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1. SUMMARY 

A major problem in the simulation of water resources is the uncertainty of the various parameters. Fuzzy 

analysis is a powerful tool for dealing with such problems involving uncertain data. Unlike surface water 

bodies systems, the exact boundaries of groundwater bodies are often not known. A methodology for the 

simulation of aquifers with vague spatial extent is introduced in this paper, and an application example is 

presented. 

2. INTRODUCTION 

Fuzzy logic owes its origins to ancient Greek philosophy and especially to Aristotle and the other 

philosophers who preceded him, like Parminides (around 400 B.C.). In their efforts to devise a concise theory 

of logic, they suggested that every proposition must either be True or False. Heraclitus proposed that things 

could be simultaneously "True and not True". It was Plato who laid the foundation for what would become 

fuzzy logic, indicating that there was a third region, beyond True and False, where these opposites "tumbled 

about". The mathematics of fuzzy set theory and the extension fuzzy logic, were first described in 1965 by 

Lotfi A. Zadeh in his original work "Fuzzy Sets". This paper will present the foundation of fuzzy systems, 

along with example in one-dimensional groundwater flow problem. 

3. A BRIEF DESCRIPTION OF FUZZY SET THEORY 

Fuzziness, as handled in fuzzy logic, can refer to various types of vagueness and uncertainty but 

particularly to the vagueness related to human linguistics and thinking, differing from the uncertainty öf 

Probabilistic Theory 191. 
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Definition 1. Fuzzy set. 

If X is a collection of objects denoted generically by x, then a fuzzy set A in X is a set of ordered pairs: 
Λ = { (χ,μΑ (λ)) , where μΑ (*) is called the membership function or grade of membership (also 

degree of compatibility or degree of truth) of χ in A that maps X to the membership space Μ (When Μ 

contains only the two points 0 and 1, A is no fuzzy set.) /10/. 

Definition 2. α-level cut. 

The α-level cut (α-level set) of the fuzzy subset A is the set of those elements, which have at least a 
membership: Aa = {χ | μΑ (χ ) > a J . If A^ = {χ | μΑ (x) > or j is called "strong α-level cut". 

Most credible value 

α-level cut, α =0,8 

20 30 

Parameter Value 

Fig. 1: A fuzzy number and an α-level cut 

Definition 3. Convex fuzzy set. 

A fuzzy set is convex if: μΑ (Ajci +{\-λ)χ2)>π\\η{μΑ (χ\),μΑ (*2)}, .η, *2 e Χ,λ e [0 , l ] 

Also a fuzzy set can be convex if all α-level sets are convex. 
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Fig. 2: Convex fuzzy set Fig. 3: Nonconvex fuzzy set 
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Definition 4. Fuzzy numbers. 

A fuzzy number Μ is a convex normalized set Μ of the real line *Ji such that 
1. There exists one xo e SR with μ μ (*o ) = ' (χο is called the mean value of M) 

2. μ \ ι (χ ) = 1 is piecewise continuous. 

Nowadays, this definition is very often modified. For the sake of simplicity, trapezoidal membership 

functions are often used. A triangular fuzzy number is a special case of this. When using fuzzy set theory to 

solve real problems of realistic size, more efficiency is to use a special type of fuzzy numbers, the LR-type 

no/. 

Definition 5. LR-type. 

A fuzzy number Μ is of LR-type if there exist reference functions L (for left), R (for right), and scalars 

α>0, β>0 with 

m is a real number called the mean value of M, and α and β are called the left and right spreads respectively. 

Strictly speaking, these special cases of fuzzy numbers are fuzzy intervals. So every a-level cut actually 

gives an interval number. Using various a-level cuts we can construct a fuzzy number in discrete form. 

Finally, if we want to use fuzzy sets in applications, we will have to deal with interval number operations. 

I f* is one of the symbols +, -, ·, /, we define arithmetic basic operations on interval number by 

ύ?] = |χ*>>|α < χ < b, c < y < d} except that we do not define [a, b]/[c, d] if 0 e [c, d]. 

Specifically, 

[a, b]+[c, d] = [a + c, b + b] 

[a, b]-[c, d] = [a - d, b - c] 

[a, b] • [c, d] = [min(ac, ad, be, db), max(ac, ad, be, db)] 

[a, b]/[c, d] = [a, b] · [1/d, 1/c] if 0 £ [c, d]. 

4. WATER RESOURCES MANAGEMENT WITH UNCERTAIN PDE COEFFICIENTS 

The behavior of water systems is usually simulated by using partial differential equations. 

MM (*) = 
For χ <m 

ί \ _ x-m 
R For χ > m 
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The exact value of various coefficients (transmissivity, dispersion, etc.) of the PDEs is often not exactly 

known. 

The classical approach in dealing with this type of uncertainty is the use of a probabilistic approach like 

the Monte Carlo methods l \ l . However this method is difficult to apply in real world problems: The 

probabilistic characteristics of the input data are rarely known. A huge number of simulations are necessary 

and the organization of the output data is a tricky issue. 

For these reasons many authors propose the use of fuzzy arithmetic to deal with uncertainties occurring in 

water management problems /3,4,5,6,8/. 

In this approach, uncertain or vague parameters are defined as fuzzy numbers. Unlike the classical 

definition of fuzzy theory, the membership function denotes if a certain value of a given parameter is likely 

to occur, not the degree of certainty. 

A fuzzy analysis approach of water management problems, involves usually the consideration of several 

α-level cuts, and an explicit scheme approach for the PDE's discretization /3,6,8/. 

Several application examples of this approach are presented in the literature, including uncertainty in 

transmissivities /4, 5/, porosities and dispersivities 111, and deoxygenation rate coefficient /8/. 

5. A METHODOLOGY FOR TREATING SPATIAL IMPRECISION 

WITH FUZZY SET ANALYSIS 

For the simulation of incomplete data concerning the spatial extent of aquifers, we may introduce a fuzzy 

number for the description of the aquifer length (Figure 4), or the evaluation of the possibility that a discrete 

area belongs to a given aquifer (see Figures 5, 6). 

L: Length of aquifer 

Fig. 4: Fuzzy number describing aquifer length 
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a=1 

a=0.7 

a=0.3 

a=0.1 

Fig. 5: Membership function levels of aquifer extent 

Fig. 6: Membership function levels of aquifer extent 

The former definition may be used for in combination with analytical solutions, while the latter for a 

numerical analysis approach. 

To solve problems involving uncertainty in spatial extent of aquifers, a similar methodology to that 

presented in the previous chapter may be used: Different α-levels cuts of the imprecise parameters are 

considered and interval analysis techniques are used. It is worth mentioning that for situations in which data 

imprecision lays exclusively in the knowledge of boundaries positions, the problem may be solved by a 

classical (crisp) mathematical approach. 

6. AN APPLICATION E X A M P L E 

We examine the hydraulic head variation in the following confined aquifer 111 

boundary. The aquifer is limited by a no-flow boundary at the distance χ=φ. 

equilibrium with the river h=h0 . At time t=0 the water level in the river becomes h 

The mathematical expression for the above conditions is: 
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h(x, 0) = ho, 0 < χ < / , (initial) 

h(/, t) = 0, t > 0 , (first boundary with prescribed head) 

[ I = 0 , / > 0 , (second no-flow boundary) dx 'χ~φ 

The behavior o f the hydraulic head is described by the above expression: 

π £ o ( 2 n + l ) 

(2n + \f π2Tt 
cos 

( 2 « + l ) KX 

4 sr 21 

where t denotes time, χ the distance from the origin, Τ the transmissivity, S the storativity and 1 the aquifer 

length. 

We suppose that data concerning transmissivity and aquifer length are uncertain. We suppose that they 

can be expressed in verbal and fuzzy form as follows: 

"The transmissivity is approximately 450m2/d, and is certainly above 100m2/d but not greater than 

500m2/d". 

"The aquifer length is at least 700m but not greater than 1300m. The most likely value is 700m" 

We further assume that S=0.0001. 

The analytical solution is solved at five different α-level cuts (0.0,0.25,0.5,0.75,1.0). The values for the 

piezometric head h at x=500m for t=0,05d and t=0. Id are presented in figure (7a,b). 
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7. CONCLUSIONS AND PERSPECTIVES 

Fuzzy set logic and water management using fuzzy arithmetics are presented. An original methodology 

for dealing with problems in which the exact position of the aquifer boundaries is unknown is developed, and 

an application example is presented. Differences in fuzzy approximation of coefficient imprecision and 

aquifer extension are emphasized. Numerical codes for ID- and 2D fuzzy simulation, including spatial 

uncertainty, are currently under development in our laboratory. 
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