(18) | 0.5031(3)   | 0.0570(8)                          |
| ٧3   | 0.6558(3)   | 0.54161(13) | 0.1564(2)   | 0.0324(5)                          |
| 14   | 0.6338(3)   | 0.58158(14) | 0.0496(2)   | 0.0352(5)                          |
| 14   | 0.6967      | 0.5798      | 0.0152      | 0.042*                             |
| 21   | 0.6408(4)   | 0.42534(19) | 0.4377(3)   | 0.0476(8)                          |
| 11   | 0.5539      | 0.4275      | 0.4516      | 0.057*                             |
| 22   | 0.7582(4)   | 0.3840(2)   | 0.5167(3)   | 0.0599(10)                         |
| 12   | 0.7482      | 0.3572      | 0.5818      | 0.072*                             |
| 3    | 0.8971(3)   | 0.41819(17) | 0.4059(3)   | 0.0392(7)                          |
| 24   | 0.7745(3)   | 0.45736(15) | 0.3210(3)   | 0.0317(6)                          |
| 25   | 1.0497(3)   | 0.4128(2)   | 0.4054(3)   | 0.0466(8)                          |
| 15A  | 1.1222      | 0.4201      | 0.4892      | 0.056*                             |
| 15B  | 1.0628      | 0.4536      | 0.3541      | 0.056*                             |
| 26   | 1.0765(5)   | 0.3358(2)   | 0.3564(4)   | 0.0657(10)                         |
| H6A  | 1.0058      | 0.3286      | 0.2731      | 0.099*                             |
| H6B  | 1.0664      | 0.2953      | 0.4083      | 0.099*                             |
| H6C  | 1.1744      | 0.3348      | 0.3570      | 0.099*                             |
| 27   | 0.7666(3)   | 0.49699(16) | 0.2046(3)   | 0.0314(6)                          |
| 28   | 0.8736(4)   | 0.4814(2)   | 0.1455(3)   | 0.0525(9)                          |
| 18A  | 0.8245      | 0.4864      | 0.0570      | 0.079*                             |
| 18B  | 0.9119      | 0.4303      | 0.1657      | 0.079*                             |
| 18C  | 0.9534      | 0.5177      | 0.1756      | 0.079*                             |
| 29   | 0.5083(3)   | 0.62416(15) | 0.0005(3)   | 0.0325(6)                          |
| 210  | 0.4915(3)   | 0.67529(16) | -0.1042(3)  | 0.0330(6)                          |
| 211  | 0.6000(4)   | 0.68576(18) | -0.1513(3)  | 0.0432(7)                          |
| 111  | 0.6886      | 0.6590      | -0.1161     | 0.052*                             |
| 212  | 0.5789(4)   | 0.73510(18) | -0.2493(3)  | 0.0425(7)                          |
| 112  | 0.6519      | 0.7408      | -0.2806     | 0.051*                             |

Wei-Guo Duan: School of Mathematics and Physics, Weinan Normal University, Weinan 714099, P.R. China

Yi-Peng Guo: School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China

Table 2 (continued)

| Atom | x         | у           | z          | U <sub>iso</sub> */U <sub>eq</sub> |
|------|-----------|-------------|------------|------------------------------------|
| C13  | 0.4489(3) | 0.77581(17) | -0.3004(3) | 0.0386(7)                          |
| C14  | 0.3400(4) | 0.7662(2)   | -0.2530(3) | 0.0511(8)                          |
| H14  | 0.2521    | 0.7936      | -0.2871    | 0.061*                             |
| C15  | 0.3615(3) | 0.71679(18) | -0.1570(3) | 0.0429(7)                          |
| H15  | 0.2878    | 0.7108      | -0.1265    | 0.052*                             |
| C16  | 0.5249(5) | 0.8377(2)   | -0.4487(4) | 0.0572(9)                          |
| H16A | 0.4882    | 0.8743      | -0.5151    | 0.086*                             |
| H16B | 0.5431    | 0.7896      | -0.4805    | 0.086*                             |
| H16C | 0.6152    | 0.8564      | -0.3865    | 0.086*                             |

filtered and set aside to crystallize for several days, giving yellow block crystals.

#### **Experimental details**

The structure was solved by Direct Methods and refined with the SHELX crystallographic software package [2]. The hydrogen atoms were placed at calculated positions and refined as riding atoms with isotropic displacement parameters.

#### Discussion

Hydrozones derived from 2-aceto-pyrazine and their metal complexes have been widely investigated mainly due to their excellent biological activities [3–5]. It is noted that the biological activities of the resulted complexes depend not only on the metal centers but also on the structures of the ligands [3, 4].

In the title crystal structure, the central cadmium(II) ion is five-coordinated to one neutral hydrazone ligand by a  $ON_2$  donor set, and two chlorido ligands giving a distorted

tetragonal-pyramidal coordination geometry with the geometric index  $\tau$  value of 0.032 [6]. In the solid state, the intermolecular N-H···O hydrogen bonds link the complexes into a zig-zag chain. Bond lengths and angels are all in the expected ranges [7].

#### References

- 1. Bruker. SMART and SAINT. Bruker AXS Inc., Madison, WI, (USA) 2007.
- Sheldrick, G. M.: Crystal Structure Refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- Xu, J.; Zhou, T.; Xu, Z.-Q.; Gu, X.-N.; Wu, W.-N.; Chen, H.; Wang, Y.; Jia, L.; Zhu, T.-F.; Chen, R.-H.: Synthesis, crystal structures and antitumor activities of copper(II) complexes with a 2-acetylpyrazine isonicotinoyl hydrazone ligand. J Mol. Struct. 1128 (2017) 448–454.
- Wang, W.-W.; Wang, Y.; Zhang, L.; Song, Y.-F.; Wu, W.-N.; Chen, Z.: Syntheses, crystal structures and DNA-binding properties of Cu(II)/Ni(II) complexes with acylhydrazone ligand bearing pyrazine unit. Chin. J. Inorg. Chem. **35** (2019) 563–568.
- Hou, X.-F.; Zhao, X.-L.; Zhang, L.; Wu, W.-N.; Wang, Y.: Co(II)/Zn(II)/Cu(II) complexes containing hydrazone ligand bearing pyrazine unit: syntheses, crystal structures and fluorescence properties. Chin. J. Inorg. Chem. 34 (2018) 201–205.
- Ye, X.-P.; Wang, G.-J.; Pan, P.; Zhang, Z.-P.; Wu, W.-N.; Wang, Y.: Syntheses, Crystal structures and biological activities of two Cu(II) complexes with an acylhydrazone ligand bearing pyrrole unit. Chin. J. Inorg. Chem. **30** (2014) 2789–2795.
- Kalinowski, D. S.; Sharpe, P. C.; Bernhardt, P. V.; Richardson, D. R.: Structure–activity relationships of novel iron chelators for the treatment of iron overload disease: the methyl pyrazinylketone isonicotinoyl hydrazone series. J. Med. Chem. **51** (2008) 331–344.