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Abstract. We study the torsion-free generalized crystallographic groups with indecomposable
holonomy group which is isomorphic to either Cp s or Cp � Cp.

1 Introduction

A classical crystallographic group is a discrete cocompact subgroup of I�Rm�, the
isometry group of Rm. Torsion-free crystallographic groups are called Bieberbach

groups. The present state of the theory of crystallographic groups and a historical
overview, as well as its connections to other branches of mathematics, are described
in [17, 18].

In this paper we consider generalized torsion-free crystallographic groups with
indecomposable holonomy groups isomorphic to either Cp s or Cp � Cp.

It was shown in [7, 8, 14] that the description of the n-dimensional crystallographic
groups for arbitrary n is of wild type, in the sense that it is related to the classical
unsolvable problem of describing the canonical forms of pairs of linear operators on
®nite-dimensional vector spaces.

Using Diederichsen's classi®cation of integral representations of cyclic groups of
prime order (see [6]), Charlap [5] gave a full classi®cation of Bieberbach groups with
cyclic holonomy group G of prime order. Hiss and SzczepaÂnski [13] proved that there
are no Bieberbach groups with non-trivial irreducible holonomy group. Kopcha and
Rudko [14] studied torsion-free crystallographic groups with indecomposable cyclic
holonomy group of order pn, the classi®cation of which for nd 5 also has wild
type.

Cobb [5] constructed an in®nite family of compact ¯at manifolds with ®rst Betti
number zero and holonomy group isomorphic to C2 � C2. In [19, 20, 21] Rossetti
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and Tirao described the torsion-free crystallographic groups whose holonomy groups
are direct sums of indecomposable subgroups of GL�n;Z� �nc 5� and isomorphic to
C2 � C2.

Further interesting results on this topic were obtained in the research of Gupta and
Sidki [9, 10].

We need the following de®nitions and notation for the statement of our results.
Let K be a principal domain, let F be a ®eld containing K and let G be a ®nite

group. Let M be a KG-module of a faithful matrix K-representation G of G and let
FM be a vector space over F in which M is a full lattice. Let M̂ � FM�=M� be the
quotient group of the additive group FM� of FM by the additive group M� of M.
Then FM is an FG-module and M̂ is a KG-module with operations de®ned by

g:�am� � ag�m�; g:�x�M� � g�x� �M;

for g A G, a A F , m A M, x A FM.
Let T : G ! M̂ be a 1-cocycle of G with values in M̂; thus each T�g� is a coset of

the form x�M. We de®ne the group

Crys�G; M; T� � f�g; x� j g A G; x A T�g�g
with the operation

�g; x�:�g 0; x 0� � �gg 0; g 0x� x 0�;
for g; g 0 A G, x A T�g�, x 0 A T�g 0�.

The purpose of this paper is to study the group Crys�G; M; T�, and in particular
to determine when it is torsion-free. We note that if K � Z and F � R then
Crys�G; M; T� is isomorphic to an n-dimensional classical crystallographic group,
where n � rankZ M.

We use the terminology of the theory of group representations. The group
Crys�G; M; T� is called irreducible (resp. indecomposable) if M is an irreducible (resp.
indecomposable) KG-module and the cocycle T is not cohomologous to zero.

A cocycle T : G ! M̂ is called a coboundary if there exists an x A FM such that
T�g� � �gÿ 1�x�M for every g A G. Cocycles T1 : G ! M̂ and T2 : G ! M̂ are
called cohomologous if T1 ÿ T2 is a coboundary.

Let C1�G; M̂�, B1�G; M̂� and H 1�G; M̂� �C1�G; M̂�=B1�G; M̂� be respectively the
group of cocycles, the group of coboundaries and the cohomology group of G with
values in M̂. The group Crys�G; M; T� is an extension of M� by G; the extension
splits if and only if T A B1�G; M̂�. Therefore Crys�G; M; T� splits for all T if and
only if H 1�G; M̂� is trivial.

Throughout the paper, we write Z, Z�p� and Zp respectively for the ring of rational
integers, the localization of Z at the prime p and the ring of p-adic integers.

2 Main results

Using results from [2, 3, 11, 12, 15], we prove the following three theorems. Lemma
12 is also of independent interest.

V. A. Bovdi, P. M. Gudivok and V. P. Rudko76



Theorem 1. Let K be one of the rings Z, Zp, Z�p� and let G GCp s be a cyclic group of

order ps. If sd 3, then the set of K-dimensions of the indecomposable KCp s -modules M
for which there exist torsion-free groups Crys�Cp s ; M; T�, is unbounded.

Theorem 2. Let K be Z�p� or Zp and let G� haiGCp2 . Up to isomorphism, all torsion-

free indecomposable groups Crys�Cp2 ; M; T� are described in terms of the following

indecomposable KCp2 -modules M and cocycles T of Cp2 with values in the groups M̂ �
FM�=M�:

(1) M � Xi � h�aÿ 1�F�ap�;F�a� � �aÿ 1� i�1i and T � Ti, where

F�x� � xpÿ1 � � � � � x� 1; Ti�a� � pÿ2F�a�F�ap� � Xi;

for i � 0; 1; . . . ; pÿ 2;

(2) M � Uj � h��aÿ 1� j�1 �F�a�; �aÿ 1� j�;F�ap��aÿ 1; 1�i, a KCp2 -submodule of

�KCp2��2� � f�x1; x2� j x1; x2 A KCp2g, and T � fj , where

fj�a� � pÿ2F�a�F�ap��1; 0� �Uj;

for p > 2 and j � 1; . . . ; pÿ 2.

The number of these groups Crys�Cp2 ; M; T� is equal to 2pÿ 3.

Corollary 1. There exist at least 2pÿ 3 Bieberbach groups (in the classical sense) with

cyclic indecomposable holonomy group of order p2.

Theorem 3. Let G � hai� hbiGC2 � C2 and let K be one of the rings Z, Z2, Z�2�.
Let F be a ®eld containing K, let M be a KG-module corresponding to the indecom-

posable K-representation G of G, and let f : G! M̂ � FM�=M� be a cocycle. The fol-

lowing table lists the choices of G and f which de®ne, up to isomorphism, all torsion-free
indecomposable groups Crys�G; M; f �.

N: m G f �a� � �x1; . . . ; xm� �M, f �b� � �y1; . . . ; ym� �M tm

1 4n� 1
�nd 1�

Dn xn�1 � 1
2 ; xi � 0 �i0 n� 1�;

y1 � 1
2 ; 2y2 � � � � � 2yn�1 � 0;
y2 � � � � � yn�1 � 1

2 ;
yn�2 � � � � � y4n�1 � 0

2nÿ1

2 4n� 4
�nd 0�

W �
n x2n�3 � 1

2 ; xi � 0 �i0 2n� 3�;
y1 � 0; y2 � 1

2 ; y3 � � � � � y3n�3 � 0;
2y3n�4 � � � � � 2y4n�3 � 0; y4n�4 � 1

2

2n

3 5 D�1 f �a� � �0; 1
2 ; 0; 0; 0�; f �b� � �12 ; 0; 1

2 ;
1
4 ; 0� 1

4 8 W1 f �a� � �0; 0; 0; 0; 1
2 ; 0; 0; 0�; f �b� � �0; 1

2 ; 0;
1
4 ; 0;

1
2 ; 0;

1
2� 1
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Here, m is the degree of the representation G, f is the cocycle, and tm is the number of

torsion-free groups.

3 Preliminary results and Theorem 1

Let K � Z, Z�p� or Zp as above. We point out that in these cases the group H 1�G; M̂�
is ®nite. Denote by Cp n � ha j ap n � 1i the cyclic group of order pn. The following
three lemmas and Corollary 2 are well known and they can be found for example in
[1].

Lemma 1. Let K be one of the rings Z, Zp, Z�p�. For i � 1; 2, let Gi be a ®nite group
and Gi, Mi, Ti be the representation, the module and the cocycle associated with Gi as

in the Introduction. The groups Crys�G1; M1; T1� and Crys�G2; M2; T2� are isomorphic

if and only if there exist a group isomorphism e : G1 ! G2 and a K-module isomorphism

t : M1 !M2 which satisfy the following conditions:

(1) e�g�t � tg in M1, for all g A G1;

(2) the cocycles T2 and T e
1 are cohomologous (here, T e

1 �g� � t 0T1�eÿ1g� for all g A G2,
where t 0 : M̂1 ! M̂2 is the homomorphism induced by t�.

Lemma 2. Suppose that the character of the K-representation G of Cn does not contain

the trivial character as a summand. Then H 1�Cn; M̂� is trivial.

Proof. Since 1 is not an eigenvalue of the operator a, which acts on FM, the oper-
ator aÿ 1 is a unit. This means that T�a� � �aÿ 1�x�M for some x A FM, i.e.
B1�Cn; M̂� � C 1�Cn; M̂�.

Lemma 3. Let G GCp s and M be a projective KG-module. Then H 1�Cp s ; M̂� is trivial.

Proof. Since some direct sum M l � � � lM of copies of M is a free KCp s -module,
it is su½cient to prove the lemma for M � KCps . Let T�a� � x�M where

x � l�1� a� � � � � ap sÿ1� � u1�aÿ 1� A FM;

and where l A F and u1 A FCp s . From the condition �1� a� � � � � ap sÿ1�T�a�HM
it follows that lps A K. Then xÿ lps � u2�aÿ 1�, where u2 A FCps . Therefore T is
a coboundary.

Corollary 2. Suppose that the K-representation G of Cp does not contain the trivial K-

representation as a summand. Then H 1�Cp; M̂� is trivial.

Proof. The K-representation G of Cp is a direct sum G � G1 lG2, where G1 is a sum of
copies of the irreducible K-representation of degree pÿ 1 and G2 is a K-representation
corresponding to a projective KCp-module. The proof follows by applying Lemma 1
to G1 and Lemma 3 to G2.
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For the proof of Theorem 1 we consider certain K-representations of the group
hai � Cp s . Let xt be a primitive ptth root of unity and set xtÿ1 � xp

t for td 1. Put

B0 � f1g; B1 � f1; x1; . . . ; xpÿ2
1 g; Bj � 6

pÿ1

i�0

x i
j Bjÿ1 � j d 2�:

Thus for each tc s the set Bt is a K-basis of the ring Kt � K �xt�, which is a KCp s -
module with action de®ned by a�a� � xta for a A Kt. The set Bt is also an F-basis of
the space FKt for each t.

Let dt be the matrix K-representation of Cp s corresponding to the K-basis Bt of
the module Kt. We note that dt is an irreducible K-representation of Cp s and dp

t �a� �
Ep n dtÿ1�a�, where Ep is the p� p identity matrix. Let

D1 � d
�n�
0 � d

�n�
1 ; D2 � d

�n�
2 � d�n�s

be sums of 2n irreducible K-representations of Cp s , where

d
�n�
i � di � � � � � di|��������{z��������}

n

:

Consider the K-representation D of Cp s de®ned by

D�a� � D1�a� U�a�
0 D2�a�

� �
;

where

U�a� � En nh1i0 Jn nh1i0

En nh1i1 En nh1i1

� �
:

Here, Jn is the Jordan block of order n with entries 1 on the main diagonal and
hoit denotes the matrix with all columns zero except the last one, which consists of
the coordinates of the element o A Kt written in the basis Bt �t � 0; 1�.

Lemma 4. (see [2, 3]). The K-representation D of Cp s is indecomposable.

Lemma 5. Let x A FKt (where t > 0� and suppose that �aÿ 1�x A Kt. Then px A Kt and

all coordinates of the vector px are multiples of the last coordinate.

Proof. The K-basis Bt in Kt is an F-basis in FKt. Consider the coordinates of the
column vectors in FKt and the matrix dt�a� of the operator a in this basis. The lemma
is easily checked successively for t � 1; 2; . . . :

Let B be a K-basis of the K-module MD a¨ording the matrix K-representation D

Torsion-free groups with indecomposable holonomy group 79



of hai � Cps . Denote the ®rst basis element by v. It is easy to see that B is an F-basis
in FMD. We de®ne the function

TD : Cp s !dMD � FM�
D =M�

D ;

by setting TD�a j� � jpÿsv�MD for j � 0; 1; . . . ; ps ÿ 1.

Lemma 6. The function TD is a 1-cocycle of Cp s with values in dMD, and it is not coho-

mologous to the zero cocycle at the element b � ap sÿ1
of order p.

Proof. The ®rst assertion follows from the de®nition of TD. To prove the second
assertion, consider the pth power Dp�a� of D. We note that

Dp�a� � D
p
1 �a� U 0�a�
0 D

p
2 �a�

� �
and D

p
1 �a� � E:

Clearly the ®rst row in U 0�a� has the form

�h1i0; . . . ; h1i0; h1i0; . . . ; h1i0�;

and the row of matrices corresponding to the ®rst of the representations d
p
1 will take

the form of the following matrix:

�h1i1; hx1i1; . . . ; hx
pÿ1
1 i1; h1i1; . . . ; hx

pÿ1
1 i1�:

Subtracting the rows of this matrix from the ®rst row in U 0�a�, we obtain a row in
which all the entries are multiples of p. This transformation of rows in U 0�a� corre-
sponds to the replacement of some basis elements u A B �u0 v� by u 0 � uG v. We
carry out this replacement; let D 0 be the K-representation of Cp s in the new K-basis of
MD. It is easy to see that the change of basis does not change the values of the func-
tion TD.

Let H � hb j b � apsÿ1
i and let D 0H be the restriction of the representation D 0 to H.

Then

D 0H�b� �
d
�m1�
0 �a� U 00�b�

0 d
�m2�
1 �a�

 !
;

where, as shown above, all entries of the ®rst row in U 00�b� are multiples of p. Let
MD �M1 lM2 be the decomposition of MD as a direct sum corresponding to the
representations d

�m1�
0 and d

�m2�
1 .

Suppose that TD is cohomologous to the trivial cocycle at H. Then there exists a
vector x A FMD such that

TD�b� � �bÿ 1�x�MD:
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Let x � x1 � x2 with xi A FMi for i � 1; 2. Since the projection of TD�b� on FM2 is
equal to zero (modulo MD�, the projection of �bÿ 1�x � �bÿ 1�x2 on FM2 is also
equal to zero. From Lemma 5 it follows that px2 A M2. Let l be the coe½cient of the
basis vector v in �bÿ 1�x.

It is easy to see that l is a sum of products of the entries of the ®rst row in U 00�b�
(these entries are multiples of p� on the column which consists of coordinates of the
vector x2. Since px2 A M2 it follows that l A K . Since TD�b� � pÿ1v�MD, we have
l � pÿ1. But pÿ1 B K , and so l B K . This contradiction proves that TD is not coho-
mologous to zero at H. The lemma is proved.

Proof of Theorem 1. Let us consider the group Crys�Cp s ; MD; TD�. If this group has
an element of prime order, then this order can only be p and, moreover, the cocycle
TD must be cohomologous to the zero cocycle at the element b � ap sÿ1

in Cp s . By
Lemma 6 this is impossible. Therefore Crys�Cp s ; MD; TD� is torsion-free. Moreover
this group is indecomposable (see Lemma 4).

4 Theorem 2

Now let hai � Cp2 . We want now to ®nd all groups Crys�Cp2 ; M; T� which are
torsion-free. Put

F�x� � xpÿ1 � xpÿ2 � � � � � x� 1:

There exists a unit y in KCp2 such that

�aÿ 1�pF�ap� � p�aÿ 1�yF�ap�:

For 0c i c pÿ 2, let Xi be the KCp2 -submodule of KCp2 generated by the following
elements:

u � F�a�F�ap�; o � �aÿ 1�F�ap�; v � F�a� � �aÿ 1� i�1:

It is easy to see that

�aÿ 1�u � 0; F�a�o � 0; F�ap�v � u� �aÿ 1� io:

From these equations it follows that the K-representation Gi of the group Cp2 in the
K-basis

u; o; ao; a2o; . . . ; apÿ2o; alv; al�pv; . . . ; al�p�pÿ2�v;

�l � 0; 1; . . . ; pÿ 1� corresponding to the module Xi, has the following form:
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Gi�a� �

0B@ 1 0 h1i0

d1�a� haii1

d2�a�

1CA;
where ai � �x1 ÿ 1� i and i � 0; 1; . . . ; pÿ 2.

Lemma 7. Let H � hbi where b � ap. The KH-module XijH is a direct sum of two

KH-submodules, one of which coincides with Ku.

Proof. Consider the K-submodule X 0i in Xi generated by the following p2ÿ1 elements
of Xi:

V � fv; bv; . . . ; bpÿ2vg; �aÿ 1�V ; . . . ; �aÿ 1�pÿ2
V ; v 0 � �aÿ 1�pÿ1

v� yu;

bv 0; . . . ; bpÿ2v 0; yo1; . . . ; yoi; u� oi�1;oi�2; . . . ;opÿ1;

where oj � �aÿ 1� jF�b� � �aÿ 1� jÿ1o for j � 1; . . . ; pÿ 1.
Clearly Xi is the direct sum of Ku and X 0i . To prove the lemma it is su½cient to

show that X 0i is a KH-module. We have

F�b�v � u� oi�1 A X 0i ;

F�b��aÿ 1�v � oi�2 A X 0i ;

� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
F�b��aÿ 1�pÿiÿ2

v � opÿ1 A X 0i ;

F�b��aÿ 1�pÿrÿ2�jv � pyoj A X 0r ;

for 0c rc pÿ 2, j � 1; . . . ; r and

F�b�v 0 � �aÿ 1�pÿ1F�b�v� pyu � �aÿ 1�p�iF�b� � pyu

� py�aÿ 1�1�iF�b� � pyu � py�oi�1 � u� A X 0i :

These equations show that X 0i is a KH-submodule of Xi.
For i � 0; 1; . . . ; pÿ 2 we introduce the cocycle

Ti : Cp2 ! cXi � FX�i =X�i ; �1�

de®ned by Ti�a� � pÿ2u� Xi.

Lemma 8. For i � 0; 1; . . . ; pÿ 2 the group Crys�Cp2 ; Xi; Ti� is torsion-free.
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Proof. Since Ti�ap� � pÿ1u� Xi 0Xi it follows from Lemma 7 that

��ap ÿ 1�FXi � Xi�V �Fu� Xi� � Xi:

These conditions show that the cocycle Ti is not cohomologous to the zero cocycle at
the element ap. This means that Crys�Cp2 ; Xi; Ti� is torsion-free.

For i � 0; 1; . . . ; pÿ 1 let Yi be the KCp2 -submodule hF�a�; �aÿ 1� ii of KCp2 . The
K-representation G 0i corresponding to Yi has the following form:

G 0i �a� �

0B@ 1 h1i0 0

d1�a� haii1

d2�a�

1CA;
where ai � �x1 ÿ 1� i.

Lemma 9. For each cocycle T : Cp2 ! Ŷi � FY�i =Y�i the group Crys�Cp2 ; Yi; T� has

an element of order p.

Proof. It is easy to see that each cocycle of Cp2 with a value in Ŷi will be cohomolo-
gous to a cocycle T such that T�a� � lpÿ2u� Yi, where l A K, u � F�a�F�b�. Thus
T�ap� � pT�a� � lpÿ1u� Yi, and so to prove the lemma it is su½cient to show that
pÿ1u A �ap ÿ 1�FYi � Yi. It is easy to see that

�apÿ1 � apÿ2 � � � � � a� 1� ÿ �aÿ 1�pÿ1 � po1�a�; �2�

where o1�a� A KCp2 .
Let v1 � �aÿ 1� i. Then from (2) it follows that

�F�ap� ÿ p��aÿ 1�pÿiÿ1v1 � uÿ po1�a�F�ap� ÿ p�aÿ 1�pÿiÿ1v � u� py;

where y A Yi. Since F�ap� ÿ p � �ap ÿ 1�z, where z A KCp2 , we have

pÿ1u�Yi � �ap ÿ 1�pÿ1z�Yi;

which completes the proof of the lemma.
Let p0 2. In the free KCp2 -module

�KCp2��2� � f�x1; x2� j x1; x2 A KCp2g

we consider the KCp2 -submodule

Uj � h��aÿ 1� j�1 �F�a�; �aÿ 1� j�;F�ap��aÿ 1; 1�i;
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for 1c j c pÿ 2. The K-representation of Cp2 corresponding to Uj has the form

G 00j : a 7!

0BBB@
1 0 0 h1i0

1 h1i0 0

d1�a� haji1

d2�a�

1CCCA; �3�

where aj � �x1 ÿ 1� j and j � 1; 2; . . . ; pÿ 2. De®ne the cocycle

fj : Cp2 !cUj � FU�j =U�j

by fj�a� � pÿ2F�a�F�ap��1; 0� �Uj.

Lemma 10. For j � 1; . . . ; pÿ 2 the group Crys�Cp2 ; Uj; fj� is torsion-free.

Proof. Let u1 � F�a�F�ap��1; 0� and u2 � F�a�F�ap��0; 1�. It is easy to see that the
sequence of KCp2 -modules

0! Ku2 ! Uj ! Xj ! 0 �4�

is exact. The cocycle fj induces the cocycle Tj : Cp2 ! cXj de®ned in (1), which is not

equal to the zero cocycle on the group H � hapi by Lemma 8. Therefore fj is also
non-cohomologous to the zero cocycle in H. This means that Crys�Cp2 ; Uj; fj� has no
elements of order p.

We consider one more KCp2 -module, namely the submodule U0 of KCp2 generated
by F�a�. The corresponding K-representation of Cp2 has the form

a 7! 1 h1i0

0 d2�a�
� �

:

Lemma 11. For each cocycle T : Cp2 ! U0 the group Crys�Cp2 ; U0; T� has an element

of order p.

Proof. It is easy to see that any cocycle of Cp2 with values in cU0 � FU�0 =U�0 is
cohomologous to a cocycle T of the form

T�a� � lpÿ2F�a�F�ap� �U0;

with l A K . Replacing a by ap in (2) we have

pÿ1F�a�F�ap� � pÿ1�ap ÿ 1�pÿ1F�a� � o1�ap�F�a�:

Then T�ap� � �aÿ 1�z�U0, where z A FU0, and this proves the lemma.
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Proof of Theorem 2. From the description in [2] of the K-representations of
Cp2 it follows that the indecomposable KCp2 -modules corresponding to the faithful
K-representations of Cp2 whose characters contain the trivial character are the
following:

Xi �i � 0; 1; . . . ; pÿ 2�; Yj � j � 0; 1; . . . ; pÿ 1�;
U0; Uk �k � 1; . . . ; pÿ 2�:

By Lemmas 9 and 11 we are interested only in the modules Xi and Uj. Let us consider
the module Xi where 0c i c pÿ 2. It is easy to see that Lemma 2 can be applied to
the factor module Xi=Kv, where v � F�a�F�ap�. Therefore any cocycle of Cp2 with
the values in cXi will be cohomologous to a cocycle T of the form

T�a� � lpÿ2v� Xi; �5�

with l A K . We claim that if in this equation l1 0 �mod p� then T is cohomologous
to the trivial cocycle. From (2) we have

pÿ1F�a�F�ap� � pÿ1F�ap��aÿ 1� i�1 � pÿ1�ap ÿ 1�pÿ1yi � o1�ap�yi; �6�

where yi � F�a� � �aÿ 1� i�1 A Xi. We will use the equation

F�ap��aÿ 1�p � p�aÿ 1�F�ap�o2;

where o2 is a unit in KCp2 . From (6) it follows that

pÿ1�aÿ 1� i�1F�ap� � pÿ2F�ap��aÿ 1�p�i
oÿ1

2 A �aÿ 1�FXi;

for i � 0; 1; . . . ; pÿ 2. Then from (6) one ®nds that

pÿ1F�a�F�ap� A �aÿ 1�FXi � Xi

for i � 0; 1; . . . ; pÿ 2. Our claim follows.
From the above it follows that H 1�Cp2 ;cXi � is cyclic of order p and that all ele-

ments of this group can be represented by the cocycles T de®ned in (5) with l �
0; 1; . . . ; pÿ 1.

We will show that each non-zero cocycle T de®nes up to isomorphism the group
Crys�Cp2 ; Xi; Ti�.

Let e be an automorphism of the group Cp2 and X e
i be the KCp2 -module Xi twisted

by this automorphism, i.e.

X e
i � Xi; a:x � e�a�x; for x A Xi:
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It is not di½cult to show the existence of an automorphism t of the K-module Xi such
that e�a�t � ta in Xi and t�v� � v, where v � F�a�F�ap�.

Let eÿ1�a� � as, with �s; p� � 1. Since we have aTi�a� � Ti�a� and t 0�v� � v, where
v � v� Xi, we obtain

T e
i �a� � t 0Ti�eÿ1�a�� � sTi�a� � spÿ2v� Xi:

From Lemma 1 it follows that Crys�Cp2 ; Xi; Ti� is isomorphic to Crys�Cp2 ; Xi; T�,
where T�a� � spÿ2v� Xi. We have shown that each group Crys�Cp2 ; Xi; T� with
T 2 0 is isomorphic to Crys�Cp2 ; Xi; Ti� for some i.

Now consider groups of the form Crys�Cp2 ; Uj; T�. First we remark that
H 1�Cp2 ;cYj � is cyclic of order p, for j � 1; . . . ; pÿ 1. The proof of this is similar to
the proof for the group H 1�Cp2 ;cXi �. Since Y0 � KCp2 , we have H 1�Cp2 ;cY0� � 0
(see Lemma 3).

Let u1; u2; . . . ; up2�1 be a K-basis in Uj such that

u1 � F�a�F�ap��1; 0� and u2 � F�a�F�ap��0; 1�;

and for 0c a; b c pÿ 1 let the cocycle Ta;b satisfy

Ta;b�a� � pÿ2�au1 � bu2� �Uj:

We use the exact sequence (4) and the exact sequence

0! Ku1 ! Uj ! Yj ! 0: �7�

This enables us to show that any cocycle T : Cp2 ! Uj is cohomologous to some
cocycle Ta;b with 0c a; b c pÿ 1.

By Lemma 9 and (7), the cocycle T0;b is cohomologous to the zero cocycle at the
element ap of Cp2 and therefore Crys�Cp2 ; Uj; T0;b� has an element of order p.

Now let a0 0. Then a is a unit in K and the map t de®ned by t�x� � ax is an
automorphism of the KCp2 -module Uj. It follows that the cocycle Ta;b �a0 0� can be
replaced by T1;aÿ1b. So it is enough to consider the cocycles T1;b, where b � 0;
1; . . . ; pÿ 1. We will show that Crys�Cp2 ; Uj; T1;b� is isomorphic to Crys�Cp2 ; Uj; fj�
(note that fj � T1;0�.

We replace the basis element u1 by u 01 � u1 � bu2 in Uj. Then

T1;b�a� � pÿ2u 01 �Uj:

Let Y 0j � Uj=Ku 01. Then the K-representation G 000j corresponding to Y 0j is

G 000j : a!

0B@ 1 h1i0 hÿbi0

d1�a� haji1

d2�a�

1CA:
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This representation is equivalent to G 0j . Because of this equivalence we will replace the
basis elements u2; . . . ; up2�1 by u 02; . . . ; u 0

p2�1. Then in the K-basis u 01; u
0
2; . . . ; u 0

p2�1 the

operator a has the same matrix (3) as in the basis u1; u2; . . . ; up2�1. De®ne an auto-
morphism t : Uj ! Uj of the K-module Uj by t�u 0i � � ui for i � 1; . . . ; p2 � 1. We
have ta � at and moreover

t 0T1;b�a� � t 0�pÿ2u 01 �Uj� � pÿ2u1 �Uj � fj�a�:

It follows from Lemma 1 that Crys�Cp2 ; Uj; T1;b� and Crys�Cp2 ; Uj ; fj� are isomor-
phic. So among the groups Crys�Cp2 ; M; T� the ones which can be indecomposable
and torsion-free are isomorphic to those for which the module M and cocycle T were
listed in this theorem. Now Lemmas 8 and 10 complete the proof.

5 Theorem 3

Let G GCp � Cp with generators a; b and let K be one of the rings Z, Zp, Z�p�. In the
case when p � 2 we will give a full description of the indecomposable torsion-free
groups Crys�C2 � C2; M; T�. We will use the classi®cation of the indecomposable K-
representations of C2 � C2 given by Nazarova in [15, 16].

Lemma 12. Let M be the K �Cp � Cp�-submodule of the free K �Cp � Cp�-module
�K �Cp � Cp���2� de®ned as follows:

M � h�F�a�; 0�; �p; 0�; �0;F�b��; �0; p�; �bÿ 1; 1ÿ a�i:

Then the following assertions hold:

(1) M is an indecomposable K �Cp � Cp�-module and dimK�M� � 2p2;

(2) there exists a cocycle T : Cp � Cp ! M̂ � FM�=M� de®ned by

T�a� � �1; 0� �M; T�b� � �0; 1� �M;

(3) the group Crys�Cp � Cp; M; T� is torsion-free.

Proof. (1) Let Zp�K=pK and regard Zp as a K �Cp�Cp�-module with Cp�Cp acting
trivially. Consider the projective resolution

� � � ! �K �Cp � Cp���3� !t1 �K �Cp � Cp�� !t0
Zp ! 0 �8�

of Zp. It is easy to see that ker�t0� � haÿ 1; bÿ 1; pi, and

ker�t1� � h�F�a�; 0; 0�; �0;F�b�; 0�;
�bÿ 1; 1ÿ a; 0�; �p; 0; 1ÿ a�; �0; p; 1ÿ b�i:
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The K �Cp � Cp�-modules ker�t0� and ker�t1� are indecomposable. Each x A ker�t1�
has the form

x � �u1F�a��u3�bÿ1��pu4; u2F�b��u3�1ÿa��pu5; u4�1ÿa��u5�1ÿb��; �9�

with ui A K �Cp � Cp� for i � 1; . . . ; 5. We map x to the element

�u1F�a� � u3�bÿ 1� � pu4; u2F�b� � u3�1ÿ a� � pu5�

of M. It is easy to check that this de®nes an isomorphism of the K �Cp�Cp�-modules
ker�t1� and M. Thus M is an indecomposable K �Cp � Cp�-module. Since dimK�T0� �
p2, we have

dimK�M� � dimK�ker�t1�� � dimK�K �Cp � Cp���3� ÿ dimK�ker�t0�� � 2p2:

(2) De®ne T : Cp � Cp ! M̂ as follows:

T�ai� � �1� a� � � � � aiÿ1; 0� �M;

T�b j� � �0; 1� b� � � � � b jÿ1� �M;

T�aib j� � aiT�b j� � T�ai� �M; T�1� �M;

for 0 < i; j c pÿ 2. It is easy to see that F�a�T�a�HM, F�b�T�b�HM and
�aÿ 1�T�b� ÿ �bÿ 1�T�b�HM. It follows that T is a cocycle of Cp � Cp with values
in M̂ � FM�=M�.

(3) It is su½cient to show that T is not cohomologous to the zero cocycle at every
non-trivial element g of Cp � Cp. Let g � aib j, where 0 < i; j c pÿ 1. Suppose that
there exists z A FM such that

T�g� � �gÿ 1�z�M: �10�

From the de®nition of T and from (10) it follows that

�1� a� � � � � aiÿ1; ai�1� b� � � � � b jÿ1�� � �gÿ 1�z� x;

for some x A M. Multiplying this equation by F�a�F�b� taking into account that

F�a�F�b�M � pF�a�F�b��K ;K�; and F�a�F�b��gÿ 1� � 0

we conclude that �i; j� A �pK ; pK�, which is impossible since 0 < i; j c pÿ 1. This
contradicts the assumption that T is cohomologous to the zero cocycle at g (see
(10)).

Similarly, we may show that T is not cohomologous to the zero cocycle at the
remaining non-trivial elements of Cp � Cp. Thus Crys�Cp � Cp; M; f � is torsion-free.
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Now let p � 2, let G � hai� hbiGC2 � C2 and let K be one of the rings Z, Z2,
Z�2�. We will study those groups Crys�G; M; T� which are torsion-free.

The group G has the following irreducible K-representations:

w0 : a 7! 1; b 7! 1; w1 : a 7! ÿ1; b 7! 1;

w2 : a 7! ÿ1; b 7! ÿ1; w3 : a 7! 1; b 7! ÿ1:

Let H � hhi be a subgroup of G of order 2. The indecomposable K-representations
of H, up to equivalence, are the following:

g0 : h 7! 1; g1 : h 7! ÿ1; g2 : h! 1 1

0 ÿ1

� �
: �11�

Let G be a K-representation of G and GjH its restriction to H. Let M be a KG-module
corresponding to the K-representation G and T : G ! M̂ be an arbitrary cocycle of
G with values in M̂ � FM�=M� (where F is a ®eld containing K ). The following
lemma gives necessary conditions for Crys�G; M; T� to be torsion-free.

Lemma 13. If Crys�G; M; T� is torsion-free then for each non-trivial subgroup H of

order 2, the trivial representation g0 is contained in the decomposition of GjH as a direct

sum of indecomposable K-representations of H.

Indirect proof. Assume that H is a subgroup of order 2 in G such that GjH does not
have g0 as a direct summand. Then it follows from Lemmas 2 and 3 that any cocycle
T : G ! M̂ will be cohomologous in H to the zero cocycle, and this implies that
Crys�G; M; T� has elements of order 2.

We make some remarks about the K-representations of G GC2 � C2. Let G act
trivially on K and consider the projective resolution

� � � ! �KG��n� !nn �KG��nÿ1� ! � � �
� � � !n3 �KG��2� !n2 �KG� !n1

K ! 0 �12�

of K. Each nn is a homomorphism of the KG-modules and ker�nn� is an indecom-
posable KG-module with

dimK�ker�nn�� � 2n� 1:

Let Gn be the K-representation of G corresponding to some K-basis in ker�nn�, and

let G�n be the contragradient K-representation of Gn, that is, G�n �g� � GT�gÿ1� for all
g A G, where the superscript T denotes transposition of matrices.

Lemma 14. (see [16, 22]). Each indecomposable K-representation of G GC2 � C2
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of odd degree is equivalent to just one of the following: wi, Gn nK wi or G�n nK wi, for

some i A f0; 1; 2; 3g and nd 1.

Let p � 2 in (8) and let us consider the projective resolution for ker�t0� �
haÿ 1; bÿ 1; 2i:

� � � ! �KG��tn� !tn �KG��tnÿ1� ! � � �
� � � !t3 �KG��t2� !t2 �KG��t1� !t1

ker�t0� ! 0: �13�

It is easy to show that in (13) we have tn � 2n� 1 and

dimK�ker�tn�� � 4n� 4;

where nd 0. Moreover all of the KG-modules ker�nn� are indecomposable. If we take
the tensor product over K of the exact sequence (12) and the KG-module ker�t0� and
compare the result with the sequence (13), then we obtain easily the isomorphism

ker�t0�nK ker�nn�G ker�tn�lPn;

where Pn is a projective KG-module.

Lemma 15. Let Wn be the K-representation of G � hai� hbiGC2 � C2 correspond-

ing to the module ker�tn� where nd 0. This representation has the following form:

W0 : a 7!
1 1 0 1

ÿ1 0 0

1 0

ÿ1

0BBB@
1CCCA; b 7!

1 1 1 0

ÿ1 0 0

ÿ1 0

1

0BBB@
1CCCA;

Wn : a 7!

D 0 0 0 0

En 0 0 Vn

ÿEn Vn 0

En�1 0

ÿEn�1

0BBBBB@

1CCCCCA; b 7!

D 0 0 S 0

En 0 Vn
0 0

ÿEn 0 V 0n
ÿEn�1 0

En�1

0BBBBB@

1CCCCCA;

where

D � 1 1

0 ÿ1

� �
; S � 0 � � � 0 1 1

0 � � � 0 0 0

� �
;

and Vn � �0 En�, V 0n � �En 0� are matrices with n rows and n� 1 columns for nd 1.
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Proof. The proof reduces to the determination of a K-basis of ker�tn�, and this is not
di½cult to construct by induction on n.

Lemma 16. Each faithful indecomposable K-representation of G � hai� hbi which

satis®es the necessary condition for the existence of a torsion-free group Crys�G; M; f �
is one of the following:

Dn �nd 1�; D�n �nd 1�; Wn �nd 0�; W �
n �nd 0�:

Here

Dn�a� �

En 0 0 En 0

1 0 0 0

ÿEn 0 En

ÿEn 0

En

0BBBBB@

1CCCCCA; Dn�b� �

1 0 0 0 0

En 0 0 En

ÿEn En 0

En 0

ÿEn

0BBBBB@

1CCCCCA;

and D�n and W �
n are K-representations of G contragradient to Dn and Wn, so that

D�n�g� � DT
n �g� and W �

n �g� �W T
n �g� for all g A G.

Proof. All K-representations listed above satisfy the necessary condition for the exis-
tence of a torsion-free group Crys�G; M; f �. The analysis of all representations of odd
degree (see Lemma 14) shows that among the representations Gn n wi the necessary
condition is satis®ed only by D� which is equivalent to G2n �n � 1; 2; . . .�. Besides the
representations Wn and W �

n , the group G has a parameterized series of representations
whose degrees are divisible by 4. In this series the following pairs of matrices corre-
spond to the pair of generating elements of G:

En 0 0 En

ÿEn En 0

En 0

ÿEn

0BBB@
1CCCA;

En 0 F 0

ÿEn 0 En

ÿEn 0

En

0BBB@
1CCCA;

where the matrix F over K has Frobenius (i.e. rational) canonical normal form inde-
composable modulo 2K . Clearly the representations in this series do not satisfy the
necessary condition. Consider the following pair of matrices:

1 0 0 0 0 0

En 0 0 0 En

ÿEn En 0 0

En 0 0

1 0

ÿEn

0BBBBBBB@

1CCCCCCCA;
En�1 0 En�1 0

ÿEn 0 En

ÿEn�1 0

En

0BBB@
1CCCA:
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These matrices de®ne indecomposable K-representations of G of degree congruent to
2 modulo 4 and obviously these representations do not satisfy the necessary condition.
We can obtain the remaining representations of degree 4nÿ 2 either by the described
process of tensor multiplication by irreducible K-representations or by taking contra-
gradient representations.

As a result we get representations which do not satisfy the necessary condition
for the existence of a torsion-free group Crys�G; M; f �. Thus we have considered all
indecomposable K-representations of G. The lemma is proved.

Proof of Theorem 3. We can take the module M of a K-representation G of G of
degree m to be the K-module of m-dimensional columns with entries from K. Then
FM is the space of m-dimensional columns over F and M̂ � FM�=M� is the group of
m-dimensional columns with entries from F̂ � F�=K�. Let f : G ! M̂ be a cocycle.
The value f �g� of f at g A G is an m-dimensional column over F̂ . We note that if
g; h A G then the product g: f �h� is the ordinary product of the matrices G�g� and f �h�.

If we consider the coordinates of the vector f �g� as elements of F, then the ele-
ments of the ring K will be replaced by 0.

Let G be any of the representations of G listed in Lemma 16, let M be the module
of this representation and let H � hhi be a non-trivial subgroup of G. There exists
only one basis vector v in M such that M is the direct sum M � KvlM 0 of the KH-
module Kv and the KH-module M 0 generated by the rest of the basis vectors of M. In
addition, hv � v and a K-representation G 0 of H corresponding to the module M 0 is
a sum of representations of type g1 and g2 (see (11)). This allows us to replace the
cocycle f by a cohomologous cocycle f1 in such a way that the projection f1j bM 0 will
be equal to zero for the element h (see Lemmas 2, 3).

The coordinate xv of the vector f �h� corresponding to the basis vector v will be
called the special component of the vector f �h�. From �1� h� f �h� � 0, it follows that
2xv � 0 (in the group F̂ ). For any z A M̂ the special component of �hÿ 1�z� f �h�
is always equal to xv. If xv � 1

2, then the cocycle f is not cohomologous to the zero
cocycle at h.

These remarks justify the following plan for the construction of cocycles of the
representations G from Lemma 16. The form of the representation G de®nes the special
components of the vectors f �a� and f �b� (where a and b are the generators of G ). We
choose f �a� such that we can deduce that the special component is 1

2 and all other
components are zero. The possible forms of the components of the vector f �b� follow
from the following conditions:

�1� b� f �b� � 0; �14�
�aÿ 1� f �b� � �bÿ 1� f �a�: �15�

We will carry out the following operations on the vector f �b�: replace f �b� by the
vector

�bÿ 1�z� f �b�; �16�
where z A M̂ and �aÿ 1�z � 0.
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We discard all those forms of f �b� with a zero special component. For a vector
f �b� whose special component equals 1

2, we ®nd that

f �ab� � af �b� � f �a� �17�

and we examine the solvability of the following equation

�abÿ 1�z� f �ab� � 0 �18�

with z A M̂. The group Crys�G; M; f � is torsion-free if and only if the equation (17)
has no solution.

We consider the following seven cases:

Case 1. Let G � Dn. The special components are the �n� 1�th entry in f �a� and
the ®rst one in f �b�. Set the �n� 1�th coordinate of f �a� to 1

2 and let all the rest
be 0. Let

f T�b� � �y;Y1;Y2;Y3;Y4�; �19�

where y A F̂ , Yi A F̂ �n� and i � 1; 2; 3; 4.
Using the operation (16) we can replace Y2 by the zero vector. From (15) it follows

that Y3 � Y4 � 0, and from (14), it follows that 2y � 0 and 2Y1 � 0. Let y � 1
2, Y1 �

�v1; v2; . . . ; vn�. Using (17), it is easy to transform (18) to a linear system of equations
(over F̂ ) with the �n� 1� � n-matrix

1 0 � � � 0 0

ÿ1 1 � � � 0 0

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
0 0 � � � ÿ1 1

0 0 � � � 0 ÿ1

0BBBBBBB@

1CCCCCCCA
and coe½cients 1

2 ; v1; . . . ; vnÿ1; vn � 1
2. This system is solvable if and only if

v1 � � � � � vnÿ1 � vn � 0.

Case 2. Let G � D�n. The matrices of the K-representation are the transposes of
the matrices of Dn. The special components of f �a� and f �b� are the same as in Case
1. Let us assume that f �a� and f �b� are chosen at ®rst in the same way as in the case
of G � Dn (see (19)). Condition (14) and operation (16) transform the vector f �b�
to the following form:

f T�b� � �y; 0;ÿ2Y3;Y3; 0�:
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Let Y3 � �v1; . . . ; vnÿ1; vn�. It follows from (15) that if nd 2 then

yÿ 2v1 � 0; 2v2 � � � � � 2vn � 0;

2v1 � 0; . . . ; 2vnÿ1 � 0; 2vn � 1
2 ;

and, if n � 1, then yÿ 2v1 � 0, 2v1 � 1
2.

If n > 1 and y � 1
2, then (19) leads to a contradiction. If n � 1 and y � 1

2, then
v1 � 1

4.
Thus if n > 1 and f is a cocycle then the special component of the vector f �b� is

equal to zero. Then the cocycle f is cohomologous to the zero cocycle in the element
b A G. This means that Crys�G; M; f � cannot be torsion-free if M corresponds to the
representation G � D�n where n > 1.

Let n � 1. Then

f �a� � �0; 1
2 ; 0; 0; 0�; f �b� � �12 ; 0; 1

2 ;
1
4 ; 0�; f �ab� � �12 ; 0; 1

2 ;
1
4 ;

1
2�:

It is easy to check that (18) is unsolvable.

Case 3. Let G �W �
n �n > 0�. The special components are the �2n� 3�rd of f �a� and

the last of f �b�. Let the special component of f �a� be equal to 1
2, and let all the rest be

zero.
Let f T�b� � �Y0;Y1;Y2;Y3;Y4�, where Y0 A F̂ �2�, Y1;Y2 A F̂ �n�, Y3;Y4 A F̂ �n�1�.

Operation (16) allows us to replace Y3 by the zero vector. It follows from (14) that
Y1 � 0. Condition (15) shows that Y2 � 0, Y0 � �0; y� �y A F̂ ; 2y � 0� and 2Y4 � 0.
Consequently

f T �b� � �0; y; 0; . . . ; 0; v1; . . . ; vn;
1
2�:

The special component of f �ab� is the second coordinate which, according to (17),
equals y. Therefore y � 1

2 and for any v1; . . . ; vn �2v1 � 2v2 � � � � � 2vn � 0� the group
Crys�G; M; f � is torsion-free.

Case 4. Let G �W �
0 . In this case it is easy to see that the cocycle f with

f �a� � �0; 0; 1
2 ; 0�; f �b� � �0; 1

2 ; 0;
1
2�

determines a torsion-free group Crys�G; M; f �.

Case 5. Let G �Wn �n > 1�. We take the vectors f �a� and f �b� in the same fashion
as in Case 3. Condition (14) shows that all components of the vector Y4, except the
last, are zero. Then condition (15) leads to a contradiction.

We obtain a contradiction by setting the special component in f �a� equal to 1
2.

Consequently, for G �Wn with n > 1, any cocycle f is cohomologous to the zero
cocycle at the generator a of G, and so Crys�G; M; T� is not torsion-free in this case.

V. A. Bovdi, P. M. Gudivok and V. P. Rudko94



Case 6. Let G �W1. For the cocycle f with

f �a� � �0; 0; 0; 0; 1
2 ; 0; 0; 0�; f �b� � �0; 1

2 ; 0;
1
4 ; 0;

1
2 ; 0;

1
2�;

the special components of the vector f �a� (the ®fth one) and f �b� (the last one), and
f �ab� (the second one) are all equal to 1

2. The cocycle f determines a torsion-free group
Crys�G; M; f � (see also Lemma 12).

Case 7. Let G �W0. The special components are the third for f �a� and the fourth for
f �b�. Let us assume that they are equal to 1

2. Then there exists only one cocycle

f �a� � �0; 0; 1
2 ; 0�; f �b� � �0; 0; 0; 1

2�:

Hence f �ab� � �12 ; 0; 1
2 ;

1
2� and the special component (the second one) for f �ab� is

equal to zero. The cocycle f is cohomologous to zero at the element ab and
Crys�G; M; f � has elements of order 2.

It follows from Lemma 16 that all K-representations G of G for which there are
torsion-free groups Crys�G; M; f � have been enumerated. Consequently Theorem 3
is proved.
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