
J. Inverse Ill-Posed Probl. 2022; 30(3): 379–393

Research Article

Markus Harju, Jaakko Kultima* and Valery Serov

Inverse scattering for three-dimensional
quasi-linear biharmonic operator
https://doi.org/10.1515/jiip-2020-0069
Received June 17, 2020; revised September 1, 2021; accepted November 16, 2021

Abstract:Weconsider an inverse scatteringproblemof recovering theunknowncoefficients of a quasi-linearly
perturbed biharmonic operator in the three-dimensional case. These unknown complex-valued coefficients
are assumed to satisfy some regularity conditions on their nonlinearity, but they can be discontinuous or sin-
gular in their space variable. We prove Saito’s formula and uniqueness theorem of recovering some essential
information about the unknown coefficients from the knowledge of the high frequency scattering amplitude.
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1 Introduction
We consider a quasi-linear three-dimensional differential operator of order four defined by

H4u(x) := ∆2u(x) +
󳨀→
W(x, |u|) ⋅ ∇u(x) + V(x, |u|)u(x),

where ∆ is the three-dimensional Laplacian and ⋅ denotes the dot-product in ℝ3 for complex-valued vec-
tors in ℂ3. The bi-Laplacian is perturbed by first- and zero-order nonlinear perturbations, a vector-valued
function 󳨀→W and a scalar function V that may be complex-valued and singular. Basic assumptions for the
coefficients of H4 are the following.

Assumption 1.1. We assume that the following conditions hold:
(i) V(x, 1), 󳨀→W(x, 1) ∈ Lploc(ℝ

3), where 3
2 < p ≤ ∞.

(ii) There exists R > 0 such that for all |x| ≥ R,

|V(x, 1)|, |󳨀→W(x, 1)| ≤ C
|x|μ

,

with μ > 3 and some constant C > 0.
(iii) For any ρ > 0, the functions 󳨀→W and V satisfy the following conditions:

|V(x, s1) − V(x, s2)| ≤ CρβV (x)|s1 − s2|,

|
󳨀→
W(x, s1) −

󳨀→
W(x, s2)| ≤ C󸀠ρβW (x)|s1 − s2|,

where s1, s2 ≤ ρ and the functions βV and βW satisfy conditions (i) and (ii), with some constants Cρ , C󸀠ρ > 0.
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The motivation and the interest to study multi-dimensional quasi-linear operators of order four arise, for
example, in the study of elasticity and in the theory of vibration of beams. As a concrete example, the non-
linear beam equation (see [3])

∂2t U(x, t) + ∆2xU(x, t) + m(x)|U(x, t)|pU(x, t) = 0

under time-harmonic assumptions U(x, t) = u(x)e−iωt leads to the equation

∆2u(x) + m(x)|u(x)|pu(x) = ω2u(x).

In particular, when we fix ω to be large enough and then apply a limiting process, some high-frequency
scattering problems (for the potential equation) can be considered.

Some examples of scattering problems for biharmonic operators (including nonlinear equations) can
be found in [8] and in the references therein. One can refer also to [13], where the fundamental result con-
cerning the global uniqueness for an inverse boundary value problem was proved. For operators with vector
potentials, we mention [12].

The present work follows in the footsteps of [2, 5, 10, 11, 16]. In [2, 5, 11], the inverse scattering prob-
lems for multi-dimensional nonlinear Schrödinger operators were considered. In [16], a similar study was
carried out for a multi-dimensional biharmonic operator with linear perturbations of first- and zero-order
(see also [15]). In [10], the fixed energy problem (the inverse scattering problem with fixed wave number) for
nonlinear Schrödinger operators is studied. In [17], these problems were considered for biharmonic opera-
tors with first- and zero-order nonlinear perturbations on the line, while a general nonlinear Schrödinger
operator on the line was investigated in [9]. The purpose of this work is to initiate similar studies in the
multi-dimensional case.

The present work is concerned with the following scattering problem for the operator H4:

{{{{
{{{{
{

H4u(x, k, θ) = k4u(x, k, θ),
u(x, k, θ) = u0(x, k, θ) + usc(x, k, θ), where u0(x, k, θ) = eik(θ,x),

lim
r→∞

r[ ∂∂r
f − ikf] = 0 for both f = usc and f = ∆usc,

(1.1)

meaning that we are interested only in solutions that can be expressed as a sum of a plane-wave u0 and
an out-going wave usc. Here k > 0 corresponds to the wavenumber and it is inversely proportional to the
wavelength, θ ∈ 𝕊2 is the direction of the incident, and here (and later) ( ⋅ , ⋅ ) denotes the inner product inℝ3.
The function usc is out-going in the sense that it satisfies the Sommerfeld radiation conditions for biharmonic
operators as they were posed in [16].

We are looking for the scattering solution usc to the equation in (1.1) in the Sobolev spaceW1
∞(ℝ

3). Under
the Sommerfeld radiation conditions (see (1.1)), the scattering solutions to (1.1) are the unique solutions of
the Lippmann–Schwinger integral equation (see [16] for details)

usc(x) = − ∫
ℝ3

G+k (|x − y|)[
󳨀→
W(y, |u|) ⋅ ∇u + V(y, |u|)u]dy, (1.2)

where the function G+k is the outgoing fundamental solution of the operator ∆2 − k4 in ℝ3, i.e., the kernel of
the integral operator (∆2 − k4 − i0)−1. This function G+k inℝ

3 has the following form:

G+k (|x|) =
eik|x| − e−k|x|

8πk2|x|
, k > 0.

Once we have shown that the unique solution exists, by repeating the calculations that were done in [5, 16],
we obtain that for fixed k > 0 the function usc has the following asymptotic behavior as |x| → ∞:

usc(x) = −
eik|x|

8πk2|x|
A(k, θ󸀠, θ) + o( 1

|x| )
,

where θ󸀠 = x/|x| is the angle of observation and the function A is called the scattering amplitude given via
the formula

A(k, θ󸀠, θ) = ∫
ℝ3

e−ik(θ󸀠 ,y)[󳨀→W(y, |u|) ⋅ ∇u + V(y, |u|)u]dy.
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From the point of view of inverse problems, one regards this scattering amplitude as one possible scat-
tering data. For these purposes, one requires the scattering amplitude to be known for all possible angles θ
and θ󸀠 and all arbitrarily high frequencies k > 0.

To formulate the main result (Saito’s formula), we need more conditions for the nonlinearities 󳨀→W and V,
namely the following assumption.

Assumption 1.2. The functions 󳨀→W and V satisfy Assumption 1.1 with 3 < p ≤ ∞ in condition (i). We also
assume that the function 󳨀→W has the following representation:

󳨀→
W(x, 1 + s) = 󳨀→W(x, 1) + 󳨀→W∗(x)s + 󳨀→W∗∗(x, s∗)O(s2),

for some |s∗| < |s|, where the functions 󳨀→W∗ and 󳨀→W∗∗ satisfy Assumption 1.1 with some 6 < p ≤ ∞.

As the main result of this work, we prove Saito’s formula. Similarly to other scattering problems, it allows us
to obtain a uniqueness result for the inverse problem with full scattering data and a representation formula
for the unknown combination β which appears in Saito’s formula. What is more, it was shown in [14] and
further demonstrated in [6] that Saito’s formula can be inverted numerically by fixing a large value for k > 0
and solving the convolution-type equation for β. This recent development further underlines the importance
of the formula.

Theorem 1.3 (Saito’s formula). Let the functions
󳨀→
W and V satisfy Assumption 1.2 and, in addition, let the

function ∇ ⋅
󳨀→
W(x, 1) satisfy conditions (i) and (ii) in Assumption 1.1 with 3 < p ≤ ∞. Then

lim
k→∞

k2 ∫
𝕊2

∫
𝕊2

e−ik(θ−θ󸀠 ,x)A(k, θ󸀠, θ)dθ󸀠 dθ = 8π2 ∫
ℝ3

β(y)
|x − y|2

dy (1.3)

holds in the sense of distributions, where β(y) = −12∇ ⋅
󳨀→
W(y, 1) + V(y, 1).

The most significant consequences of Saito’s formula are contained in the following corollaries.

Corollary 1.4. Let

β1(y) = −
1
2∇ ⋅
󳨀→
W1(y, 1) + V1(y, 1) and β2(y) = −

1
2∇ ⋅
󳨀→
W2(y, 1) + V2(y, 1)

be as in Theorem 1.3 and let A1(k, θ󸀠, θ) and A2(k, θ󸀠, θ) be the corresponding scattering amplitudes arising
from these two scattering problems. If these scattering amplitudes coincide for all angles θ, θ󸀠 and for some
sequence kj →∞ as j →∞, then β1 = β2 in the sense of tempered distributions.

Corollary 1.5. If all conditions of Theorem 1.3 are satisfied, then

β(y) = 1
16π4

lim
k→∞

k3 ∫
𝕊2

∫
𝕊2

A(k, θ󸀠, θ)|θ − θ󸀠|e−ik(θ−θ󸀠 ,y) dθ dθ󸀠,
in the sense of tempered distributions

Proofs for these corollaries can be found, for example, in [5, 7].
The following notations are used throughout the text. The symbol Lpδ (ℝ

3), 1 ≤ p ≤ ∞, δ ∈ ℝ, denotes the
p-based Lebesgue space overℝ3 with norm

‖f‖Lpδ = ( ∫
ℝ3

(1 + |x|)δp|f(x)|p dx)
1/p

.

The weighted Sobolev spaces Wm
p,δ(ℝ

3) are defined as the spaces of functions whose weak derivatives up to
order m ≥ 0 belong to Lpδ (ℝ

3) and the norm is defined by

‖f‖Wm
p,δ
= ∑
|α|≤m
‖Dα f‖Lpδ .

For L2-based spaces, we use the special notation

Hmδ (ℝ
3) = Wm

2,δ(ℝ
3).
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Throughout the text, the symbol C (compare with the constants C with some special index and special mean-
ing) is used to denote generic positive constants whose value may change from line to line.

The paper is organized as follows. In Section 2, we study the direct scattering problem and establish its
unique solvability under some suitable assumptions. Section 3 is devoted to proving the main result of the
paper, i.e., Saito’s formula.

2 Direct scattering problem
The goal of this section is to find sufficient conditions for nonlinearities 󳨀→W and V under which the direct
scattering problem has a unique solution.

To this end, the following theorem holds.

Theorem 2.1. Let functions V and
󳨀→
W be as in Assumption 1.1. Let ρ > 0 satisfy the conditions

{{{{{{{
{{{{{{{
{

sup
x∈ℝ3
∫
ℝ3

|βW (y)|
|x − y|

dy < π
C󸀠ρ+1

,

sup
x∈ℝ3
∫
ℝ3

|
󳨀→
W(y, 1)|
|x − y|

dy < ρ(π − C󸀠ρ+1 sup
x∈ℝ3
∫
ℝ3

|βW (y)|
|x − y|

dy),
(2.1)

where the constant C󸀠ρ+1 > 0 is as in Assumption 1.1. Then there exists k0 > 0 such that equation (1.2) has
a unique solution in the ball

Bρ(0) = {f ∈ W1
∞(ℝ

3) : ‖f‖W1∞ ≤ ρ} for all k ≥ k0.

Proof. We will use the Banach fixed-point theorem [18, p. 19] to prove this result. Since Bρ(0) is a closed
subset of a Banach spaceW1

∞(ℝ
3), this approach is well justified.

Let us start by defining an operator F by setting

Fφ(x) = − ∫
ℝ3

G+k (|x − y|)[
󳨀→
W(y, |u0 + φ|) ⋅ ∇(u0 + φ) + V(y, |u0 + φ|)(u0 + φ)]dy,

whereφ ∈ W1
∞(ℝ

3).Wewill show that the operator F is a contraction from Bρ(0) to itself. For the fundamental
solution G+k , the following estimates hold for all k > 0 and x, y ∈ ℝ3:

|G+k (|x − y|)| ≤
1

4πk2|x − y|
and |∇xG+k (|x − y|)| ≤

1
πk|x − y|

. (2.2)

For a function g satisfying conditions (i) and (ii) in Assumption 1.1, we introduce the following notation:

S(g) = sup
x∈ℝ3
∫
ℝ3

|g(y)|
|x − y|

dy.

Let now φ ∈ Bρ(0). By Assumption 1.1, we have

|Fφ(x)| ≤ 1
4πk2
∫
ℝ3

|
󳨀→
W(y, |u0 + φ|)|
|x − y|

|∇(u0 + φ)|dy +
1

4πk2
∫
ℝ3

|V(y, |u0 + φ|)|
|x − y|

|u0 + φ|dy

≤
1

4πk2
∫
ℝ3

|
󳨀→
W(y, 1)| + C󸀠ρ+1βW (y)|φ|

|x − y|
(k + ρ)dy + 1

4πk2
∫
ℝ3

|V(y, 1)| + C󸀠ρ+1βV (y)|φ|
|x − y|

(1 + ρ)dy

≤
C󸀠

k
+
C󸀠󸀠

k2
, (2.3)

where the constants C󸀠 and C󸀠󸀠 are given by

C󸀠 = 1
4π (S(
󳨀→
W( ⋅ , 1)) + ρC󸀠ρ+1S(βW )),

C󸀠󸀠 = ρ
4π (S(
󳨀→
W( ⋅ , 1)) + ρC󸀠ρ+1S(βW )) +

1 + ρ
4π (S(V( ⋅ , 1)) + ρCρ+1S(βV )).
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In a similar fashion, for the gradient of Fφ, we have

|∇Fφ(x)| ≤ 4C󸀠 + 4C
󸀠󸀠

k
.

By assumption (2.1), we have 4C󸀠 < ρ, and therefore there exists δ > 0 such that 4C󸀠 + δ < ρ. Now,

‖Fφ‖W1∞ ≤ 4C󸀠 + 5C󸀠󸀠 + C󸀠k
≤ ρ

when
k ≥ k1 :=

5C󸀠󸀠 + C󸀠
δ

,

and thus F maps from Bρ(0) to itself for all k ≥ k1.
Next wewill show that F is a contraction. Let φ, ψ ∈ Bρ(0). We split the difference Fφ(x) − Fψ(x) into two

parts

Fφ(x) − Fψ(x) = − ∫
ℝ3

G+k (|x − y|)[
󳨀→
W(y, |u0 + φ|) ⋅ ∇(u0 + φ) −

󳨀→
W(y, |u0 + ψ|) ⋅ ∇(u0 + ψ)]dy

− ∫
ℝ3

G+k (|x − y|)[V(y, |u0 + φ|)(u0 + φ) − V(y, |u0 + ψ|)(u0 + ψ)]dy

= I1 + I2.

Let us now consider the absolute values of both of these terms. Using estimate (2.2), we have

|I1| ≤ ∫
ℝ3

|G+k (|x − y|)||
󳨀→
W(y, |u0 + φ|) −

󳨀→
W(y, |u0 + ψ|)||∇u0|dy

+ ∫
ℝ3

|G+k (|x − y|)||
󳨀→
W(y, |u0 + φ|) −

󳨀→
W(y, |u0 + ψ|)||∇φ|dy

+ ∫
ℝ3

|G+k (|x − y|)||
󳨀→
W(y, |u0 + ψ|)||∇φ − ∇ψ|dy

≤
C󸀠ρ+1
4πk S(βW )‖φ − ψ‖W

1∞ + ρC
󸀠
ρ+1

4πk2
S(βW )‖φ − ψ‖W1∞

+
1

4πk2
S(
󳨀→
W( ⋅ , 1))‖φ − ψ‖W1∞ + ρC

󸀠
ρ+1

4πk2
S(βW )‖φ − ψ‖W1∞ .

Similar calculations show that

|I2| ≤
1

4πk2
‖φ − ψ‖W1∞((ρ + 1)Cρ+1S(βV ) + S(V( ⋅ , 1)) + ρCρ+1S(βV )),

and thus
‖Fφ − Fψ‖∞ ≤ (

C1
k
+
C2
k2
)‖φ − ψ‖W1∞ ,

where
{{{
{{{
{

C1 :=
C󸀠ρ+1
4π S(βW ),

C2 :=
1
4π [2ρC

󸀠
ρ+1S(βW ) + S(

󳨀→
W( ⋅ , 1)) + (2ρ + 1)Cρ+1S(βV ) + S(V( ⋅ , 1))].

(2.4)

Similarly, for the gradient of the difference, we have

|∇Fφ(x) − ∇Fψ(x)| ≤ (4C1 +
4C2
k )
‖φ − ψ‖W1∞ .

By combining these estimates, we have that

‖Fφ − Fψ‖W1∞ ≤ (4C1 + 5C2 + C1k )‖φ − ψ‖W1∞ .
Since4C1 < 1byassumption (2.1), there exists k2 > 0 such that 4C1 + 5C2+C1

k < 1 for all k ≥ k2. Nowby choos-
ing k0 = max{k1, k2}, we have that F is a contraction from Bρ(0) for all k ≥ k0. This proves the theorem.
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Remark 2.2. The Banach fixed-point theorem gives us an iterative way of finding the solution. If we set
u(0)sc (x) = 0 and define u

(j)
sc (x) = Fu

(j−1)
sc (x), then

usc(x) := lim
j→∞

u(j)sc (x)

is the unique solution to the Lippmann–Schwinger equation. Moreover, for all j = 2, 3, . . . , we have the
following a priori estimate for the error term:

‖u(j)sc − usc‖W1∞ ≤ (4C1 + 5C2 + C1k )
j
(1 − 4C1 −

5C2 + C1
k )

−1
‖u(1)sc ‖W1∞ ,

where the constants C1 and C2 are given in (2.4) and

‖u(1)sc ‖W1∞ ≤ 1π S(󳨀→W( ⋅ , 1)) + 1
4πk (S(
󳨀→
W( ⋅ , 1)) + 5S(V( ⋅ , 1))).

Lemma 2.3. Let functions 󳨀→W and V be as in Theorem 2.1. Then for k ≥ k0, where k0 is the same as in Theo-
rem 2.1, the following norm estimates hold:

‖usc‖∞ ≤
C
k

and ‖∇usc‖∞ ≤ C,

where the constant C > 0 does not depend on k.

Proof. Clearly, we have that
‖∇usc‖∞ ≤ ‖usc‖W1∞ ≤ ρ.

For the first estimate we can use (2.3), and we have that

‖usc‖∞ ≤
C1
k
+
C2
k2

,

where the constants C1 and C2 are given in (2.4). Therefore, the lemma follows when we set C = C1 + C2.

In what follows, we will also need norm estimates in weighted Sobolev spaces in the form of the following
two results.

Lemma 2.4. The integral operator with kernel G+k maps from L2δ(ℝ
3) to H j−δ(ℝ

3) with norm-estimate

‖Ĝ+kφ‖H j−δ ≤ C
k3−j
‖φ‖L2δ , j = 0, 1, 2,

with some constant C > 0, where δ > 1
2 .

Proof. This lemma follows fromAgmon’s estimate [1, Appendix A, Remark 2], which states that for δ > 1
2 and

k > 1,
∑
|α|≤4

k3−|α|‖Dα f‖L2−δ(ℝn) ≤ C0‖(∆2 − k4)f‖L2δ(ℝn)
for all f ∈ H4(ℝn), where the constant C0 > 0 only depends on n and δ.

Corollary 2.5. Under the assumptions of Theorem 2.1, the following norm estimates hold for the function usc:

‖usc‖H j−δ ≤ C
k2−j

, j = 0, 1, 2,

with δ > 1
2 and some constant C > 0.

Proof. By Theorem 2.1, we have that usc is a solution to equation (1.2). Therefore, it suffices to show that

‖
󳨀→
W( ⋅ , |u|) ⋅ ∇u + V( ⋅ , |u|)u‖L2δ ≤ Ck

for some constant C > 0. For simplicity, we only consider the term 󳨀→W(y, |u|) ⋅ ∇u(y). Assumption 1.1 gives us
that 󳨀→W( ⋅ , |u|) ∈ Lploc(ℝ

3), where 3
2 < p ≤ ∞, and there exists R > 0 such that when |y| ≥ R,

|
󳨀→
W(y, |u|)| ≤ C

|y|μ
, where μ > 3,
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uniformly in |u| ≤ ρ. Therefore, the Cauchy–Schwarz inequality gives that

‖
󳨀→
W( ⋅ , |u|) ⋅ ∇u‖2L2δ

≤ ∫
ℝ3

(1 + |y|)2δ|󳨀→W(y, |u|)|2|∇(u0 + usc)|2 dy

≤ ∫
|y|≤R

(1 + |y|)2δ|󳨀→W(y, |u|)|2(k + ρ)2 dy + C ∫
|y|>R

(1 + |y|)2δ (k + ρ)
2

|y|2μ
dy

≤ Ck2,

when δ < μ − 3
2 . Similarly, ‖V( ⋅ , |u|)u‖L2δ ≤ C, and therefore Lemma 2.4 gives us that

‖usc‖H j−δ ≤ C
k2−j

, j = 0, 1, 2.

For a general δ > 1
2 , the result follows straightforwardly from the inequality

‖f‖H j−δ1 ≤ ‖f‖H j−δ2 for all δ1 ≥ δ2.

This finishes the proof.

For the convenience of the reader, the asymptotic behavior of the solution is recorded in the following
theorem.

Theorem 2.6. Let usc be the solution of (1.2) obtained in Theorem2.1. Then, for fixed k > k0, it has the following
asymptotic representation as |x| → ∞:

usc(x) = −
eik|x|

8π|x|k2
A(k, θ󸀠, θ) + o( 1

|x| )
,

where θ󸀠 ∈ 𝕊2 is the angle of observation, i.e., θ󸀠 = x
|x| and the function A is called a scattering amplitude and it

is given by
A(k, θ󸀠, θ) = ∫

ℝ3

e−ik(θ󸀠 ,y)[󳨀→W(y, |u|) ⋅ ∇u + V(y, |u|)u]dy.
Proof. See [16, Theorem 5.2.]

3 Saito’s formula
The main goal of this section is to prove the main result of the paper, i.e., Theorem 1.3 (Saito’s formula).

The proof of Saito’s formula makes frequent use of the following technical lemma.

Lemma 3.1. Let functions 󳨀→W and V satisfy Assumption 1.1 and let ∇ ⋅
󳨀→
W( ⋅ , 1) satisfy conditions (i) and (ii) in

Assumption 1.1, with 3 < p ≤ ∞. Then for δ > 1
2 and k ≥ k0, where k0 > 0 is as in Theorem 2.1,

∫
𝕊2

e−ik(θ,x)usc(y)dθ ∈ H
j
−δ(ℝ

3)

as a function of y ∈ ℝ3, uniformly in x ∈ ℝ3. Moreover, there exists a constant C > 0 such that the following
estimates hold: 󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝕊2

e−ik(θ,x)usc( ⋅ )dθ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩H j−δ ≤

C
k3−j

, j = 0, 1, 2.

Proof. Recall that the function usc can be presented as

usc = Ĝ+k (
󳨀→
W ⋅ ∇u + Vu).

By the Fubini theorem, we may change the order of integration and we have

∫
𝕊2

e−ik(θ,x)usc(y)dθ = Ĝ+k( ∫
𝕊2

e−ik(θ,x)[󳨀→W(z, |u|) ⋅ ∇u(z) + V(z, |u|)u(z)]dθ).
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Let us denote the argument of the operator Ĝ+k above by h. We want to use Lemma 2.4, and therefore we need
to estimate the L2δ-norm of the function h(z). We start by splitting the function h into four parts:

h(z) := ∫
𝕊2

e−ik(θ,x)[󳨀→W(z, |u|) ⋅ ∇u(z) + V(z, |u|)u(z)]dθ

= ∫
𝕊2

e−ik(θ,x)󳨀→W(z, 1) ⋅ (ikθ)eik(θ,z) dθ + ∫
𝕊2

e−ik(θ,x)(󳨀→W(z, |u|) − 󳨀→W(z, 1)) ⋅ (ikθ)eik(θ,z) dθ

+ ∫
𝕊2

e−ik(θ,x)󳨀→W(z, |u|) ⋅ ∇usc(z)dθ + ∫
𝕊2

e−ik(θ,x)V(z, |u|)u(z)dθ

= h1(z) + h2(z) + h3(z) + h4(z).

Let first 1
2 < δ < μ −

1
2 . Now we can estimate the L2δ-norm of each function hi separately. First, we note that

h1(z) =
󳨀→
W(z, 1) ⋅ ∇z ∫

𝕊2

e−ik(θ,x−z) dθ.

Here the integral over θ can be calculated precisely (see [4, Appendix D.3]) and we obtain

∫
𝕊2

e−ik(θ,x−z) dθ = 4π sin(k|x − z|)
k|x − z|

. (3.1)

Therefore, we have that

|∇z ∫
𝕊2

e−ik(θ,x−z) dθ| = 4π
󵄨󵄨󵄨󵄨󵄨󵄨
x − z
|x − z|2

cos(k|x − z|) + x − z
k|x − z|3

sin(k|x − z|)
󵄨󵄨󵄨󵄨󵄨󵄨

≤ 4π[ 1
|x − z|
+
󵄨󵄨󵄨󵄨󵄨󵄨
sin(k|x − z|)
k|x − z|2

󵄨󵄨󵄨󵄨󵄨󵄨]

≤ 8π 1
|x − z|

. (3.2)

Now by using the Cauchy–Schwarz inequality and the previous estimate, the L2δ-norm of h1 can be esti-
mated as

‖h1‖2L2δ
= ∫
ℝ3

(1 + |z|)2δ|h1(z)|2 dz

= ∫
ℝ3

(1 + |z|)2δ|󳨀→W(z, 1) ⋅ ∇z ∫
𝕊2

e−ik(θ,x−z) dθ|2 dz

≤ C ∫
ℝ3

(1 + |z|)2δ |
󳨀→
W(z, 1)|2

|x − z|2
dz. (3.3)

This integral is finite uniformly in x ∈ ℝ3 and k ≥ k0, since
󳨀→
W( ⋅ , 1) ∈ W1

p,loc(ℝ
3) 󳨅→ L∞loc(ℝ

3),

and it satisfies the decay property (ii) in Assumption 1.1.
To estimate the L2δ-norm of h2, we use Assumption 1.1 and Lemma 2.3 and we have

‖h2‖2L2δ
= ∫
ℝ3

(1 + |z|)2δ|∫
𝕊2

e−ik(θ,x−z)(󳨀→W(z, |u|) − 󳨀→W(z, 1)) ⋅ (ikθ)dθ|2 dz

≤ C ∫
ℝ3

(1 + |z|)2δ(k ∫
𝕊2

|
󳨀→
W(z, |u|) − 󳨀→W(z, 1)|dθ)

2
dz

≤ C ∫
ℝ3

(1 + |z|)2δ(k ∫
𝕊2

‖usc‖∞ dθ|βW (z)|)
2
dz

≤ C‖βW‖2L2δ
,

where the constant C is independent of x and k.
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For the functions h3 and h4, we substitute
󳨀→
W(z, |u|) = 󳨀→W(z, 1) + 󳨀→W(z, |u|) − 󳨀→W(z, 1) and V(z, |u|) = V(z, 1) + V(z, |u|) − V(z, 1),

respectively, and we have

‖h3‖2L2δ
≤ ∫
ℝ3

(1 + |z|)2δ|∫
𝕊2

e−ik(θ,x−z)󳨀→W(z, 1) ⋅ ∇usc(z)dθ|2 dz

+ ∫
ℝ3

(1 + |z|)2δ|∫
𝕊2

e−ik(θ,x−z)(󳨀→W(z, |u|) − 󳨀→W(z, 1)) ⋅ ∇usc(z)dθ|2 dz

≤ C ∫
ℝ3

(1 + |z|)2δ|󳨀→W(z, 1)|2 ∫
𝕊2

‖∇usc‖2∞ dθ dz

+ C ∫
𝕊2

∫
ℝ3

(1 + |z|)2δ|󳨀→W(z, |u|) − 󳨀→W(z, 1)|2‖∇usc‖2∞ dz dθ < C.

Similarly,

‖h4‖L2δ ≤ ∫
ℝ3

(1 + |z|)2δ|∫
𝕊2

e−ik(θ,x−z)V(z, 1) ⋅ u(z)dθ|2 dz

+ ∫
ℝ3

(1 + |z|)2δ|∫
𝕊2

e−ik(θ,x−z)(V(z, |u|) − V(z, 1)) ⋅ u(z)dθ|2 dz

≤ C ∫
ℝ3

(1 + |z|)2δ|V(z, 1)|2 ∫
𝕊2

‖u‖2∞ dθ dz

+ C ∫
𝕊2

∫
ℝ3

(1 + |z|)2δ|V(z, |u|) − V(z, 1)|2‖u‖2∞ dz dθ < C. (3.4)

All of these estimates hold uniformly in x ∈ ℝ3 and k ≥ k0. To combine, estimates (3.3) and (3.4) give us
that h ∈ L2δ(ℝ

3) with a norm estimate
‖h‖L2δ ≤ C,

where the constant C > 0 does not depend on x ∈ ℝ3 and k ≥ k0. Therefore, Lemma 2.4 gives us the claim for
all 12 < δ < μ −

1
2 . For a general δ >

1
2 , the result follows straightforwardly from the inequality

‖f‖H j−δ1 ≤ ‖f‖H j−δ2 for all δ1 ≥ δ2.

Proof of Theorem 1.3. We split the left-hand side of (1.3) into four parts as follows:

k2 ∫
𝕊2

∫
𝕊2

e−ik(θ−θ󸀠 ,x)A(k, θ󸀠, θ)dθ󸀠 dθ = k2 ∫
𝕊2

∫
𝕊2

e−ik(θ−θ󸀠 ,x) ∫
ℝ3

e−ik(θ󸀠 ,y)󳨀→W(y, |u|) ⋅ ∇usc(y)dy dθ󸀠 dθ
+ k2 ∫
𝕊2

∫
𝕊2

e−ik(θ−θ󸀠 ,x) ∫
ℝ3

e−ik(θ󸀠−θ,y)󳨀→W(y, |u|) ⋅ (ikθ)dy dθ󸀠 dθ
+ k2 ∫
𝕊2

∫
𝕊2

e−ik(θ−θ󸀠 ,x) ∫
ℝ3

e−ik(θ󸀠 ,y)V(y, |u|)usc(y)dy dθ󸀠 dθ
+ k2 ∫
𝕊2

∫
𝕊2

e−ik(θ−θ󸀠 ,x) ∫
ℝ3

e−ik(θ󸀠−θ,y)V(y, |u|)dy dθ󸀠 dθ
= I1 + I2 + I3 + I4.

Let us first consider the term I2. Assumption 1.2 allows us to write the function 󳨀→W(x, |u|) as

󳨀→
W(x, |u|) = 󳨀→W(x, 1) + 12

󳨀→
W∗(x)(u0usc + u0usc) + W̃(x, s∗)O(|usc|2). (3.5)
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Indeed, using the Taylor expansion for small values of z, i.e., (1 + z)r = 1 + rz + O(z2), for |u| we have (see
Lemma 2.3)

|u0 + usc| = (1 + u0usc + u0usc + |usc|2)1/2

= 1 + 12 (u0usc + u0usc + |usc|
2) + O((u0usc + u0usc + |usc|2)2)

= 1 + 12 (u0usc + u0usc) + O(|usc|
2).

Therefore, (3.5) follows when we set

W̃(x, s∗) = 󳨀→W∗(x) + 󳨀→W∗∗(x, s∗).

By substituting (3.5) into I2, we have

I2 = k2 ∫
𝕊2

∫
𝕊2

e−ik(θ−θ󸀠 ,x) ∫
ℝ3

e−ik(θ󸀠−θ,y)(ikθ) ⋅ 󳨀→W(y, 1)dy dθ󸀠 dθ
+ k2 ∫
𝕊2

∫
𝕊2

e−ik(θ−θ󸀠 ,x) ∫
ℝ3

e−ik(θ󸀠−θ,y)(ikθ) ⋅ 󳨀→W∗(y)(u0usc + u0usc)dy dθ󸀠 dθ
+ k2 ∫
𝕊2

∫
𝕊2

e−ik(θ−θ󸀠 ,x) ∫
ℝ3

e−ik(θ󸀠 ,y)(ikθ) ⋅ W̃(y)O(|usc|2)dy dθ󸀠 dθ
= I(1)2 + I

(2)
2 + I

(3)
2 .

Now,

I(1)2 = k
2 ∫
𝕊2

∫
𝕊2

e−ik(θ−θ󸀠 ,x) ∫
ℝ3

e−ik(θ󸀠−θ,y)󳨀→W(y, 1) ⋅ ik(θ − θ󸀠)dy dθ󸀠 dθ
+ k2 ∫
𝕊2

∫
𝕊2

e−ik(θ−θ󸀠 ,x) ∫
ℝ3

e−ik(θ󸀠−θ,y)󳨀→W(y, 1) ⋅ (ikθ󸀠)dy dθ󸀠 dθ
= k2 ∫
𝕊2

∫
𝕊2

e−ik(θ−θ󸀠 ,x) ∫
ℝ3

∇ye−ik(θ
󸀠−θ,y) ⋅ 󳨀→W(y, 1)dy dθ󸀠 dθ − I(1)2 . (3.6)

Here we have used integration by parts and Assumption 1.1 for the function 󳨀→W. The fact that −I(1)2 appears
in (3.6) follows from the substitutions γ = −θ󸀠 and γ󸀠 = −θ.

Rearranging equation (3.6) leads us to

2I(1)2 = −k
2 ∫
𝕊2

∫
𝕊2

e−ik(θ−θ󸀠 ,x) ∫
ℝ3

e−ik(θ󸀠−θ,y)∇ ⋅ 󳨀→W(y, 1)dy dθ󸀠 dθ
= −k2 ∫

ℝ3

∇ ⋅
󳨀→
W(y, 1)(4π sin(k|x − y|)k|x − y| )

2
dy

= −8π2 ∫
ℝ3

∇ ⋅
󳨀→
W(y, 1)
|x − y|2

dy + 8π2 ∫
ℝ3

∇ ⋅
󳨀→
W(y, 1)
|x − y|2

cos(2k|x − y|)dy.

By our assumptions,
∇ ⋅
󳨀→
W( ⋅ , 1)
|x − ⋅ |2

∈ L1(ℝ3)

uniformly in x ∈ ℝ3, and therefore the second term above tends to zero as k →∞ due to the Riemann–
Lebesgue lemma. So, we have that

I(1)2 = 8π
2 ∫
ℝ3

−12∇ ⋅
󳨀→
W(y, 1)
|x − y|2

dy + o(1)

for large values of k > 0.



M. Harju, J. Kultima and V. Serov, Scattering for quasi-linear biharmonic operator | 389

Next we consider the term I(2)2 . Using the Leibniz rule for differentiation together with (3.1), we have

I(2)2 = −k
2 ∫
𝕊2

∫
𝕊2

eik(θ󸀠 ,x)∇xe−ik(θ,x) ∫
ℝ3

e−ik(θ󸀠−θ,y)󳨀→W∗(y)(u0usc + u0usc)dy dθ󸀠 dθ
= −k2∇x ∫

ℝ3

4π sin(k|x − y|)
k|x − y|

󳨀→
W∗(y) ∫

𝕊2

e−ik(θ,x−y)(u0usc + u0usc)dθ dy

+ 4πk2 ∫
ℝ3

∇x(
sin(k|x − y|)
k|x − y| )

󳨀→
W∗(y) ∫

𝕊2

e−ik(θ,x−y)(u0usc + u0usc)dθ dy

= −∇xL1(x, k) + L2(x, k).

Let us consider now the term L1(x, k). Using first the Hölder inequality and then Lemma 3.1, we have the
following estimate:

|L1(x, k)| ≤ 4πk2 ∫
ℝ3

|
󳨀→
W∗(y)|
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝕊2

e−ik(θ,x−y)(u0usc + u0usc)dθ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dy

≤ Ck2( ∫
ℝ3

(1 + |y|)2δ|󳨀→W∗(y)|2 dy)
1/2
[
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝕊2

e−ik(θ,x)usc( ⋅ )dθ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2−δ +
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝕊2

e−ik(θ,2⋅−x)usc( ⋅ )dθ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2−δ]

≤
C
k

uniformly in x ∈ ℝ3. Therefore, we have for any φ ∈ C∞0 (ℝ3),

|⟨−∇L1( ⋅ , k), φ⟩| = |⟨L1( ⋅ , k), ∇φ⟩| =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ℝ3

L1(x, k)∇φ(x)dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ sup
x∈suppφ
|L1(x, k)|‖∇φ‖L1 ≤

C
k
.

Before we consider the term L2(x, k), we note that, if the function f satisfies Assumption 1.1 with
6 < p ≤ ∞, then for δ < μ − 1

2 the integral

∫
ℝ3

(1 + |y|)2δ |f(y)|
2

|x − y|2
dy (3.7)

is bounded uniformly in x ∈ ℝ3.
Indeed,

∫
ℝ3

(1 + |y|)2δ |f(y)|
2

|x − y|2
dy

= ∫
|x−y|≤1

(1 + |y|)2δ |f(y)|
2

|x − y|2
dy + ∫
|x−y|>1

(1 + |y|)2δ |f(y)|
2

|x − y|2
dy

≤ C‖f‖2Lp( ∫
|x−y|≤1

|x − y|
−2p
p−2 dy) p−2p + C ∫

|y|>R,|x−y|>1

|y|2δ−2μ|x − y|−2 dy + C ∫
|y|≤R

|f(y)|2 dy.

These integrals are all uniformly bounded when 6 < p ≤ ∞ and δ < μ − 1
2 . Now we may estimate L2(x, k),

using (3.2), Lemma 3.1 and (3.7), to obtain

|L2(x, k)| ≤ 8πk2 ∫
ℝ3

|
󳨀→
W∗(y)|
|x − y|
|∫
𝕊2

e−ik(θ,x−y)(u0usc + u0usc)dθ|dy

≤ Ck2( ∫
ℝ3

(1 + |y|)2δ |
󳨀→
W∗(y)|2

|x − y|2
dy)

1/2
[
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝕊2

e−ik(θ,x)usc( ⋅ )dθ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2−δ +
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝕊2

e−ik(θ,2⋅−x)usc( ⋅ )dθ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2−δ]

≤
C
k ( ∫
ℝ3

(1 + |y|)2δ |
󳨀→
W∗(y)|2

|x − y|2
dy)

1/2

≤
C
k

uniformly in x ∈ ℝ3.
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Combining the estimates for −∇xL1(x, k) and L2(x, k), we have that

−∇xL1(x, k) + L2(x, k) = o(1)

for k ≫ 1, pointwise in x ∈ ℝ3.
For I(3)2 , we may use straightforward estimation, (3.7) and the fact that ‖usc‖∞ ≤ Ck to obtain

|I(3)2 | ≤ Ck
2 ∫
ℝ3

1
|x − y| ∫

𝕊2

|W̃(y, s∗)||usc(y)|2 dθ dy

≤ Ck2 ∫
𝕊2

‖usc‖∞( ∫
ℝ3

(1 + |y|)2δ |W̃(y, s
∗)|2

|x − y|2
dy)

1/2
( ∫
ℝ3

(1 + |y|)−2δ|usc(y)|2 dy)
1/2

dθ

≤
C
k ∫
𝕊2

( ∫
ℝ3

(1 + |y|)2δ |W̃(y, s
∗)|2

|x − y|2
dy)

1/2
dθ

≤
C
k
.

Let us next consider the term I4. First, we split the integral into two parts:

k2 ∫
𝕊2

∫
𝕊2

e−ik(θ−θ󸀠 ,x) ∫
ℝ3

e−ik(θ󸀠−θ,y)V(y, |u|)dy dθ󸀠 dθ
= k2 ∫
ℝ3

∫
𝕊2

e−ik(θ,x−y) dθ ∫
𝕊2

e−ik(θ󸀠 ,y−x) dθ󸀠V(y, 1)dy
+ k2 ∫
ℝ3

∫
𝕊2

e−ik(θ󸀠 ,y−x) dθ󸀠 ∫
𝕊2

e−ik(θ,x−y)(V(y, |u|) − V(y, 1))dθ dy

= J1 + J2.

In J1, integrals with respect to both θ and θ󸀠 can be calculated using (3.1), and we obtain

J1 = 16π2 ∫
ℝ3

sin2(k|x − y|)
|x − y|2

V(y, 1)dy

= 8π2 ∫
ℝ3

V(y, 1)
|x − y|2

dy + 8π2 ∫
ℝ3

V(y, 1)
|x − y|2

cos(2k|x − y|)dy

= 8π2 ∫
ℝ3

V(y, 1)
|x − y|2

dy + o(1)

for large values of k > 0 due to the Riemann–Lebesgue lemma.
In order to estimate the term J2, we use Corollary 2.5 and Lemma 2.3 to get

|J2| = k2
󵄨󵄨󵄨󵄨󵄨󵄨∫
ℝ3

4π sin(k|x − y|)
k|x − y| ∫

𝕊2

e−ik(θ,x−y)(V(y, |u|) − V(y, 1))dθ dy
󵄨󵄨󵄨󵄨󵄨󵄨

≤ Ck2 ∫
𝕊2

∫

|x−y|< 1k

|βV (y)||usc(y)|dy dθ + Ck ∫
𝕊2

∫

|x−y|> 1k

|βV (y)|
|x − y|
|usc(y)|dy dθ

≤ Ck ∫
|x−y|< 1k

|βV (y)|dy + Ck1+γ ∫
𝕊2

‖usc‖L2−δ dθ( ∫
ℝ3

(1 + |y|)2δ |βV (y)|
2

|x − y|2(1−γ)
dy)

1/2

≤
C

k
3
p󸀠 −1 ‖βV‖Lp + C

k1−γ
( ∫
ℝ3

(1 + |y|)2δ |βV (y)|
2

|x − y|2(1−γ)
dy)

1/2
,

where p > 3, p󸀠 < 3
2 and 0 < γ < 1 is chosen so close to 1 that the latter integral is finite under the conditions

for βV .
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To combine what we have done thus far, we have shown that

I2 + I4 = 8π2 ∫
ℝ3

−12∇ ⋅
󳨀→
W(y, 1) + V(y, 1)
|x − y|2

dy + o(1),

in the sense of distributions, for large values of k > 0. Therefore, all that is left to show is that both I1 and I3
are at most o(1) for large k > 0.

Let us first prove that I1 = O(1k ). We once again start by substituting
󳨀→
W(y, |u|) = 󳨀→W(y, 1) + 󳨀→W(y, |u|) − 󳨀→W(y, 1)

and splitting the integral into two parts:

I1 = k2 ∫
ℝ3

∫
𝕊2

e−ik(θ󸀠 ,y−x) dθ󸀠 ∫
𝕊2

e−ik(θ,x)󳨀→W(y, 1) ⋅ ∇usc(y)dθ dy

+ k2 ∫
ℝ3

∫
𝕊2

e−ik(θ󸀠 ,y−x) dθ󸀠 ∫
𝕊2

e−ik(θ,x)(󳨀→W(y, |u|) − 󳨀→W(y, 1)) ⋅ ∇usc(y)dθ dy

= I󸀠 + I󸀠󸀠.

By the Cauchy–Schwarz inequality and Lemma 3.1, we have

|I󸀠| = 4πk
󵄨󵄨󵄨󵄨󵄨󵄨∫
ℝ3

4π sin(k|x − y|)
|x − y|

󳨀→
W(y, 1) ⋅ ∇y ∫

𝕊2

e−ik(θ,x)usc(y)dθ dy
󵄨󵄨󵄨󵄨󵄨󵄨

≤ 4πk ∫
ℝ3

|
󳨀→
W(y, 1)|
|x − y|

|∇y ∫
𝕊2

e−ik(θ,x)usc(y)dθ|dy

≤ 4πk( ∫
ℝ3

(1 + |y|)2δ |
󳨀→
W(y, 1)|2

|x − y|2
dy)

1/2
( ∫
ℝ3

(1 + |y|)−2δ|∇y ∫
𝕊2

e−ik(θ,x)usc(y)dθ|2 dy)
1/2

≤ Ck
󵄩󵄩󵄩󵄩󵄩󵄩

󳨀→
W( ⋅ , 1)
|x − ⋅ |
󵄩󵄩󵄩󵄩󵄩󵄩L2δ
‖∫
𝕊2

e−ik(θ,x)usc( ⋅ )dθ‖H1−δ
≤
C
k
.

Next, we consider the absolute value of the term I󸀠󸀠. Under Assumption 1.2, we have that

|
󳨀→
W(y, |u|) − 󳨀→W(y, 1)| ≤ C|usc(y)|β̃W (y, s∗),

where β̃( ⋅ , s∗) ∈ Lploc(ℝ
3), with 6 < p ≤ ∞. Now, using ‖∇usc‖∞ ≤ C, we obtain

|I󸀠󸀠| = 4πk
󵄨󵄨󵄨󵄨󵄨󵄨∫
𝕊2

∫
ℝ3

sin(k|x − y|)
|x − y|

e−ik(θ,x)(󳨀→W(y, |u|) − 󳨀→W(y, 1)) ⋅ ∇usc(y)dy dθ
󵄨󵄨󵄨󵄨󵄨󵄨

≤ Ck ∫
𝕊2

∫
ℝ3

1
|x − y|
|usc(y)||β̃W (y, s∗)||∇usc(y)|dy dθ

≤ Ck ∫
𝕊2

‖usc‖L2−δ( ∫
ℝ3

(1 + |y|)2δ |β̃W (y, s
∗)|2

|x − y|2
dy)

1/2
dθ

≤
C
k

uniformly in x ∈ ℝ3 due to (3.7).
Finally, for I3 we once again substitute

V(y, |u|) = V(y, 1) + V(y, |u|) − V(y, 1),
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and we have

I3 = k2 ∫
𝕊2

∫
𝕊2

e−ik(θ−θ󸀠 ,x) ∫
ℝ3

e−ik(θ󸀠 ,y)V(y, 1)usc(y)dy dθ󸀠 dθ
+ k2 ∫
𝕊2

∫
𝕊2

e−ik(θ−θ󸀠 ,x) ∫
ℝ3

e−ik(θ󸀠 ,y)(V(y, |u|) − V(y, 1))usc(y)dy dθ󸀠 dθ
= K1 + K2.

Now, by the Hölder inequality and Lemma 3.1, we have

|K1| ≤ k2
󵄨󵄨󵄨󵄨󵄨󵄨∫
ℝ3

sin(k|x − y|)
k|x − y|

V(y, 1) ∫
𝕊2

e−ik(θ,x)usc(y)dθ dy
󵄨󵄨󵄨󵄨󵄨󵄨

≤ k2 ∫
ℝ3

|V(y, 1)||∫
𝕊2

e−ik(θ,x)usc(y)|dy

≤ k2( ∫
ℝ3

(1 + |y|)2δ|V(y, 1)|2 dy)
1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝕊2

e−ik(θ,x)usc(y)dθ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2−δ

≤
C
k

and

|K2| ≤ Ck ∫
𝕊2

∫
ℝ3

1
|x − y|
|βV (y)||usc(y)|2 dy dθ ≤ Ck ∫

𝕊2

‖usc‖2∞ dθ ≤ C
k

uniformly in x ∈ ℝ3. This finishes the proof of Theorem 1.3.

Remark 3.2. If we assume that 󳨀→W = 0, i.e., we have only zero-order nonlinear perturbations V in the opera-
tor H4, then, under the same conditions for V as in Theorem 1.3, the proof of this theorem shows that the
limit in Saito’s formula holds uniformly in x ∈ ℝ3 and it has the form

lim
k→∞

k2 ∫
𝕊2

∫
𝕊2

e−ik(θ−θ󸀠 ,x)A(k, θ󸀠, θ)dθ󸀠 dθ = 8π2 ∫
ℝ3

V(y, 1)
|x − y|2

dy.

4 Conclusions
The direct and inverse scattering problems for the first- and zero-order quasi-linear perturbations of the
three-dimensional biharmonic operators in the frequency domain with singular coefficients (in the space
coordinate) were considered. It is assumed that the nonlinearities depend on the modulus of the wave and
that they may be complex-valued and singular. The linear case and many well-known (in physics) types of
nonlinearities are included in the considerations. Under some additional regularity conditions for the non-
linearities, the classical Saito’s formula and very important consequences for the inverse scattering problems
are justified for this nonlinear operator of order four.

One could consider many types of data for solving the inverse scattering problem. For our purposes,
we consider the scattering amplitude A(k, θ󸀠, θ) for all angles θ, θ󸀠 and for arbitrary large frequencies k.
Under this limited (with respect to frequency) data, we proved a formula (Saito’s formula) which allows us to
reconstruct analytically and numerically the combination of the nonlinearities.
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Mathematics – MSU, Russia.



M. Harju, J. Kultima and V. Serov, Scattering for quasi-linear biharmonic operator | 393

References
[1] S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 2

(1975), no. 2, 151–218.
[2] G. Fotopoulos, M. Harju and V. Serov, Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger

equation in 2D, Inverse Probl. Imaging 7 (2013), no. 1, 183–197.
[3] F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Lecture Notes in Math. 1991, Springer,

Berlin, 2010.
[4] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Upper Saddle River, 2004.
[5] M. Harju, On the direct and inverse scattering problems for a nonlinear three-dimensional Schrödinger equation,

Ph.D. thesis, University of Oulu, 2010.
[6] M. Harju, J. Kultima, V. Serov and T. Tyni, Two-dimensional inverse scattering for quasi-linear biharmonic operator, Inverse

Probl. Imaging 15 (2021), no. 5, 1015–1033.
[7] L. Päivärinta and V. Serov, Recovery of singularities of a multidimensional scattering potential, SIAM J. Math. Anal. 29

(1998), no. 3, 697–711.
[8] B. Pausader, Scattering for the defocusing beam equation in low dimensions, Indiana Univ. Math. J. 59 (2010), no. 3,

791–822.
[9] V. Serov, An inverse Born approximation for the general nonlinear Schrödinger operator on the line, J. Phys. A 42 (2009),

no. 33, Article ID 332002.
[10] V. Serov, Inverse fixed energy scattering problem for the generalized nonlinear Schrödinger operator, Inverse Problems 28

(2012), no. 2, Article ID 025002.
[11] V. Serov, M. Harju and G. Fotopoulos, Direct and inverse scattering for nonlinear Schrödinger equation in 2D, J. Math. Phys.

53 (2012), no. 12, Article ID 123522.
[12] Z. Q. Sun, An inverse boundary value problem for Schrödinger operators with vector potentials, Trans. Amer. Math. Soc.

338 (1993), no. 2, 953–969.
[13] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2) 125

(1987), no. 1, 153–169.
[14] T. Tyni, Numerical results for Saito’s uniqueness theorem in inverse scattering theory, Inverse Problems 36 (2020), no. 6,

Article ID 065002.
[15] T. Tyni and M. Harju, Inverse backscattering problem for perturbations of biharmonic operator, Inverse Problems 33

(2017), no. 10, Article ID 105002.
[16] T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Probl.

Imaging 12 (2018), no. 1, 205–227.
[17] T. Tyni and V. Serov, Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line,

Inverse Probl. Imaging 13 (2019), no. 1, 159–175.
[18] E. Zeidler, Applied Functional Analysis, Appl. Math. Sci. 109, Springer, New York, 1995.


	Inverse scattering for three-dimensional quasi-linear biharmonic operator
	1 Introduction
	2 Direct scattering problem
	3 Saito's formula
	4 Conclusions


