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1 Introduction and Preliminaries

The fractional calculus and its various applications have become a very popular subject between mathematicians
and engineers. New era in the development of this branch of science began 40-50 years ago due to numerous
application of fractional-type models and is continued up to now (see [54] and [55]). One can mention a large list of
areas of application, in particular, continuum mechanics [8, 39] (including viscoelasticity [27], thermodynamics
[17] and anomalous diffusion [38]), astrophysics [30], nuclear physics [53], nanophysics and cosmic physics
[57, 58], statistical mechanics [60], fractional order systems and control [7], finance and economics [5], solutions of
differential equations [4].

Among the monographs developing the theory of fractional calculus and presenting some applications we have
to point out monographs by Diethelm [11], Gorenflo and Mainardi [15], Kiryakova [21], Kilbas, Srivastava and
Trujillo [20], Miller and Ross [32], Oldham and Spanier [35], Podlubny [36], and of course the Bible of fractional
calculus, monograph by Samko, Kilbas and Marichev [43]. Interested reader can find in these books an extended list
of publications on the theory and applications of fractional calculus (see also [56]).

Recently, Mittag-Leffler functions show its close relation to Fractional Calculus and especially to fractional
problems which come from applications. This new era of research attract many scientists from different point of
view (see [2, 6, 9, 12, 16, 18, 19, 22, 23, 37, 40, 44, 46, 52]). In 1899 G. Mittag-Leffler began the publication of
a series of articles under the common title Sur la representation analytique d’une branche uniforme d’une fonction
monogµene (On the analytic representation of a single-valued branch of a monogene function) published mainly at
Acta Mathematica. Nowadays this function and its numerous generalizations are involved in the different fractional
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models (see monographs listed above). Motivated by the above works Kiryakova [25, 26] for the first time pointed
out the special role of the Mittag-Leffler function and included it into the class of Special Functions for Fractional
Calculus. Moreover, based on the role of the Mittag-Leffler function in application, Mainardi called it The Queen of
Fractional Calculus (see [27]).

Here, our investigation are based on the so-called Marichev-Saigo-Maeda type generalized fractional operator,
i.e. integral transform of the Mellin convolution type with the Appell (or Horn) function F3 developed by Marichev
[28] and studied in some recent papers, including the papers by Agarwal et al [2], Choi and Agarwal [10], Saigo
and Maeda [42], Saigo and Saxena [45]. The aim of our paper is to present formulas of the Marichev-Saigo-Maeda
generalized fractional integration of the generalized Mittag-Leffler type function with four parameters �;
E�;� Œz�
which has been recently introduced by Garg et al. [13], and study its various properties, which mainly motivated our
present investigation. Throughout this paper, let C, R, RC, ZC

0
, N be the sets of complex numbers, real and positive

real numbers, nonpositive integers, and positive integers, respectively, and N0 WD N [ f0g.

2 Definitions and earlier works

For the present investigation, we consider the following definitions and earlier works.

Definition 2.1. The Mittag-Leffler type function with four parameters is defined and studied by Garg et al. [13] in
the following manner :

�;
E�;� Œz� D

1X
nD0

.�/
n

�.�nC �/
:zn .�; �; �; 
; z 2 C; <.�/ > <.�/ > 0/; (1)

where .�/
 is the Pochhammer symbol defined, for 
 2 C, as follows (see, e.g., [49, p. 2 and p. 5])):

.�/
 D

(
1; 
 D 0;

�.� C 1/ � � � .� C 
 � 1/; 
 2 N
D
�.� C 
/

�.�/

�
� 2 C n Z�0

�
and � being the familiar Gamma function (see, e.g., [48, Section 1.1] and [49, Section 1.1]).

Detail account of several results which included integral representations, recurrence relations, differential
formula, fractional derivative and integral, Mellin Barnes integral representation and fractional calculus integral
operator involving (1) can be found in the article [13]. Some important special cases of this function are enumerated
below:

(i) When 
 D 1 with .�; �; �; z 2 C; <.�/ > <.�/ > 0/, the function (1) reduces to the one that has been
considered by Garg et al. [13]:

�;1E�;� Œz� D

1X
nD0

.�/n

�.�nC �/
:zn: (2)

(i1) If we set 
 D 0 with min f<.�/;<.�/g > 0, then (1) reduces to the generalized Mittag-Leffler function
considered by Wiman [59] (see also [14, p. 39, Eqn. (3.1)]). The case when 
 D 0 and � D 1 can be found in
[33] (see also [14, p. 39]).

In recent years, the Mittag-Leffler function and its various generalizations have become a very popular subject of
mathematics and its applications. Among the large number of works regarding the Mittag-Leffler function, for a
remarkably clear, insightful, and systematic exposition of the investigations carried out by various authors in the
field of mathematical analysis and its applications, the interested reader should refer also to a survey-cum-expository
Book by Gorenflo et al., which contains a fairly comprehensive bibliography of as many as 170 further references
on the subject.
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Definition 2.2. The H -function is defined in terms of a Mellin-Barnes integral in the following manner ([29]):

Hm;np;q

"
z

ˇ̌̌̌
ˇ.ai ; ˛i /1;p�
bj ; ǰ

�
1;q

#
D Hm;np;q

"
z

ˇ̌̌̌
ˇ.a1; ˛1/ ; � � � ; .ap; ˛p/.b1; ˇ1/ ; � � � ; .bq ; ˇq/

#
D

1

2�i

Z
L

‚.s/ z�sds; (3)

where

‚.s/ D

Qm
jD1 �

�
bj C ǰ s

�Qn
iD1 � .1 � ai � ˛i s/Qp

iDnC1
� .ai C ˛i s/

Qq
jDmC1

�
�
1 � bj � ǰ s

� ; (4)

where m; n; p; q are integers such that 0 � m � q, 0 � n � p, and for parameters ai ; bi 2 C and for parameters
˛i ; ǰ 2 RC .i D 1; : : : ; pI j D 1; : : : ; q/ with the contour L suitably chosen, and an empty product, if it occurs,
is taken to be unity. The theory of the H-function are well explained in the book of Srivastava, Gupta and Goyal
([50], Ch.1) (see also [30]).

Definition 2.3. The generalized Wright’s function is defined as follows (see, e:g:, [20, p.56, Eqns. (1.11.14) and
(1.11.15)]):

p‰q

"
.˛1; A1/ ; : : : ; .˛p; Ap/ I

.ˇ1; B1/ ; : : : ; .ˇq ; Bq/ I
z

#
D

1X
kD0

Qp
jD1

�
�
j̨ C Aj k

�Qq
jD1

�
�
ǰ C Bj k

� zk
kŠ
; (5)

where the coefficients A1; : : : ; Ap 2 RC and B1; : : : ; Bq 2 RC with

1C

qX
jD1

Bj �

pX
jD1

Aj = 0: (6)

Here, in this paper, our main results are obtained by applying the �;
E�;� Œz� to the fractional integration operators
(of Marichev-Saigo-Maeda type) given in (7) and (8), respectively . So we continue to recall the following definitions.

�
I˛;˛

0;ˇ;ˇ0;�

0C
f
�
.x/ D

x�˛

�.�/

xZ
0

.x � t /��1t�˛
0

F3

�
˛; ˛0; ˇ; ˇ0I �I 1 �

t

x
; 1 �

x

t

�
f .t/dt; .< .�/ > 0/ ; (7)

and�
I˛;˛

0;ˇ;ˇ0;�
� f

�
.x/ D

x�˛
0

�.�/

1Z
x

.t � x/��1t�˛F3

�
˛; ˛0; ˇ; ˇ0I �I 1 �

x

t
; 1 �

t

x

�
f .t/dt; .< .�/ > 0/ : (8)

These operators (integral transforms) were introduced by Marichev [28] as Mellin type convolution operators with a
special function F3.:/ in the kernel. These operators were rediscovered and studied by Saigo in [41] as generalization
of so-called Saigo fractional integral operators, see [24]. The properties of these operators were studied by Saigo and
Maeda [42], in particular, relations of operators with the Mellin transforms, hypergeometric operators (or Saigo
fractional integral operators), their decompositions and acting properties in the McBride spaces FpI� (see [31]).

In (7), (8) the symbol F3.:/ denotes so-called 3rd Appell function (known also as Horn function) (see [34,
p. 413]):

F3.˛; ˛
0
Iˇ; ˇ0I �I xIy/ D

1X
m;nD0

.˛/m.˛
0/n.ˇ/m.ˇ

0/n

.�/mCnmŠnŠ
xmyn max fjxj; jyjg < 1/: (9)

The properties of this function are discussed in [34, p. 412-415]. In particular, its relation to the Gauss hypergeometric
function is presented:

F3.˛; � � ˛; ˇ; � � ˇI �I xIy/ D 2F1.˛; ˇI �I x C y � xy/: (10)

Moreover, it is easily observed that

F3.˛; 0; ˇ; ˇ
0
I �I xIy/ D F3.˛; ˛

0; ˇI �I xIy/ D 2F1.˛; ˇI �I x/; (11)

and
F3.0; ˛

0; ˇ; ˇ0I �I xIy/ D F3.˛; ˛
0; ˇ0I �I xIy/ D 2F1.˛

0; ˇ0I �I x/: (12)

It is known that the 3rd Appell function cannot be expressed as a product of two 2F1 functions, and satisfy pairs of
linear partial differential equations of the second order.
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3 Left-sided fractional integration of generalized Mittag-Leffler
functions with four parameters

Our results in this Section are based on the preliminary assertions giving composition formula of fractional integral
(7) with a power function.

Lemma 3.1 ([42, p. 394]). Let ˛; ˛0; ˇ; ˇ0; � 2 C and

< .�/ > 0; < .�/ > max
˚
0;< .˛ C ˛0 C ˇ � �/;< .˛0 � ˇ0/

	
;

then the following relation holds�
I˛;˛

0;ˇ;ˇ0;�

0C
x��1

�
.x/ D

�.�/�.�C � � ˛ � ˛0 � ˇ/�.�C ˇ0 � ˛0/

�.�C ˇ0/�.�C � � ˛ � ˛0/�.�C � � ˛0 � ˇ/
x�C��˛�˛

0�1: (13)

The value of the left-sided Marichev-Saigo-Maeda fractional integral (7) for the generalized Mittag-Leffler function
(1) is given by the following theorem.

Theorem 3.2. Let the parameters ˛; ˛0; ˇ; ˇ0; �; �; 
; �; �; �; x 2 C and < .�/ > < .�/ > 0 be such that

< .�/ > 0;<.�/ > 0;< .�/ > max
�
0;< .˛ C ˛0 C ˇ � �/;< .˛0 � ˇ0/

�
;

then for all x > 0 the following relation is valid�
I.˛;˛

0;ˇ;ˇ0;�/

0C

h
t��1 �;
E�;�.ct

� /
i�
.x/ D

x�C��˛�˛
0�1

�.�/
�

� 5‰4

"
.�; 
/; .�; �/; .�C � � ˛ � ˛0 � ˇ; �/; .�C ˇ0 � ˛0; �/; .1; 1/

�
�; �

�
; .�C ˇ0; �

�
; .�C � � ˛ � ˛0; �/; .�C � � ˇ � ˛0; �/

ˇ̌̌̌
ˇcx�

#
:

(14)

Proof. For convenience, let the left-hand side of the formula (14) be denoted by I. We apply (1) and use definition of
the integral operator (7) and the representation of (1) in terms of generalized Wright function (5). We use then series
form definition of the generalized Wright function (5). Finally, we change the order of integration and summation
and find

I D

 
I.˛;˛

0;ˇ;ˇ0;
/

0C

"
t��1

1X
nD0

.�/
n

�.�nC �/
cnt�n

#!
.x/;

D

1X
nD0

.�/
n

�.�nC �/
cn
�
I.˛;˛

0;ˇ;ˇ0;
/

0C

n
t�C�n�1

o�
.x/:

Due to the convergence conditions of Theorem 3.2, for any n 2 N0; we have < .�C �n/ � < .�/ >

max Œ0;< .˛ C ˛0 C ˇ � 
/;< .˛0 � ˇ0/�
Therefore we can apply Lemma 3.1 and use (13) with � replaced by .�C �n/:

I D

1X
nD0

�.� C 
n/

�.�/�.�nC �/

� .�C �n/ � .�C �nC � � ˛ � ˛0 � ˇ/

� .�C �nC ˇ0/ � .�C �nC � � ˛ � ˛0/
�

�
� .�C �nC ˇ0 � ˛0/ �.1C n/

� .�C �nC � � ˛0 � ˇ/

cnx�C�nC��˛�˛
0�1

nŠ

D
x�C��˛�˛

0�1

�.�/

1X
nD0

�.� C 
n/

�.�nC �/

� .�C �n/ � .�C �nC � � ˛ � ˛0 � ˇ/

� .�C �nC ˇ0/ � .�C �nC � � ˛ � ˛0/
�

�
� .�C �nC ˇ0 � ˛0/ �.1C n/

� .�C �nC � � ˛0 � ˇ/

cnx�n

nŠ
:

(15)

This, in accordance with (5), completes the proof.
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For 
 D 1 in (14), Theorem 3.2, yields to the following result:

Corollary 3.3. Let the parameters ˛; ˛0; ˇ; ˇ0; �; �; �; �; �; x 2 C and < .�/ > < .�/ > 0 be such that

< .�/ > 0;<.�/ > 0;< .�/ > max
�
0;< .˛ C ˛0 C ˇ � 
/;< .˛0 � ˇ0/

�
;

then for all x > 0 the following result holds:�
I.˛;˛

0;ˇ;ˇ0;�/

0C

h
t��1 �;1E�;�.ct

� /
i�
.x/ D

x�C��˛�˛
0�1

�.�/
�

� 5‰4

"
.�; 1/; .�; �/; .�C � � ˛ � ˛0 � ˇ; �/; .�C ˇ0 � ˛0; �/; .1; 1/

�
�; �

�
; .�C ˇ0; �

�
; .�C � � ˛ � ˛0; �/; .�C � � ˇ � ˛0; �/

ˇ̌̌̌
ˇcx�

#
;

(16)

where �;1E�;� Œz� is another new generalized Mittag–Leffler type function defined as (see [13, p.4, Eqn. (2.2)]):

�;1E�;� Œz� D

1X
nD0

.�/n

�.�nC �/
:zn.�; �; �; z 2 C; <.�/ > <.�/ > 0/;

Remark 3.4. It is easily seen that setting 
 ! 0 in equation (14) with some suitable parametric replacements in
the resulting identities yields the corresponding known integral formulas in Agarwal et al. [1].

4 Right-sided fractional integration of generalized Mittag-Leffler
functions with four parameters

In this Section, our results are based on the preliminary assertions giving composition formula of fractional integral
(8) with a power function.

Lemma 4.1 ([42, p. 394]). Let ˛; ˛0; ˇ; ˇ0; � 2 C and

< .�/ > 0; < .�/ < 1Cmin
˚
< .�ˇ/;< .˛ C ˛0 � �/;< .˛ C ˇ0 � �/

	
;

then the following relation holds�
I˛;˛

0;ˇ;ˇ0;�
� x��1

�
.x/ D
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x�C��˛�˛

0�1: (17)

The value of the right-sided Marichev-Saigo-Maeda fractional integral (8) for the generalized Mittag-Leffler function
(1) is given by the following theorem.

Theorem 4.2. Let the parameters ˛; ˛0; ˇ; ˇ0; �; �
; �; �; �; �; x 2 C and < .�/ > < .�/ > 0 be such that

< .�/ > 0;<.�/ > 0;< .�/ < 1Cmin
�
< .�ˇ/;< .˛ C ˛0 � �/;< .˛ C ˇ0 � �/

�
;

then for all x > 0 the following relation is valid�
I.˛;˛

0;ˇ;ˇ0;�/
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; .1 � �; �/; .1 � � � �C ˛ C ˛0 C ˇ0; �/; .1 � � � ˇ C ˛; �/

ˇ̌̌̌
ˇcx�

#
:

(18)
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Proof. For convenience, let the left-hand side of the formula (18) be denoted by J . We apply (1) and use definition of
the integral operator (8) and the representation of (1) in terms of generalized Wright function (5). We use then series
form definition of the generalized Wright function (5). Finally, we change the order of integration and summation
and find

J D

 
I.˛;˛

0;ˇ;ˇ0;
/
�
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t��1

1X
nD0

.�/
n

�.�nC �/
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Due to the convergence conditions of Theorem 4.2, for any n 2 N0; we have < .� � �n � 1/ � < .� � 1/ <
1 �min Œ< .�ˇ/;< .˛ C ˛0 � �/;< .˛ C ˇ0 � �/�

Therefore we can apply Lemma 4.1 and use (17) with � replaced by .� � �n/:

J D
1X
nD0
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� .1 � �C �n/ � .1 � �C �n � �C ˛ C ˛0 C ˇ0/
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�
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:

(19)

This, in accordance with (5), completes the proof.

For 
 D 1 in (18), Theorem 4.2, yields to the following result:

Corollary 4.3. Let the parameters ˛; ˛0; ˇ; ˇ0; �; �; �; �; �; �; x 2 C and < .�/ > < .�/ > 0 be such that

< .�/ > 0;<.�/ > 0;< .�/ < 1Cmin
�
< .�ˇ/;< .˛ C ˛0 � �/;< .˛ C ˇ0 � �/

�
;

then for all x > 0 the following relation is valid�
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h
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�i�
.x/ D
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ˇcx�

#
:

(20)

Remark 4.4. It is easily seen that setting 
 ! 0 in equation (18) with some suitable parametric replacements in
the resulting identities yields the corresponding known integral formulas in Agarwal et al. [1].

5 Further special cases and concluding remarks

In view of the obvious reduction formula (11), the fractional integration operators (of Marichev-Saigo-Maeda type)
given in (7) and (8) reduces to the aforementioned Saigo operators I .˛;ˇ;�/

0C
and I .˛;ˇ;�/� defined by (see, for details,

[41]; see also [24] and [51] and the references cited therein)

�
I˛;ˇ;�
0C

f
�
.x/ D

x�˛�ˇ

�.˛/

xZ
0

.x � t /˛�1 2F1

�
˛ C ˇ;��I˛I 1 �

t

x

�
f .t/dt; .< .˛/ > 0/ ; (21)
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and �
I˛;ˇ;�� f

�
.x/ D

1

�.˛/

1Z
x

.t � x/˛�1t�˛�ˇ 2F1

�
˛ C ˇ;��I˛I 1 �

x

t

�
f .t/dt; .< .˛/ > 0/ : (22)

respectively. In the light of above definitions, we have the following relationships (see [47, p.338, Eqns. (2.9) and
(2.10)]: �

I
.˛;0;ˇ;ˇ0;�/

0C

�
.x/ D

�
I
.�;˛��;�ˇ/

0C

�
.x/; .� 2 C/ ; (23)

�
I.˛;0;ˇ;ˇ

0;�/
�

�
.x/ D

�
I.�;˛��;�ˇ/�

�
.x/; .� 2 C/ : (24)

By setting ˛0 D 0 in Theorems 3.2 and 4.2 and in Corollaries 3.3 and 4.3, if we use the relationships (23) and (24),
we can deduce the following interesting corollaries involving the generalized Mittag-Leffler type function with
four parameters �;
E�;� Œz� defined by (1) and the Saigo fractional integral operators defined by (21) and (22),
respectively.

Corollary 5.1. Let the parameters ˛; ˇ; �; �; 
; �; �; �; x 2 C and < .�/ > < .�/ > 0 be such that

< .�/ > 0;< .�/ > 0;< .�/ > max Œ0;< .� � ˛ � ˇ/� :

Then each of the following fractional integral formulas holds true for all x > 0�
I.�;˛��;�ˇ/
0C

h
t��1 �;
E�;�.ct

� /
i�
.x/ D

x�C��˛�1

�.�/
�

� 4‰3

"
.�; 
/; .�; �/; .�C � � ˛ � ˇ; �/; .1; 1/

�
�; �

�
; .�C � � ˛; �/; .�C � � ˇ; �/

ˇ̌̌̌
ˇcx�

#
:

(25)

Corollary 5.2. Let the parameters ˛; ˇ; �; �; 
; �; �; �; x 2 C and < .�/ > < .�/ > 0 be such that

< .�/ > 0;< .�/ > 0;< .�/ > max Œ0;< .� � ˛ � ˇ/� :

Then each of the following fractional integral formulas holds true for all x > 0�
I.�;˛��;�ˇ/
0C

h
t��1 �;1E�;�.ct

� /
i�
.x/ D

x�C��˛�1

�.�/
�

� 4‰3

"
.�; 1/; .�; �/; .�C � � ˛ � ˇ; �/; .1; 1/

�
�; �

�
; .�C � � ˛; �/; .�C � � ˇ; �/

ˇ̌̌̌
ˇcx�

#
:

(26)

Corollary 5.3. Let the parameters ˛; ˇ; �; �
; �; �; �; �; x 2 C and < .�/ > < .�/ > 0 be such that

< .�/ > 0;<.�/ > 0;< .�/ < 1Cmin Œ< .�ˇ/;< .˛ � �/� :

Then each of the following fractional integral formulas holds true for all x > 0�
I.�;˛��;�ˇ/�

h
t��1 �;
E�;�

� c
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�i�
.x/ D
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�
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�
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ˇ̌̌̌
ˇcx�

#
:

(27)
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Corollary 5.4. Let the parameters ˛; ˇ; �; �; �; �; �; �; x 2 C and < .�/ > < .�/ > 0 be such that

< .�/ > 0;<.�/ > 0;< .�/ < 1Cmin Œ< .�ˇ/;< .˛ � �/� :

Then each of the following fractional integral formulas holds true for all x > 0�
I.�;˛��;�ˇ/�

h
t��1 �;
E�;�

� c
t�

�i�
.x/ D

x�C��˛�1

�.�/
�

� 4‰3

"
.�; 
/; .1 � � � ˇ; �/; .1 � � � �C ˛; �/; .1; 1/

�
�; �

�
; .1 � �; �/; .1 � � � ˇ C ˛; �/

ˇ̌̌̌
ˇcx�

#
:

(28)

It is noted that if we set ˇ D �˛ and ˇ D 0 (21) and (22) yields the Erdélyi-Kober fractional integral operators E˛;�
0C

and K˛;�� ; the Riemann-Liouville fractional integral operator R˛
0C
; and the Weyl fractional integral operatorW˛

�:

Therefore the results presented here are easily shown to be converted to those corresponding to the above well known
fractional operators.

We conclude our present investigation by remarking further that several further consequences of Theorems 3.2
and 3.2 and Corollaries 3.3–5.4 can easily be derived by using some known and new relationships between Mittag-
Leffler type function with four parameters �;
E�;� Œz�, which is an elegant unification of various special functions
(see [13]), and Fox H -function as given in Definition 2.2, after some suitable parametric replacements, which are
more simpler fractional integration operators (of Marichev-Saigo-Maeda type), can be deduced from Theorems 3.2
and 3.2, and Corollaries 3.3–5.4 by appropriately applying the following relationships:

�;
E�;� Œz� D
1

�.
/
H1;2
2;2

"
z

ˇ̌̌̌
ˇ .1 � �; �/; .0; 1/.0; 1/; .1 � �; �/

#
: (29)
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