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Abstract. We study the torsion-free generalized crystallographic groups with indecomposable
holonomy group which is isomorphic to either C,s or C, x C,,.

1 Introduction

A classical crystallographic group is a discrete cocompact subgroup of I(R™), the
isometry group of IR™. Torsion-free crystallographic groups are called Bieberbach
groups. The present state of the theory of crystallographic groups and a historical
overview, as well as its connections to other branches of mathematics, are described
in [17, 18].

In this paper we consider generalized torsion-free crystallographic groups with
indecomposable holonomy groups isomorphic to either C,s or C, x C,,.

It was shown in [7, 8, 14] that the description of the n-dimensional crystallographic
groups for arbitrary n is of wild type, in the sense that it is related to the classical
unsolvable problem of describing the canonical forms of pairs of linear operators on
finite-dimensional vector spaces.

Using Diederichsen’s classification of integral representations of cyclic groups of
prime order (see [6]), Charlap [5] gave a full classification of Bieberbach groups with
cyclic holonomy group G of prime order. Hiss and Szczepanski [13] proved that there
are no Bieberbach groups with non-trivial irreducible holonomy group. Kopcha and
Rudko [14] studied torsion-free crystallographic groups with indecomposable cyclic
holonomy group of order p”, the classification of which for n > 5 also has wild
type.

Cobb [5] constructed an infinite family of compact flat manifolds with first Betti
number zero and holonomy group isomorphic to C; x C,. In [19, 20, 21] Rossetti
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and Tirao described the torsion-free crystallographic groups whose holonomy groups
are direct sums of indecomposable subgroups of GL(n, Z) (n < 5) and isomorphic to
C2 X Cz.

Further interesting results on this topic were obtained in the research of Gupta and
Sidki [9, 10].

We need the following definitions and notation for the statement of our results.

Let K be a principal domain, let F be a field containing K and let G be a finite
group. Let M be a KG-module of a faithful matrix K-representation I" of G and let
FM be a vector space over F in which M is a full lattice. Let M = FM*/M™* be the
quotient group of the additive group FM™ of FM by the additive group M+ of M.
Then FM is an FG-module and M is a KG-module with operations defined by

g.(om) = ag(m), g.(x+ M) =g(x)+ M,

forgeG,oceF,AmeM,xeFM. R
Let T: G — M be a l-cocycle of G with values in M; thus each T'(g) is a coset of
the form x + M. We define the group

Crys(G; M;T) ={(9,x)|g€ G,xe T(g)}
with the operation
(9,%).(¢",x") = (99", 9'x + x"),

forg,g' € G, xe T(g), x' € T(g').

The purpose of this paper is to study the group €rys(G; M; T'), and in particular
to determine when it is torsion-free. We note that if K =7 and F =R then
Crys(G; M; T) is isomorphic to an n-dimensional classical crystallographic group,
where n = ranky M.

We use the terminology of the theory of group representations. The group
Crys(G; M; T) is called irreducible (resp. indecomposable) if M is an irreducible (resp.
indecomposable) KG-module and the cocycle T is not cohomologous to zero.

A cocycle T : G — M is called a coboundary if there exists an x € FM such that
T(g9) = (g9 — 1)x+ M for every ge G. Cocycles T; : G — M and T, : G — M are
called cohomologous if T} — T, is a coboundary.

Let C'(G, M), B'(G,M) and H' (G, M) = C" (G, M)/B'(G, M) be respectively the
group of cocycles, the group of coboundaries and the cohomology group of G with
values in M. The group €rys(G; M; T) is an extension of M* by G; the extension
splits if and only if T e B'(G, M ). Therefore Crys(G; M; T) splits for all T if and
only if H'(G, M) is trivial.

Throughout the paper, we write Z, Z,,) and Z, respectively for the ring of rational
integers, the localization of Z at the prime p and the ring of p-adic integers.

2 Main results

Using results from [2, 3, 11, 12, 15], we prove the following three theorems. Lemma
12 is also of independent interest.
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Theorem 1. Let K be one of the rings Z, Z,, Z ) and let G = Cps be a cyclic group of
order p*. If s = 3, then the set of K-dimensions of the zndecomposable KC,s-modules M
Sfor which there exist torsion-free groups €s(C,s; M; T), is unbounded.

Theorem 2. Let K be Z ) or Z, and let G = {ay = C,. Up to isomorphism, all torsion-
Jree indecomposable groups €xys(Cy2; M; T) are described in terms of the following
indecomposable KC,»-modules M and cocycles T of C,> with values in the groups M =
FM~*/M*:

(1) M = X; = {(a—1)D(a?),D(a) + (a—1)""> and T = T, where
O(x)=x""1+- +x+1, Tia)=p’0(a)®(a’) + X,

ori=0,1,...,p—2;
Je p

2) M = U =<{((a—1)""" + ®(a), (a—1)7),®(a’)(a—1,1)), a KC,2-submodule of
(KC, 2) = {(x1,x2) | x1,x2 € KC}}, and T = f;, where

fila) = p~?@(a)@(a’)(1,0) + U

forp>2andj=1,...,p—2.
The number of these groups €xys(C,2; M; T) is equal to 2p — 3.

Corollary 1. There exist at least 2p — 3 Bieberbach groups (in the classical sense) with
cyclic indecomposable holonomy group of order p>.

Theorem 3. Let G = {ay x {b) = C, x C; and let K be one of the rings Z, L, Z).
Let F be a field containing K, let M be a KG-module corresponding to the indecom-
posable K-representation T of G, and let [ : G — M = FM*/M™ be a cocycle. The fol-
lowing table lists the choices of T and f which define, up to isomorphism, all torsion-free
indecomposable groups Crys(G; M; ).

N: m T fla)=(x1,...,xm) + M, f(b)=(y1,...,ym) + M -
1 4n + 1 A, x,,“:%, xi=0(G{#n+1), on-1
(n=1) yi=3, 2)’2* - =2yu11 =0,
)2 2+ +J’n+l_%7
Va2 =" = Yanp1 =0
2 dn+4 | W} x2,1+3:%, xi=0 (i #2n+3), 2"
(n=0) =0, ;=1 yi==yu3=0,
2Vinia = =2an13 =0, Yansa =3
3 5 Ay f(a) =(0,1,0,0,0), f(b) =(3,0,5,5,0) 1
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Here, m is the degree of the representation T, f is the cocycle, and t,, is the number of
torsion-fiee groups.

3 Preliminary results and Theorem 1

Let K = Z, Z,,) or Z, as above. We point out that in these cases the group H (G, M)
is finite. Denote by C,» = {a|a”" = 1) the cyclic group of order p". The following
three lemmas and Corollary 2 are well known and they can be found for example in

[1].

Lemma 1. Let K be one of the rings Z, Z,, Z,). For i = 1,2, let G; be a finite group
and T;, M;, T; be the representation, the module and the cocycle associated with G; as
in the Introduction. The groups Crys(Gy; My; Th) and Crys(Gy; Mo; Ty) are isomorphic
if and only if there exist a group isomorphism ¢ : G — G, and a K-module isomorphism
T: My — M, which satisfy the following conditions:

(1) e(g)t = g in My, for all g € Gy;

(2) the cocycles T and Ty are cohomologous (here, Ti*(g) = v'Ty (e71g) for all g € Gy,
where ' : My — M, is the homomorphism induced by 7).

Lemma 2. Suppose that the character of the K-representation T of C, does not contain
the trivial character as a summand. Then H'(C,, M) is trivial.

Proof. Since 1 is not an eigenvalue of the operator «, which acts on FM, the oper-
ator @ — 1 is a unit. This means that 7'(a) = (a — 1)x + M for some x € FM, ie.
B (C,, M) = C'(C,, M).

Lemma 3. Let G = Cys and M be a projective KG-module. Then H'(Cps, M) is trivial.

Proof. Since some direct sum M @ --- @ M of copies of M is a free KC,;-module,
it is sufficient to prove the lemma for M = KC,. Let T(a) = x + M where

x=Al+a+--+a" H+u(a—1)eFM,

and where A € F and u; € FC,:. From the condition (1 +a+ -+ +a” ")T(a) = M
it follows that Ap* € K. Then x — Ap* = uy(a — 1), where u, € FC,:. Therefore T is
a coboundary.

Corollary 2. Suppose that the K-representation I" of C,, does not contain the trivial K-
representation as a summand. Then H'(C,, M) is trivial.

Proof. The K-representation I' of C, is a direct sum I' = I'} @ I3, where I' is a sum of
copies of the irreducible K-representation of degree p — 1 and I'; is a K-representation
corresponding to a projective KC,-module. The proof follows by applying Lemma 1
to I'y and Lemma 3 to I>.
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For the proof of Theorem 1 we consider certain K-representations of the group
{ay = Cps. Let &, be a primitive p’th root of unity and set £, | = & for # > 1. Put

=1
30:{1}7 Bl :{17517"'7611)_2}7 B]: U 5;3]71 (]22)
i=0

Thus for each 7 < s the set B, is a K-basis of the ring K; = K[¢,], which is a KC,:-
module with action defined by a(o) = &;a for a € K. The set B, is also an F-basis of
the space FK, for each .

Let J, be the matrix K-representation of C,s corresponding to the K-basis B, of
the module K;. We note that o, is an irreducible K-representation of Cps and 07 (a) =
E, ®6,-1(a), where E, is the p x p identity matrix. Let

Ay =0+ Ay =6l 4o
be sums of 2n irreducible K-representations of C,s, where

oM =54 45
—_——

n

Consider the K-representation A of C,s defined by

- (40 1),

where

U(a)— (En®<1>() Jn®<1>0>
- En®<1>1 En®<1>1 .

Here, J, is the Jordan block of order n with entries 1 on the main diagonal and
{w), denotes the matrix with all columns zero except the last one, which consists of
the coordinates of the element w € K, written in the basis B, (t =0, 1).

Lemma 4. (see [2, 3]). The K-representation A of C,s is indecomposable.

Lemma 5. Let x € FK,; (where t > 0) and suppose that (a — 1)x € K. Then px € K, and
all coordinates of the vector px are multiples of the last coordinate.

Proof. The K-basis B, in K, is an F-basis in FK,. Consider the coordinates of the

column vectors in FK; and the matrix J,(a) of the operator « in this basis. The lemma
is easily checked successively for 1 =1,2,. ...

Let B be a K-basis of the K-module M, affording the matrix K-representation A
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of {a) = C,s. Denote the first basis element by v. It is easy to see that B is an F-basis
in FMx. We define the function

T : Cps — My = FM; /M,
by setting Ta(a’) = jp v+ My for j=0,1,...,p* — 1.

Lemma 6. The function T is a 1-cocycle of Cp,s with values in M\A, and it is not coho-
s—1
mologous to the zero cocycle at the element b = a” ~ of order p.

Proof. The first assertion follows from the definition of T. To prove the second
assertion, consider the pth power A?(a) of A. We note that

v ((Alla) U'(a) _
A(a)_( 10 Ag(a)) and Af(a)=E.

Clearly the first row in U’(a) has the form

(<1>07"'7<1>07<1>07"'7<1>0)7

and the row of matrices corresponding to the first of the representations ] will take
the form of the following matrix:

(U1, CE D o, KEPTI L Dy, EPT)).

Subtracting the rows of this matrix from the first row in U’(a), we obtain a row in
which all the entries are multiples of p. This transformation of rows in U’(a) corre-
sponds to the replacement of some basis elements u € B (u # v) by u’' = u + v. We
carry out this replacement; let A’ be the K-representation of C,s in the new K-basis of
M. 1t is easy to see that the change of basis does not change the values of the func-
tion Ty.

Let H=<{b|b= a?""y and let A}, be the restriction of the representation A’ to H.
Then

s (0 (@) U (b)
AH(b)_< 0 6&’“”(@)’

where, as shown above, all entries of the first row in U”(b) are multiples of p. Let
My = My ® M, be the decomposition of M, as a direct sum corresponding to the
representations (5(()"”) and 5%'”2).

Suppose that T} is cohomologous to the trivial cocycle at H. Then there exists a
vector x € FM, such that

TA(b) = (b — 1)X+ MA.
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Let x = x; + x with x; € FM; for i = 1,2. Since the projection of TA(b) on FM, is
equal to zero (modulo M,), the projection of (b — 1)x = (b — 1)x2 on FM, is also
equal to zero. From Lemma 5 it follows that px, € M>. Let A be the coefficient of the
basis vector v in (b — 1)x.

It is easy to see that A is a sum of products of the entries of the first row in U”(b)
(these entries are multiples of p) on the column which consists of coordinates of the
vector x,. Since px, € M, it follows that 4 € K. Since Ta(b) = p~'v + My, we have
J=p'.But p~! ¢ K, and so A ¢ K. This contradiction proves that T, is not coho-
mologous to zero at H. The lemma is proved.

Proof of Theorem 1. Let us consider the group €rys(Cps; Ma; Ta). If this group has
an element of prime order, then this order can only be p and, moreover, the cocycle
T must be cohomologous to the zero cocycle at the element b = a?” in Cys. By
Lemma 6 this is impossible. Therefore Crys(C,s; Ma; Ta) is torsion-free. Moreover
this group is indecomposable (see Lemma 4).

4 Theorem 2

Now let <a) = C,.. We want now to find all groups Crys(C,2; M; T) which are
torsion-free. Put

O(x)=x"" 422+ x+ 1.
There exists a unit 6 in KC,> such that
(a—1)P®(a?) = p(a — 1)0D(a?).

For 0 <i < p— 2, let X; be the KC,.-submodule of KC, generated by the following
elements:

u=0a)da’), w=(a-1)da"), v==a) +@—1)""
It is easy to see that
(a—Du=0, ®@)w=0, @ )v=u+(a—1)o.

From these equations it follows that the K-representation I; of the group C,. in the
K-basis

u; ,aw, aza), .. ,al’*zw; alu,a[+Pl;’ L ,alﬂ’("’z)v,

(I=0,1,..., p—1) corresponding to the module Xj;, has the following form:
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L0 (1)
Ii(a) = d1(a) <aiyy |,
52 (d)

Whereoc,-:(fl—l)iandi:O,l,...,p—Z.

Lemma 7. Let H = {b) where b = a?. The KH-module X;|, is a direct sum of two
KH-submodules, one of which coincides with Ku.

Proof. Consider the K-submodule X/ in X; generated by the following p* — 1 elements
of X;:

V={v,bv,....b"" %}, (a—1)V,....(a—= 1"V, v =(a—1)""v+0u,
bo',....b""2' O, ..., 00, U+ 1,00, .01,
where w; = (a — 1)’®(h) = (a— 1) wfor j=1,....,p— 1.

Clearly X; is the direct sum of Ku and X;. To prove the lemma it is sufficient to
show that X/ is a KH-module. We have

D(h)v =u+ oy € X/,
®(b)(a— 1) oy  €X],

Ob) -1 =w, eX],

®(b)(a—1)"""y =pho;, €X],
forO0<r<p-2,j=1,...,rand
Qb)Y = (a— 1) D(b)v + pOu = (a — 1)"T'®(b) + pbu
= pO(a — 1) (D) + pOu = pO(w;y, + u) € X/

These equations show that X is a KH-submodule of X;.
Fori=0,1,..., p — 2 we introduce the cocycle

Ti: Cp — X; = FX )X/, (1)
defined by T;(a) = p~2u + X;.

Lemma 8. For i =0,1,..., p — 2 the group Crys(C,»; X;; T;) is torsion-free.
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Proof. Since Ti(a”) = p~'u+ X; # X; it follows from Lemma 7 that
((a” = DFX; + X;) 0 (Fu+ X;) = X;.

These conditions show that the cocycle 7; is not cohomologous to the zero cocycle at
the element a”. This means that €tys(C); Xj; T;) is torsion-free.

Fori=0,1,...,p—1let ¥; be the KC,.-submodule {®(a), (a — )" of KC,>. The
K-representation I'/ corresponding to Y; has the following form:

L <)y 0
Ti(a) = JIGORECHIN
d2(a)
where o; = (£, — 1)".

Lemma 9. For each cocycle T : C,p — Y= FY; )Y the group Crys(C,o; Y5 T) has
an element of order p.

Proof. It is easy to see that each cocycle of C,> with a value in Y; will be cohomolo-
gous to a cocycle T such that T'(a) = Ap~u+ Y;, where A € K, u = ®(a)®(b). Thus

T(a?) = pT(a) = Ap~'u+ Y;, and so to prove the lemma it is sufficient to show that
plue (a? — 1)FY; + Y,. Itis easy to see that

(ap—l+ap—2+...+a+l)—(a—1)p71 :pwl(a)a (2)

where w1 (a) € KC,.
Let vy = (a — 1)". Then from (2) it follows that

(®(a”) = p)(a—1)""""v) = u— po(@)®(a”) —pla— 1)’ o = u+py,
where y € Y. Since ®(a”) — p = (a” — 1)z, where z € KC,:, we have
plut Y, = (@ —1)plz+7,

which completes the proof of the lemma.
Let p # 2. In the free KC,.-module

(KC)? = {(x1,x2) | x1,x2 € KCp2'}
we consider the KC pz-submodule

Up=<((a— 1"+ ®(a), (a— 1)), D(a")(a — 1,1)),
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for 1 <j < p— 2. The K-representation of C,. corresponding to U; has the form

10 0 <1%

" 1 <1>0 0
I'":a—
;e o1(a) Loy | G)
52(61)

where o; = (&) — 1)-7 and j=1,2,..., p — 2. Define the cocycle
Jj: G = Uy = FUH/Uf
by fi(a) = p2®(a)®(a?)(1,0) + U,.
Lemma 10. For j=1,..., p — 2 the group Crys(C,2; Uj; f;) is torsion-free.

Proof. Let u; = ®(a)®(a?)(1,0) and uy = ®(a)®(a”)(0,1). It is easy to see that the
sequence of KC,.-modules

0—Kuy— U —X;—0 4)

is exact. The cocycle f; induces the cocycle T; : C,» — 5(7 defined in (1), which is not
equal to the zero cocycle on the group H = {a”) by Lemma 8. Therefore f; is also
non-cohomologous to the zero cocycle in H. This means that €rys(C,2; Uj; f;) has no
elements of order p.

We consider one more KC,,.-module, namely the submodule Uy of KC,. generated
by ®(a). The corresponding K-representation of C,» has the form

L <1
— .
0 52((1)
Lemma 11. For each cocycle T : C,» — Uy the group €ys(C,; Uo; T') has an element
of order p.

Proof. It is easy to see that any cocycle of C,. with values in f/\o =FU; /Uy is
cohomologous to a cocycle T of the form

T(a) = 2p~*®(a)®(a”) + Uy,
with A € K. Replacing a by a” in (2) we have
P O@®(a”) = pH(a’ — 1) D(a) + w1 (a”) D(a).

Then T'(a?) = (a — 1)z + Uy, where z € FUyp, and this proves the lemma.
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Proof of Theorem 2. From the description in [2] of the K-representations of
C,- it follows that the indecomposable KC,.-modules corresponding to the faithful
K-representations of C,» whose characters contain the trivial character are the
following:

X (i=0,1,...,p=2), Y (j=0,1,....,p—1),
U()7 Uk(kZI,...,p—z).
By Lemmas 9 and 11 we are interested only in the modules X; and U;. Let us consider
the module X; where 0 < i < p — 2. It is easy to see that Lemma 2 can be applied to

the factor module X;/Kv, where v = ®(a)®(a”). Therefore any cocycle of C,> with
the values in X; will be cohomologous to a cocycle T of the form

T(a) = lp v+ X; (5)

with 4 € K. We claim that if in this equation 1 = 0 (mod p) then T is cohomologous
to the trivial cocycle. From (2) we have

P O(@)®(a?) + p 'O ) (a— 1) =p(a” = )70, + w1 (a”)0;, (6)
where 0; = ®(a) + (¢ — 1)"™" € X;. We will use the equation
®(a”)(a— 1) = pla— )®(a)on,
where w; is a unit in KCy>. From (6) it follows that
P (a— D)) = p 0@ (a — 1) oy € (a - DEX,
fori=0,1,..., p— 2. Then from (6) one finds that
p ' ®(a)®(a’) € (a — 1)FX; + X;
fori=0,1,...,p—2. Our claim follows.

From the above it follows that H'(C,, X;) is cyclic of order p and that all ele-
ments of this group can be represented by the cocycles T defined in (5) with A =
0,1,...,p— 1.

We will show that each non-zero cocycle T defines up to isomorphism the group
Crys(Cpo; Xi; Th).

Let ¢ be an automorphism of the group C,> and X be the KC,.-module X; twisted
by this automorphism, i.e.

X=X, ax=¢la)x, forxelX,.

1
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It is not difficult to show the existence of an automorphism 7 of the K-module X; such
that ¢(a)t = 7a in X; and 7(v) = v, where v = ®(a)D(a?).

Let e~!(a) = a*, with (s, p) = 1. Since we have aT;(a) = T;(a) and 7' (¢) = &, where
7 = v+ X;, we obtain

Ti(a) = <'Ti(e "' (@) = sTi(a) = sp~*v + X

From Lemma 1 it follows that €rys(C,2; X;; T;) is isomorphic to Crys(Ce
where T'(a) = sp~2v+ X;. We have shown that each group Crps(Cpo; Xis
T # 0 is isomorphic to €rys(C,; Xj; T;) for some i.

Now consider groups of the form Crys(C,; U; T). First we remark that
H'(C,., Y;) is cyclic of order p, for j=1,...,p— 1. The proof of this is similar to
the proof for the group H'(C,,X;). Since Yo = KC,2, we have H'(C,2, Y) =0
(see Lemma 3).

Let uy,uy, ..., u,2, be a K-basis in U; such that

;X T),
) with

u = ®(a)®(a”)(1,0) and wy = @(a)®(a”)(0,1),
and for 0 < «, f < p — 1 let the cocycle T, 4 satisfy
T,.p(a) = p~2(oay + pun) + Uj.
We use the exact sequence (4) and the exact sequence
0— Kuy — U — Y, —0. (7)

This enables us to show that any cocycle 7 : C,» — Uj; is cohomologous to some
cocycle T, g with 0 < o, f <p— 1.

By Lemma 9 and (7), the cocycle Ty s is cohomologous to the zero cocycle at the
element a” of C,» and therefore €rys(C,; Uj; To p) has an element of order p.

Now let o # 0. Then « is a unit in K and the map 7 defined by 7(x) = ax is an
automorphism of the KC,>.-module U;. It follows that the cocycle T, g (2 # 0) can be
replaced by T ,-15. So it is enough to consider the cocycles Tj 5, where =0,
1,..., p— 1. We will show that Crys(C,:; Uj; T1,p) is isomorphic to Crys(C,2; Uj; f))
(note that fj = T ).

We replace the basis element u; by u] = u; + fus in U;. Then

Tl,/;(a) zp_zu{ + U]

Let Y/ = U;/Kuj. Then the K-representation Fj’” corresponding to Y is

L (1) (=P
r":a— or(a) oy
52((1)
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This representation is equivalent to Fj’ . Because of this equivalence we will replace the
basis elements uy, ..., u,2 1 by uy, ..., u[;2+]. Then in the K-basis uj,u), . .. 7”;)2+1 the
operator a has the same matrix (3) as in the basis uj, us, ..., 1,2, ;. Define an auto-
morphism 7 : U; — U; of the K-module U; by t(u!) = u; for i=1,...,p> +1. We
have ta = ar and moreover

t'Ty p(a) = 7' (p~*uf + Uy) = p~*ur + U; = fi(a).

It follows from Lemma 1 that €rys(C,2; Uj; T g) and Crys(C,2; Uj; f;) are isomor-
phic. So among the groups €rys(C,2; M; T') the ones which can be indecomposable
and torsion-free are isomorphic to those for which the module M and cocycle T were
listed in this theorem. Now Lemmas 8 and 10 complete the proof.

5 Theorem 3

Let G = C, x C, with generators a,b and let K be one of the rings Z, Z,,, Z . In the
case when p = 2 we will give a full description of the indecomposable torsion-free
groups Crys(Cy x Cy; M; T). We will use the classification of the indecomposable K-
representations of C; x C, given by Nazarova in [15, 16].

Lemma 12. Let M be the K[C, x C,|-submodule of the free K[C, x Cpy|-module
(K[Cp x CpD(z) defined as follows:

M = {(®P(a),0),(p,0),(0,D(b)),(0,p),(b—1,1—a)).
Then the following assertions hold.
(1) M is an indecomposable K[C, x C,|-module and dimg (M) = 2p?;
(2) there exists a cocycle T : C, x C, — M = FM* /M~ defined by
T(a):(la0)+M7 T(b):(071)+Ma
(3) the group Crys(C, x Cy; M; T) is torsion-free.

Proof. (1) Let Z, = K /pK and regard Z, as a K[C, x Cy]-module with C, x C, acting
trivially. Consider the projective resolution

To

"'_’(K[CPXCPDG)E’(K[CPX CpD_’Z_p_>0 (8)
of Z,. It is easy to see that ker(zy) = (a — 1,b — 1, p), and

kGI‘(Tl) = <((D(a)7070)7 (0,@([)),0),
(b—-1,1-4a,0),(p,0,1 —a),(0,p,1—>0)>.
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The K[C, x C,]-modules ker(zg) and ker(z;) are indecomposable. Each x € ker(;)
has the form

x = (1 ®(a) +uz(b—1)+pus, uy ®(b) + us(1 —a) + pus,us(1 —a) +us(1 - b)), (9)
with u; € K[C, x C,] fori=1,...,5. We map x to the element
(1 ®(a) + us(b = 1) + pua, uy®(b) + us (1 — a) + pus)
of M. It is easy to check that this defines an isomorphism of the K[C, x C,]-modules

ker(z;) and M. Thus M is an indecomposable K[C, x C,]-module. Since dimg(7p) =
p?, we have

dimg (M) = dimg (ker(t;)) = dimg (K[C, x C,))® — dimg (ker(zo)) = 2p>.

(2) Define T : C, x C, — M as follows:

Ta@)=(l+a+---+a'0) + M,
T(b')=(0,1+b+---+b"")+ M,
T(a'b’) =a'T(b)) +T(a")+M; T(1)=M,
for 0<i,j<p—2. Tt is easy to see that ®(a)T(a) =« M, ®(bH)T(b) =« M and
(a=1)T(b) — (b—1)T(b) = M. It follows that T is a cocycle of C, x C, with values
in M =FM*/M*.
(3) It is sufficient to show that 7 is not cohomologous to the zero cocycle at every

non-trivial element g of C, x C,. Let g = a'b/, where 0 < i, j < p — 1. Suppose that
there exists z € FM such that

T(g)=(g—1)z+ M. (10)
From the definition of 7" and from (10) it follows that
(I+a+-+a " a(1+b+--+b7"))=(g— 1)z +x,
for some x € M. Multiplying this equation by ®(a)®(b) taking into account that
®(a)D(h)M = p®(a)®(b)(K,K), and ®(a)®(b)(g—1)=0

we conclude that (i, j) € (pK, pK), which is impossible since 0 < i,j < p — 1. This
contradicts the assumption that 7 is cohomologous to the zero cocycle at g (see
(10)).

Similarly, we may show that T is not cohomologous to the zero cocycle at the
remaining non-trivial elements of C, x C,. Thus €ys(C, x C,; M; f) is torsion-free.
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Now let p =2, let G = {a) x {(b) = C; x C; and let K be one of the rings Z, Z,,
Z 5. We will study those groups €rys(G; M; T') which are torsion-free.
The group G has the following irreducible K-representations:

Xo:a—1,b—1; yi:a——1, b—1;

Xyiar— —1, b— —1; x3:a—1, b— —1.

Let H = <{h) be a subgroup of G of order 2. The indecomposable K-representations
of H, up to equivalence, are the following:

1 1
vo:h—1; pihe— =1 yzzh—>(0 1>. (11)
Let I' be a K-representation of G and I'[, its restriction to H. Let M be a KG-module
corresponding to the K-representation I' and 7": G — M be an arbitrary cocycle of
G with values in M = FM*/M™ (where F is a field containing K). The following
lemma gives necessary conditions for €rys(G; M; T) to be torsion-free.

Lemma 13. If Crys(G; M; T) is torsion-free then for each non-trivial subgroup H of
order 2, the trivial representation y, is contained in the decomposition of T'|; as a direct
sum of indecomposable K-representations of H.

Indirect proof. Assume that H is a subgroup of order 2 in G such that I'|;, does not
have y, as a direct summand. Then it follows from Lemmas 2 and 3 that any cocycle
T : G — M will be cohomologous in H to the zero cocycle, and this implies that
Crys(G; M; T) has elements of order 2.

We make some remarks about the K-representations of G =~ C, x C,. Let G act
trivially on K and consider the projective resolution

co (KGO I (kG)Y L

V3 V2

B (KGO B (KG) LK -0 (12)

of K. Each v, is a homomorphism of the KG-modules and ker(v,) is an indecom-
posable KG-module with

dimg (ker(v,)) = 2n + 1.
Let T, be the K-representation of G corresponding to some K-basis in ker(v,), and
let T" be the contragradient K-representation of T}, that is, I*(g) = T'7(g!) for all

g € G, where the superscript 7 denotes transposition of matrices.

Lemma 14. (see [16, 22]). Each indecomposable K-representation of G = Cy x C,
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of odd degree is equivalent to just one of the following: y;, I, ®g yx; or I Qg x;, for
some i €{0,1,2,3} andn > 1.

Let p=2 in (8) and let us consider the projective resolution for ker(zg) =
a—1,b—-1,2):

RN (KG)(ln) I (KG)([n—l) .
B (KG)™ B (KG)" T Ker(zg) — 0. (13)
It is easy to show that in (13) we have #, = 2n + 1 and
dimg (ker(z,)) = 4n + 4,

where n = 0. Moreover all of the KG-modules ker(v,) are indecomposable. If we take
the tensor product over K of the exact sequence (12) and the KG-module ker(zy) and
compare the result with the sequence (13), then we obtain easily the isomorphism

ker(ty) ® ker(v,) = ker(z,) ® P,,
where P, is a projective KG-module.

Lemma 15. Let W, be the K-representation of G = {ay x {b) = Cy x C, correspond-
ing to the module ker(t,) where n = 0. This representation has the following form:

1 1 0 1 1 1 1 0
-1 0 0 -1 0 0
Wy :a— oo | b 1 ol
-1 1
D 0 0 0 0 D 0 0 S 0
E, 0 0 V, E, 0 v, 0
I/Vn at— _En V;1 0 ) b _En 0 V;,/ )
E,. 0 —E,1 0
—E, E,
where

oS O

11 0 11
D_(o —1)’ S‘(o 0 0)’

and V, = (0 E,), V,! = (E, 0) are matrices with n rows and n + 1 columns for n > 1.
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Proof. The proof reduces to the determination of a K-basis of ker(z,), and this is not
difficult to construct by induction on #.

Lemma 16. Each faithful indecomposable K-representation of G = {a) x {b) which
satisfies the necessary condition for the existence of a torsion-free group Crys(G; M; f)
is one of the following:

Ay(n=1); A, (n=1); W, (n=0); W (n=0).

Here
E, 0 0 E, 0 1 0 0 0 0
1 0 0 0 E, 0 0 E,
An(a) = ~E, 0 E, |, A0 = -E, E, 0 [,
“E, 0 E, 0
En _En

and A, and W, are K-representations of G contragradient to A, and W,, so that
Al (g) = Al (g) and W, (g) = W,T(g) for all g € G.

Proof. All K-representations listed above satisfy the necessary condition for the exis-
tence of a torsion-free group €rys(G; M; f). The analysis of all representations of odd
degree (see Lemma 14) shows that among the representations I, ® y; the necessary
condition is satisfied only by A* which is equivalent to I3, (n = 1,2,...). Besides the
representations W, and W,*, the group G has a parameterized series of representations
whose degrees are divisible by 4. In this series the following pairs of matrices corre-
spond to the pair of generating elements of G:

E, 0 0 E, E, 0 § 0
“E, E, 0 ~E, 0 E,
E, 0 |’ -E, 0|

_En En

where the matrix § over K has Frobenius (i.e. rational) canonical normal form inde-
composable modulo 2K. Clearly the representations in this series do not satisfy the
necessary condition. Consider the following pair of matrices:

1 0 0 0 0 0
E, 0 0 E, Eni O  E.q 0
-E, E, 0 0 -E, 0 E,
E, 0 0 | —Ey 0
1 0 E,
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These matrices define indecomposable K-representations of G of degree congruent to
2 modulo 4 and obviously these representations do not satisfy the necessary condition.
We can obtain the remaining representations of degree 4n — 2 either by the described
process of tensor multiplication by irreducible K-representations or by taking contra-
gradient representations.

As a result we get representations which do not satisfy the necessary condition
for the existence of a torsion-free group €rys(G; M; f). Thus we have considered all
indecomposable K-representations of G. The lemma is proved.

Proof of Theorem 3. We can take the module M of a K-representation I' of G of
degree m to be the K-module of m-dimensional columns with entries from K. Then
FM is the space of m-dimensional columns over Fand M = FM* /M ™ is the group of
m-dimensional columns with entries from F = F*/K*. Let f : G — M be a cocycle.
The value f(g) of f at g € G is an m-dimensional column over F. We note that if
g, h € G then the product g. f (/) is the ordinary product of the matrices I'(¢) and f'(h).

If we consider the coordinates of the vector f(g) as elements of F, then the ele-
ments of the ring K will be replaced by 0.

Let I" be any of the representations of G listed in Lemma 16, let M be the module
of this representation and let H = <{/) be a non-trivial subgroup of G. There exists
only one basis vector v in M such that M is the direct sum M = Kv @ M’ of the KH-
module Kv and the KH-module M’ generated by the rest of the basis vectors of M. In
addition, hv = v and a K-representation I'" of H corresponding to the module M’ is
a sum of representations of type y; and p, (see (11)). This allows us to replace the
cocycle f by a cohomologous cocycle fi in such a way that the projection fi| 7 will
be equal to zero for the element / (see Lemmas 2, 3).

The coordinate x, of the vector f (/) corresponding to the basis vector v will be
called the special component of the vector f(h). From (1 + &) f(h) = 0, it follows that
2x, = 0 (in the group F). For any z € M the special component of (& — 1)z + f(h)
is always equal to x,. If x, = %, then the cocycle f is not cohomologous to the zero
cocycle at /.

These remarks justify the following plan for the construction of cocycles of the
representations I from Lemma 16. The form of the representation I defines the special
components of the vectors f(a) and f(b) (where a and b are the generators of G). We
choose f'(a) such that we can deduce that the special component is % and all other
components are zero. The possible forms of the components of the vector f(b) follow
from the following conditions:

(1+b)f(b) =0; (14)
(@=1)f(b) = (b= 1)f(a). (15)

We will carry out the following operations on the vector f(b): replace f(b) by the
vector

(b —1)z+/(b), (16)
where z € M and (a — 1)z = 0.
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We discard all those forms of f(b) with a zero special component. For a vector
£ (b) whose special component equals 1, we find that

f(ab) = af (b) + f (a) (17)
and we examine the solvability of the following equation
(ab—1)z+f(ab) =0 (18)

with z € M. The group Crys(G; M; f) is torsion-free if and only if the equation (17)
has no solution.
We consider the following seven cases:

Case 1. Let I' = A,. The special components are the (n+ 1)th entry in f(a) and
the first one in f(b). Set the (n+ 1)th coordinate of f(a) to 1 and let all the rest
be 0. Let

fT(b) = (y’ Yy, Y, Y3, Y4)7 (19)

where ye F, Y; e F and i = 1,2,3,4.

Using the operation (16) we can replace Y by the zero vector. From (15) it follows
that Y3 = Y4 = 0, and from (14), it follows that 2y =0 and 2Y; = 0. Let y = %, Y, =
(v1,02,...,0,). Using (17), it is easy to transform (18) to a linear system of equations
(over F) with the (n + 1) x n-matrix

1 0 0 0
-1 1 0 O
0 o0 -1 1
0 o0 0 -1
and coeflicients %71)1, ey Up 1, U+ % This system is solvable if and only if

v+ 4+ v +v, =0.

Case 2. Let I = A, The matrices of the K-representation are the transposes of
the matrices of A,. The special components of f(a) and f(b) are the same as in Case
1. Let us assume that f(a) and f(b) are chosen at first in the same way as in the case
of T' = A, (see (19)). Condition (14) and operation (16) transform the vector f(b)
to the following form:

fT(b) = (y,O, _2Y37 Y350)'
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Let Y3 = (v1,...,04-1,0,). It follows from (15) that if n > 2 then

y—21)1:0; 2U2:~~~:21)”:0;
201 =05...;20,_1 = 0; 21),1:%7

and, if n =1, then y — 20; =0, 2v; = 1.

If n>1 and y =1 then (19) leads to a contradiction. If n =1 and y =1, then
v = l.

Th‘:ls if n> 1 and f is a cocycle then the special component of the vector f(b) is
equal to zero. Then the cocycle f is cohomologous to the zero cocycle in the element
b € G. This means that €rys(G; M; f) cannot be torsion-free if M corresponds to the
representation I' = A} where n > 1.

Let n = 1. Then

f(a):(oa%a0a070)7 f(b):(%707%u_1170)7 f(ab):(%aoa%7%a%)
It is easy to check that (18) is unsolvable.

Case 3. Let T' = W* (n > 0). The special components are the (2n + 3)rd of f(a) and
the last of /(b). Let the special component of f(a) be equal to 1, and let all the rest be
Zero.

Let fT(b) = (Yo, Y, Y, Y, Y4), where Y, EF(2>, Y, e F(n)’ Y;, Yy e Ftl)
Operation (16) allows us to replace Y3 by the zero vector. It follows from (14) that
Y1 = 0. Condition (15) shows that ¥> =0, Yy = (0,y) (y € F,2y = 0) and 2Y; = 0.
Consequently

fT(b) = (07%07“-,0,01,--~,Un,%)~

The special component of f(ab) is the second coordinate which, according to (17),
equals y. Therefore y = %and foranyvy,...,v, (2v; =2vy = -+ = 2v, = 0) the group
Crys(G; M; f) is torsion-free.

Case 4. Let I = W . In this case it is easy to see that the cocycle f with
f(a)=1(0,0,5,0), f(b)=1(0,5,0,3)
determines a torsion-free group Crys(G; M; f).

Case 5. Let I' = W, (n > 1). We take the vectors f(a) and f() in the same fashion
as in Case 3. Condition (14) shows that all components of the vector Y4, except the
last, are zero. Then condition (15) leads to a contradiction.

We obtain a contradiction by setting the special component in f(a) equal to %
Consequently, for I' = I, with n > 1, any cocycle f is cohomologous to the zero
cocycle at the generator a of G, and so Crys(G; M; T) is not torsion-free in this case.
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Case 6. Let I' = ). For the cocycle f with

f(a):(07070707%707070)7 f(b):<07 70741_;707%707

),
the special components of the vector f(a) (the fifth one) and f(b) (the last one), and
£ (ab) (the second one) are all equal to 3. The cocycle f determines a torsion-free group
Crys(G; M; f) (see also Lemma 12).

=
[Nt

Case 7. Let I' = W),. The special components are the third for f(a) and the fourth for
f(b). Let us assume that they are equal to % Then there exists only one cocycle

f(a)=1(0,0,3,0), f(b)=(0,0,0,5).

Hence f(ab) = (4,0,4,4) and the special component (the second one) for f(ab) is
equal to zero. The cocycle f is cohomologous to zero at the element ab and
Crys(G; M; f) has elements of order 2.

It follows from Lemma 16 that all K-representations I' of G for which there are
torsion-free groups Crys(G; M; f) have been enumerated. Consequently Theorem 3
is proved.
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