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ABSTRACT. In this article we prove a Riesz potential estimate and a Sobolev inequal-
ity for general generalized Orlicz spaces. Our assumptions are natural generalizations
of the log-Hölder continuity that is commonly used in the variable exponent case.
We also provide a number of useful auxiliary results including a normalization of the
Φ-function and behavior under duality.

1. INTRODUCTION

Generalized Orlicz spaces Lϕ(·) have been studied since the 1940’s. A major synthe-
sis of functional analysis in these spaces is given in the monograph of Musielak [26]
from 1983 and so the spaces have also been called Musielak–Orlicz spaces. These
spaces are similar to Orlicz spaces, but defined by a more general function ϕ(x, t)
which may vary with the location in space: the norm is defined by means of the inte-
gral

ˆ

Rn

ϕ(x, |f(x)|) dx,

whereas in an Orlicz spaces ϕ would be independent of x, ϕ(|f(x)|). In the special
case ϕ(t) = tp we obtain the Lebesgue space Lp.

Minimization problems in the calculus of variations have had a similar course of
generalization (e.g. [15, 24]): from

min
u

ˆ

|∇u|2 dx to min
u

ˆ

|∇u|p dx to min
u

ˆ

ϕ(x, |∇u|) dx.

Usually, the function ϕ is assumed to have p-growth conditions, i.e. ϕ(x, t) ≈ tp

uniformly. This restriction means that the full complexity of the minimization problem
is avoided.

The special case ϕ(x, t) := tp(x), so-called variable exponent spaces Lp(·), and corre-
sponding differential equations with non-standard growth have been vigorously studied
in recent years [9, 12, 18]. The spaces were introduced by Orlicz already in 1931 [29],
but the field lay dormant for a long time. Some 70 years later, key results in harmonic
analysis (e.g., [10, 11, 27]) and regularity theory (e.g., [1, 8]) were established.

The reason that variable exponent spaces thrived while little was done in generalized
Orlicz spaces was the belief that many results from Lebesgue and Sobolev spaces can
be obtained in the former setting but not the latter. However, this belief has been
challenged recently, based on new techniques that were developed and perfected in the
context of variable exponent spaces.
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In addition to being a natural generalization which covers results from both variable
exponent and Orlicz spaces, the study of generalized Orlicz spaces can be motivated
by applications to differential equations, image processing and fluid dynamics.

Chen, Levine and Rao [6] introduced a model for image restoration based on a
particular type of generalized Φ-function:

ϕ(x, t) =

{

1
q(x)

tq(x), when t 6 β,

t− β + 1
q(x)

βq(x), when t > β.

Since they only consider a bounded domain, the space needed actually turns out to be
L1 (or, more precisely, BV ), see Proposition 4.2. In [17] we analyzed the Lp(·)-variant
of this model. More recently, Alaouia, Nabilab and Altanjia [2] have considered a
general structure PDE in the image processing context, but again work in BV .

Wróblewska-Kamińska [31] has studied fluid dynamics models with generalized
Orlicz-type structure conditions, and Świerczewska-Gwiazda [30] studied existence of
solutions to parabolic equations with generalized Orlicz growth. Giannetti and Pas-
sarelli di Napoli [14] and Baroni, Colombo and Mingione [3, 4, 7] studied the regular-
ity of solutions to the minimization problems

min
u

ˆ

|∇u|p(x) log(e+ |∇u|) dx and min
u

ˆ

|∇u|p + a(x) |∇u|q dx,

respectively. The regularity of minimizers depends on the regularity of the exponents
p and q, and the weight a.

Giannetti and Passarelli di Napoli studied a very special form of functional. Also in
the function space setting the first steps fromLp(·) were Φ-functions of type tp(·) log(e+
t)q(·) which were studied in several papers, e.g., [21, 25]. Hopefully, the tools presented
in this paper will allow the research community to bypass the stage of special log-type
variants in the study of PDE and move directly to the general form, including, among
others, those studied by Colombo and Mingione.

A key tool for harmonic analysis is the (Hardy–Littlewood) maximal operator M .
Maeda, Mizuta, Ohno and Shimomura [22, 23, 28] were first to study it in Lϕ(·), with
somewhat heavy machinery. Their result on the boundedness ofM was generalized by
Hästö [19, 20] by removing unnecessary assumptions and simplifying the proof.

The Sobolev embedding has been studied in generalized Orlicz spaces by Fan [13].
He uses a reduction to the W 1,1-case based on direct differentiation of the Φ-function.
This leads to extraneous assumptions concerning the derivative ϕ′. In this paper we
prove the Sobolev embedding by Hedberg’s method, establishing the boundedness of
the Riesz potential. A similar approach was used in [22], however, that paper contains
several complicated assumptions and a target spaces which is not explicitly defined (cf.
page 91 of the reference). Our proof is more versatile and requires fewer assumptions
than the previously known ones, and provide a new perspective even in Orlicz spaces.
We hope that our simple and clear results and techniques will allow most of the results
that have been derived in Lp(·) over the past 15 years to be established in Lϕ(·) as well.

2. BACKGROUND

The notation f . g means that there exists a constant C > 0 such that f 6 Cg. The
notation f ≈ g means that f . g . f . The space A ∩ B is endowed with the norm
‖f‖A∩B = max{‖f‖A, ‖f‖B}. For a real function f we denote

f(x−) := lim
ε→0+

f(x− ε) and f(x+) := lim
ε→0+

f(x+ ε).
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By L0(Rn) we denote the set of (Lebesgue) measurable functions on R
n. The

(Hardy–Littlewood) maximal operator is defined for f ∈ L0(Rn) by

Mf(x) := sup
r>0

 

B(x,r)

|f(y)| dy,

where B(x, r) is the open ball with center x and radius r, and
ffl

denotes the average
integral.

We recall some definitions pertaining to generalized Orlicz spaces. For proofs and
further properties see [12, Chapter 2] and [26].

Definition 2.1. A convex function ϕ ∈ C([0,∞); [0,∞]) with ϕ(0) = ϕ(0+) = 0, and
limt→∞ ϕ(t) = ∞ is called a Φ-function. The set of Φ-functions is denoted by Φ.

Instead of the usual left-continuity, we have assumed that every Φ-function is con-
tinuous in the compactification [0,∞]. This is not a restriction as every function sat-
isfying the former condition is equivalent to one satisfying the latter, see [16]. Recall
that two functions ϕ and ψ are equivalent, ϕ ≃ ψ, if there exists L > 1 such that
ψ( t

L
) 6 ϕ(t) 6 ψ(Lt) for relevant all t. Equivalent Φ-functions give rise to the same

space with comparable norms.
Note that every Φ-function is increasing on [0,∞) and strictly increasing on {x :

ϕ(x) ∈ (0,∞)}. By ϕ−1 we denote the left-continuous inverse of ϕ ∈ Φ,

ϕ−1(τ) := inf{t > 0 : ϕ(t) > τ}.

It follows directly from this definition that ϕ−1(ϕ(t)) 6 t and equality holds if ϕ
is strictly increasing. To be more precise, if t0 := max{t |ϕ(t) = 0} and t∞ :=
max{t |ϕ(t) <∞}, then

(2.2) ϕ−1(ϕ(t)) =











0, t 6 t0
t, t0 < t 6 t∞,

t∞ t > t∞.

Note that ϕ−1(ϕ(t)) = t if ϕ(t) ∈ (0,∞). In the opposite order thing work better,
since the continuity of ϕ implies that

(2.3) ϕ(ϕ−1(s)) = s.

Note that ϕ ≃ ψ if and only if ϕ−1 ≈ ψ−1.
If ϕ ≈ ψ, then by convexity ϕ ≃ ψ We say that ϕ is doubling if ϕ(2t) 6 Aϕ(t) for

every t > 0. For a doubling Φ-function ≃ and ≈ are equivalent. A Φ-function can be
represented as

ϕ(t) =

ˆ t

0

ϕ′(s) ds

in the set {ϕ(t) < ∞}, where ϕ′ is the right-continuous right-derivative of the convex
function ϕ.

Definition 2.4. The set Φ(Rn) consists of those ϕ : Rn × [0,∞) → [0,∞] with

(1) ϕ(y, ·) ∈ Φ for every y ∈ R
n; and

(2) ϕ(·, t) ∈ L0(Rn) for every t > 0.

Also the functions in Φ(Rn) will be called Φ-functions. In sub- and superscripts the
dependence on xwill be emphasized by ϕ(·): Lϕ (Orlicz) vs Lϕ(·) (generalized Orlicz).
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Properties and definitions of Φ-functions carry over to generalized Φ-functions point-
wise. In particular,

ϕ−1(x, τ) := inf{t > 0 : ϕ(x, t) > τ}

is the left-continuous inverse with respect to the second parameter.

Definition 2.5. Let ϕ ∈ Φ(Rn) and define the modular ̺ϕ(·) for f ∈ L0(Rn) by

̺ϕ(·)(f) :=

ˆ

Rn

ϕ(x, |f(x)|) dx.

The generalized Orlicz space, also called Musielak–Orlicz space, is defined as the set

Lϕ(·)(Rn) = {f ∈ L0(Rn) : lim
λ→0

̺ϕ(·)(λf) = 0}

equipped with the (Luxemburg) norm

‖f‖ϕ(·) := inf
{

λ > 0: ̺ϕ(·)

(f

λ

)

6 1
}

.

Auxiliary results in generalized Orlicz spaces. A problem when modifyingΦ-functions
is that we easily move out of the domain of convex functions. The next lemma often
allows us to rectify this.

Lemma 2.6 (Lemma 3.1, [19]). Let ϕ : [0,∞) → [0,∞] be a left-continuous function

with ϕ(0) = ϕ(0+) = 0, and limt→∞ ϕ(t) = ∞. If s 7→ ϕ(s)
s

is increasing, then ϕ is

equivalent to a convex function ψ ∈ Φ.

Define ϕ−
B(t) := infx∈B ϕ(x, t) and ϕ+

B(t) := supx∈B ϕ(x, t). We state three as-
sumptions which together imply the boundedness of the maximal operator [19, 20].

(A0M) There exists β > 0 such that ϕ(x, β) 6 1 and ϕ(x, 1) > 1 for all x ∈ R
n.

(A1M) There exists β ∈ (0, 1) such that

ϕ+
B(βt) 6 ϕ−

B(t)

for every t ∈
[

1, (ϕ−
B)

−1( 1
|B|

)
]

and every ball B with 1/|B| > ϕ−
B(1).

(A2M) There exists β > 0 and h ∈ L1(Rn) ∩ L∞(Rn) such that, for every t ∈ [0, 1],

ϕ(x, βt) . ϕ(y, t) + h(x) + h(y).

Theorem 2.7 (Theorem 4.7, [19, 20]). Let ϕ ∈ Φ(Rn) satisfy assumptions (A0M)–

(A2M), and assume that there exists γ > 1 such that s 7→ s−γϕ(x, s) is increasing for

every x ∈ R
n. Then

M : Lϕ(·)(Rn) → Lϕ(·)(Rn)

is bounded.

Note that the assumption that s 7→ s−γϕ(x, s) is increasing, is a natural generaliza-
tion of the Lebesgue space condition p > 1.

Remark 2.8. Some examples of generalized Φ-functions:

ϕ1(x, t) = tp(x) log(1 + t), ϕ2(x, t) = tp + a(x)tq, ϕ3(x, t) = ep(x)t − 1.

The first and second Φ-functions have been recently studied in [7, 14], while ϕ3 is an
example of a non-doubling Φ-function.

The boundedness of the maximal operator in [19, 20] covers all of them, as do the
auxiliary results in this paper, including normalization and duality. For the Riesz po-
tential we need to assume that t

ε−n
α ϕ(t) is decreasing. This is a natural generalization
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of the Lebesgue space condition p < n, and it implies that ϕ is doubling (with constant
2

n−ε
α ).

3. THE ASSUMPTIONS

For our study of generalized Orlicz spaces, we need three main assumptions, which
are variants of (AxM) from Section 2.

(A0) ϕ−1(x, 1) ≈ 1.
(A1) There exists β ∈ (0, 1) such that βϕ−1(x, t) 6 ϕ−1(y, t) for every t ∈

[

1, 1
|B|

]

,

every x, y ∈ B and every ball B with |B| 6 1.
(A2) Lϕ(·)(Rn) ∩ L∞(Rn) = Lϕ∞(Rn) ∩ L∞(Rn), with ϕ∞(t) := lim sup

|x|→∞

ϕ(x, t).

In this section we elaborate on these and add some technical details. Recalling that
ϕ ≃ ψ, if and only if ϕ−1 ≈ ψ−1, we establish the following invariance.

Lemma 3.1. These assumptions are invariant under equivalence of Φ-functions, i.e. if

ϕ ≃ ψ, then ϕ satisfies (Ax) if and only if ψ does.

We convert in three steps the original ϕ function to an equivalentΦ-function ϕ̄which
is more regular. Let us next investigate each assumption in turn.

Assumption (A0). First we study relations between (A0M) and (A0).

Lemma 3.2. Assumption (A0M) implies (A0).

Proof. By the definition of ϕ−1, the inequality ϕ(x, 1) > 1 yields ϕ−1(x, 1) 6 1. If
ϕ(x, β) < 1, then ϕ−1(x, 1) > β. If ϕ(x, β) = 1, then by convexity ϕ(x, β/2) < 1
and thus ϕ−1(x, 1) > β/2. �

The converse is not true. If (A0) holds, so that c1 6 ϕ−1(x, 1) 6 c2, then ϕ(x, c1) 6
1 and ϕ(x, c2) > 1. But it is not necessary that ϕ(x, 1) > 1 as the following example
shows: if ϕ(t) := t2/2, then ϕ(x, 1) = 1

2
< 1 but ϕ−1(x, 1) = 2.

We use the assumption (A0) to find an equivalent Φ-function that behaves better
than the original one. We set

ϕ1(x, t) := ϕ
(

x, ϕ−1(x, 1)t
)

.

Then ϕ1 is equivalent to ϕ and ϕ−1
1 (x, 1) ≡ ϕ1(x, 1) ≡ 1 (by (2.3)). The set of

Φ-functions with ϕ−1(x, 1) ≡ 1 will be denoted Φ1(R
n). Note that every Φ1(R

n)-
function satisfies assumptions (A1) and (A0M).

Assumption (A1). Let us start by reformulating (A1) when ϕ ∈ Φ1(R
n).

Lemma 3.3. Let ϕ ∈ Φ1. Condition (A1) holds if and only if there exists β > 0 such

that

ϕ(x, βt) 6 ϕ(y, t)

for every t ∈
[

1, ϕ−1(y, 1
|B|

)
]

, every x, y ∈ B and every ball B with |B| 6 1.

Proof. Let the condition of the lemma hold and assume t ∈
[

1, 1
|B|

]

. Then ϕ−1(y, t) ∈

[1, ϕ−1(y, 1
|B|

)] and so

ϕ(x, βϕ−1(y, t)) 6 ϕ(y, ϕ−1(y, t)) = t.

Let t0 and t∞ be as in (2.2) and abbreviate s := βϕ−1(y, t). If s ∈ (t0, t∞], then (A1)
follows from the previous inequality, since ϕ−1(x, ϕ(x, s)) = s. And if s > t∞, then
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ϕ(x, s) = ∞ 6 t, a contradiction, so this is not possible. If s 6 t0, then s 6 ϕ−1(x, t)
since ϕ−1(x, t) > t0 (t > 0). Thus in each case (A1) holds.

Assume then that (A1) holds and let t ∈
[

1, 1
|B|

]

. By (A1) and (2.3),

ϕ(x, βϕ−1(y, t)) 6 ϕ(x, ϕ−1(x, t)) = t = ϕ(y, ϕ−1(y, t)).

Let s := ϕ−1(y, t). Thus ϕ(x, βs) 6 ϕ(y, s) in the range of ϕ−1(y, ·), including
(t0, t∞). When s → t+0 , this gives that ϕ(x, βt0) 6 ϕ(y, t0) = 0, so the inequality
holds for s 6 t0, as well. Finally, if s > t∞, then ϕ(y, s) = ∞, so the inequality
certainly holds. �

Corollary 3.4. If ϕ ∈ Φ1(R
n) satisfies (A1), then it satisfies assumption (A1M).

Proof. Let B be a ball with |B| 6 1. We must show that ϕ+
B(βt) 6 ϕ−

B(t) when
t ∈ [1, (ϕ−

B)
−1( 1

|B|
)].

Suppose first that t is not the upper end-point of the interval. For such t, there exist
yi ∈ B such that t ∈ [1, ϕ−1(yi,

1
|B|

)] and ϕ−
B(t) = limj ϕ(yj, t). Then by Lemma 3.3

ϕ(x, βt) 6 ϕ(yj, t).

We let j → ∞ and take the supremum over x ∈ B to arrive at (A1M).
It remains to consider t = (ϕ−

B)
−1( 1

|B|
). Suppose first that ϕ+

B(βt) < ∞. Let ε > 0

and choose x ∈ B such that ϕ+
B(βt) 6 (1+ε)ϕ(x, βt). Since ϕ(x, ·) is left-continuous,

we can choose t′ < t such that ϕ(x, βt) 6 (1 + ε)ϕ(x, βt′). Combining this with the
previous case, we obtain that

ϕ+
B(βt) 6 (1 + ε)2ϕ(x, βt′) 6 (1 + ε)2ϕ(y, t′) 6 (1 + ε)2ϕ(y, t).

Taking infimum over y and letting ε → 0, we obtain the desired inequality. The case
ϕ+
B(βt) = ∞ is handled analogously. �

Remark 3.5. When ϕ(x, t) = tp(x), (A1) corresponds to the local log-Hölder continuity
condition of 1

p
. Namely let x, y ∈ R

n with |x−y| 6 1
2
. Let B be such a ball that x, y ∈

B and diam(B) = 2|x − y|. By symmetry, we may assume that p(x) < p(y). Since
ϕ−1(x, t) = t1/p(x), assumption (A1) reads β(ωn|x−y|n)−1/p(x) 6 (ωn|x−y|

n)−1/p(y),
where ωn is the measure of the unit ball. In other words,

(ω−1
n |x− y|−n)

1
p(x)

− 1
p(y) 6 1

β
.

Taking the logarithm, we find that

1

p(x)
−

1

p(y)
6

log 1
β

n log(|x− y|−1)− logωn
.

1

log(e+ |x− y|−1)
.

Assumption (A2). Again, the assumption ϕ ∈ Φ1(R
n) allows us to reformulate (A2).

Lemma 3.6. Let ϕ ∈ Φ1. If ϕ satisfies (A2), then it satisfies (A2M).

Proof. By Theorem 2.8.1 of [12], Lψ(·)(Rn) ⊂ Lϕ(·)(Rn) if and only if there exist
β > 0 and h ∈ L1(Rn) such that ϕ(x, βt) 6 ψ(x, t) + h(x). Hence (A2) implies that
there exists β and h ∈ L1(Rn) such that

ϕ(x, βt) 6 ϕ∞(t) + h(x) and ϕ∞(βt) 6 ϕ(x, t) + h(x)

for all t ∈ [0, 1] (the restricted range of t is due to the intersection with L∞(Rn) in the
assumption). From these we obtain that

ϕ(x, β2t) 6 ϕ∞(βt) + h(x) 6 ϕ(y, t) + h(y) + h(x)
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for t ∈ [0, 1]. Since ϕ(x, 1) ≡ 1, ϕ(x, β2t) 6 1. So the inequality also holds when we
replace h by min{h, 1} ∈ L1(Rn) ∩ L∞(Rn), as required by (A2M). �

Corollary 3.7. If ϕ ∈ Φ(Rn) satisfies (A0)–(A2) and there exists γ > 1 such that

s 7→ s−γϕ(x, s) is increasing for every x ∈ R
n, then M : Lϕ(·)(Rn) → Lϕ(·)(Rn) is

bounded.

Proof. As in subsection (A0), we find ϕ1 ∈ Φ1 with ϕ1 ≃ ϕ. Then ϕ1 satisfies
(A0M). By Lemma 3.1, ϕ1 satisfies (A1) and (A2). A short calculation gives that
s 7→ s−γϕ1(x, s) is increasing. By Corollary 3.4 and Lemma 3.6, (A1M) and (A2M)
hold. Therefore by Theorem 2.7 the maximal operator is bounded on Lϕ1(·)(Rn) and
thus also on Lϕ(·)(Rn). �

Φ-functions are not totally well-behaved with respect to taking limits. Consider for
instance tp. As p → ∞, the point-wise limit is ∞χ(1,∞) + χ{1}, which is not left-
continuous. For the equivalent Φ-function 1

p
tp we have limit ∞χ(1,∞), which is what

we want. Therefore, we need to chose the equivalent Φ-function suitably to get a good
limit.

We are especially interested in the behavior of ϕ∞ when t 6 1. To this end we
define

ϕ2(x, t) := max{ϕ1(x, t), 2t− 1}.

Clearly ϕ1 6 ϕ2. For t 6 1
2
, ϕ2 = ϕ1. Since ϕ ∈ Φ1(R

n), we have ϕ1(x, 1) = 1
and ϕ1(x, t) > t for t > 1 by convexity. Thus ϕ2(x, t) 6 ϕ2(x, 1) = 1 6 ϕ1(x, 2t)
for t ∈ [1

2
, 1] and ϕ2(x, t) 6 2ϕ1(x, t) 6 ϕ1(x, 2t) for t > 1. In sum, we obtain

ϕ2 ≃ ϕ1 ≃ ϕ with ϕ2(x, 1) ≡ 1 ≡ ϕ−1
2 (x, 1).

Note that the right-derivative satisfies ϕ′
2(x, 1

−) ∈ [1, 2]: here the lower bound fol-
lows from convexity by ϕ′

2(x, 1) > ϕ2(x, 1) = 1 and the upper bound holds since if
ϕ′
2(x, 1

−) > 2, then ϕ2(x, t) < 2t − 1 for some t < 1 contrary to the construction of
ϕ2.

We consider then the limit (ϕ2)∞(t) = lim sup|x|→∞ ϕ2(x, t). Clearly (ϕ2)∞(0) = 0
and (ϕ2)∞(1) = 1. For t ∈ (0, 1), 1 = (ϕ2)∞(1) > (ϕ2)∞(t) > 2t − 1 and hence
(ϕ2)∞ is left-continuous at 1. By convexity of ϕ2, ϕ2(x, t) 6 tϕ2(x, 1) = t on [0, 1]
and hence (ϕ2)∞(0+) = 0. Since (ϕ2)∞(t) > t for t > 1, we have limt→∞(ϕ2)∞(t) =
∞.

To show that (ϕ2)∞ is convex let 0 6 t1 < t2 and θ ∈ (0, 1). Choose xi → ∞ such
that

(ϕ2)∞(θt1 + (1− θ)t2) = lim
i
ϕ2(xi, θt1 + (1− θ)t2).

By convexity of ϕ2,

lim
i
ϕ2(xi, θt1 + (1− θ)t2) 6 lim

i
[θϕ2(xi, t1) + (1− θ)ϕ2(xi, t2)]

6 θ(ϕ2)∞(t1) + (1− θ)(ϕ2)∞(t2),

so (ϕ2)∞ is convex, as well.
Since (ϕ2)∞ is convex and increasing on [0, 1], and left-continuous at 1, it is actually

continuous on [0, 1].

Remark 3.8. In the variable exponent setting, (A2) is equivalent to Nekvinda’s decay
condition (see [12, Remark 4.2.8] for details), which is a weaker version of the log-
Hölder decay condition.
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Remark 3.9. Note that (A2) implies also the equivalence of norms: indeed, this is a
general property of solid Banach spaces, as the following well-known argument shows.
(Recall that a space is solid if |f | 6 |g| implies ‖f‖ 6 ‖g‖.) If ‖f‖A 6. ‖f‖B, then we
can choose fi such that ‖fi‖A > 3i but ‖fi‖B 6 1. Now for g :=

∑

i 2
−i|fi| we have

‖g‖A > ‖2−ifi‖A > (3/2)i → ∞

and ‖g‖B 6
∑

i 2
−i = 1 so that g ∈ B \ A. Hence A 6= B. The implication

A = B ⇒ ‖ · ‖A ≈ ‖ · ‖B follows by contraposition.

4. THE FINAL NORMALIZATION

Next we make the final normalization of ϕ satisfying (A0)–(A2) by setting

ϕ̄(x, t) =

{

2ϕ2(x, t)− 1, if t > 1,

(ϕ2)∞(t), if t < 1.

Lemma 4.1. If ϕ ∈ Φ(Rn) satisfies (A0)–(A2), then ϕ̄ ∈ Φ1(R
n).

Proof. For the convexity we have to show that the ϕ̄′(x, ·) is increasing for every x ∈
R
n. We have

ϕ̄′(x, t) =

{

2ϕ′
2(x, t), if t > 1,

(ϕ2)
′
∞(t), if t < 1.

By convexity each of the parts is increasing. At 1, 2ϕ′
2(x, 1) > 2 and limt→1−(ϕ2)

′
∞(t) 6

2 (see discussion regarding (A2)), so the right-derivative is increasing also there.
The function ϕ̄ is continuous since bothϕ2 and (ϕ2)∞ are continuous and ϕ2(x, 1) =

(ϕ2)∞(1−) = 1. Thus we have that ϕ̄−1(x, 1) 6 1. In the discussion on (A2), we noted
that ϕ2(x, t) 6 t on [0, 1]. These together give ϕ̄−1(x, 1) ≡ 1.

The conditions ϕ̄(x, 0) = ϕ̄(x, 0+) = 0 and limt→∞ ϕ̄(t) = ∞ follow from the
same conditions for ϕ2 and (ϕ2)∞. �

Proposition 4.2. If ϕ ∈ Φ(Rn) satisfies (A0)–(A2), then Lϕ(·) = Lϕ̄(·) with equivalent

norms.

Proof. Since ϕ ≃ ϕ2, it suffices to show that Lϕ2(·) = Lϕ̄(·).
Let g ∈ Lϕ2(·)(Rn) and set f := g/‖g‖ϕ2(·). We divide f into two parts, f1 =

fχ{|f |<1} and f2 = fχ{|f |>1}. By (A2), and since ‖f‖ϕ2(·) = 1,

‖f1‖ϕ̄(·) = ‖f1‖(ϕ2)∞ 6 ‖f1‖L(ϕ2)∞∩L∞

≈ ‖f1‖Lϕ2(·)∩L∞ = max{‖f1‖ϕ2(·), ‖f1‖∞} 6 1.

If |f2(x)| > 1, then

ϕ̄(x, |f2|) = 2ϕ2(x, |f2|)− 1 6 2ϕ2(x, |f2|).

Otherwise, |f2(x)| = 0, and the inequality holds as well. Thus ‖f2‖ϕ̄(·) . ‖f2‖ϕ2(·) 6
1 and hence

∥

∥g/‖g‖ϕ2(·)

∥

∥

ϕ̄(·)
= ‖f‖ϕ̄(·) 6 ‖f1‖ϕ̄(·) + ‖f2‖ϕ̄(·) . 1,

so that ‖g‖ϕ̄(·) . ‖g‖ϕ2(·). The opposite inequality is proved similarly. �

Remark 4.3. While the spaces in the previous proposition are the same, it is not nec-
essary that ϕ ≃ ϕ̄. For instance, if ϕ(x, t) := max{t − 1

2+|x|
, 0} then ϕ(0, 1

2
) = 0 yet

ϕ∞(t) = t > 0 for all t > 0. Then for every β ∈ (0, 2), ϕ̄(0, β 1
2
) = β 1

2
66 0 = ϕ(0, 1

2
),

so the Φ-functions are not equivalent.
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Proposition 4.2 and Corollary 3.7 now imply the following:

Corollary 4.4. If ϕ ∈ Φ(Rn) satisfies (A0)–(A2) and there exists γ > 1 such that

s 7→ s−γϕ(x, s) is increasing for every x ∈ R
n, then M : Lϕ̄(·)(Rn) → Lϕ̄(·)(Rn) is

bounded.

Note the range of permissible values of t in the following proposition, including also
[0, 1]. This is sometimes very useful, e.g. in Proposition 4.8.

Proposition 4.5. If ϕ ∈ Φ(Rn) satisfies (A0)–(A2), then there exists β ∈ (0, 1) such

that

(4.6) βϕ̄−1(x, t) 6 ϕ̄−1(y, t)

for every t ∈
[

0, 1
|B|

]

, every x, y ∈ B and every ball B.

Proof. If t 6 1, then ϕ̄ is independent of x, so the claim is trivial. Thus it remains only
to consider the case t > 1. Then by Lemma 3.3 the inequality holds if and only if

ϕ̄(x, βs) 6 ϕ̄(y, s)

for every s ∈
[

1, ϕ̄−1(y, 1
|B|

)
]

, Since ϕ̄ > ϕ2, such s satisfies s ∈ [1, ϕ−1
2 (y, 1

|B|
)]. If

βs > 1, then using Lemma 3.3 for ϕ2 we calculate

ϕ̄ (x, βs) = 2ϕ2(x, βs)− 1 6 2ϕ2(y, s)− 1 = ϕ̄(y, s).

If βs < 1, then ϕ̄ (x, βs) 6 ϕ̄(x, 1) = 1 6 ϕ̄(y, 1) 6 ϕ̄(y, s), so the inequality holds
in both cases. �

In view of the previous proposition and the observations of Section 3, we make the
following definition. Note that a normalized Φ-function satisfies assumptions (A0)–
(A2).

Definition 4.7. We say that ϕ ∈ Φ(Rn) is a normalized Φ-function if ϕ(x, t) = ϕ∞(t)
for t ∈ [0, 1], ϕ∞(1) ∈ (0,∞), and there exists β > 0 such that

βϕ−1(x, t) 6 ϕ−1(y, t)

for every t ∈
[

0, 1
|B|

]

, every x, y ∈ B and every ball B.

Proposition 4.5 says that instead of studying ϕ ∈ Φ(Rn) which satisfies (A0)–(A2)
we can study the normalized Φ-function ϕ̄. This sometimes leads to great simplifica-
tions in proofs, as the following result shows (compare this to [12, Section 4.5], and
see Remark 4.9).

Proposition 4.8. Suppose that ϕ ∈ Φ(Rn) is normalized. Let B ∋ x be a ball. Then

‖χB‖ϕ(·) 6
1

βϕ−1(x, 1
|B|

)
.

Proof. By assumption

ϕ
(

y, βϕ−1(x, 1
|B|

)
)

6 ϕ
(

y, ϕ−1(y, 1
|B|

)
)

6 1
|B|

when x, y ∈ B, and hence

̺ϕ(·)
(

βϕ−1(x, 1
|B|

)χB
)

=

ˆ

B

ϕ
(

y, βϕ−1(x, 1
|B|

)
)

dy 6 1. �
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Remark 4.9. In some regards it is actually easier to study general normalized Φ-
functions than the special case of variable exponent spaces: the normalization allows
us to omit the error term which commonly appears in the variable exponent case. This
is a consequence of the fact that ϕ(x, t) = ϕ∞(t) in the normalized case for small t,
whereas only tp(x) 6 tp∞ + h(x) holds in the variable exponent case; the function h
leads to the error term.

5. DUALITY

The conjugate Φ-function of ϕ is defined by

ϕ∗(t) := sup
s>0

(st− ϕ(s)) .

Note that ϕ∗∗ = ϕ [12, Corollary 2.6.3]. For γ > 1, the Hölder conjugate γ′ is defined
by 1

γ
+ 1

γ′
= 1. If ϕ(t) = 1

p
tp, then ϕ∗(t) = 1

p′
tp

′

and we get the usual Lebesgue duality.
The dual is defined for generalized Φ-functions point-wise. Note that conjugating
preserves equivalence, i.e. if ϕ ≃ ψ, then ϕ∗ ≃ ψ∗ [12, Lemma 2.6.4].

Differentiating st−ϕ(s) to find the maximum, we obtain that ϕ∗(t) = t (ϕ′)−1(t)−
ϕ((ϕ′)−1(t)), where (ϕ′)−1(t) is the right-continuous inverse:

(ϕ′)−1(t) := sup{τ > 0 |ϕ′(τ) 6 t}.

For duality arguments we often need functions nicer than Φ-functions: N-functions

are those (continuous)Φ-functions which satisfyϕ(t) ∈ (0,∞)when t > 0, limt→0+
ϕ(t)
t

=

0 and limt→∞
ϕ(t)
t

= ∞. The set of N-functions is denoted by N . Note that N-
functions are strictly increasing. For example, if ϕ(t) = tp, then ϕ ∈ N if and only if
p ∈ (1,∞).

We say that ϕ ∈ Φ(Rn) is a (generalized) uniform N-function if there exists η, ξ ∈
N such that

η(t) 6 ϕ(x, t) 6 ξ(t)

for every x ∈ R
n and t > 0. The set of uniform N-functions is denoted by N(Rn).

We set N1(R
n) := Φ1(R

n) ∩N(Rn).
In the variable exponent case, tp(·) is uniformly N if and only of inf p > 1 and

sup p < ∞, whereas the non-uniform case requires only 1 < p < ∞ point-wise. The
latter condition has turned out to be nearly useless in Lp(·)-research, so it is natural to
consider here only the uniform case.

Proposition 5.1. If ϕ ∈ N(Rn) satisfies (A0)–(A2), then ϕ̄ ∈ N1(R
n).

Proof. By Lemma 4.1, ϕ̄ ∈ Φ1(R
n). We need to check that the normalizations do

not destroy the functions η and ξ. By (A0), there exists β ∈ (0, 1) such that β 6
ϕ−1(x, 1) 6 1/β. First we set η1(t) := η(βt) and ξ1(t) := ξ(t/β). Then η1 6 ϕ1 6 ξ1.
As before, η2(t) = max{η1(t), 2t− 1}, similarly for ξ. Then also η2 6 ϕ2 6 ξ2, and
we easily see that η2 and ξ2 are still N-functions. Furthermore, η̄ = max{η2, 2η2 − 1}
is an N-function minorizing ϕ̄, similarly for ξ̄. �

Lemma 5.2. Let ϕ ∈ N and γ > 1. Then s 7→ s−γϕ(s) is increasing if and only if

s 7→ s−γ
′

ϕ∗(s) is decreasing.

Proof. We note that t 7→ t−γϕ(t) is increasing if and only if D(t−γϕ(t)) > 0, i.e.
tϕ′(t) > γϕ(t). Since ϕ is continuous, we conclude from this that

tϕ′(t−) > γϕ(t−) = γϕ(t).
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On the other hand, as noted after the definition of ϕ∗, with t := (ϕ′)−1(s),

ϕ∗(s) = st− ϕ(t) > st− 1
γ
tϕ′(t−).

By [12, Remark 2.6.9], t = (ϕ∗)′(s) and by [12, (2.6.14)], ϕ′((ϕ∗)′(s) − ε) 6 s for
all ε > 0, so that ϕ′(t−) 6 s. In the previous inequality, this gives ϕ∗(s) > 1

γ′
st =

1
γ′
s (ϕ∗)′(s), which is equivalent to D(s−γ

′

ϕ∗(s)) 6 0, as was to be shown. �

Proposition 5.3. If ϕ ∈ N1(R
n) is normalized, then also ϕ∗ ∈ N(Rn) is normalized.

Proof. First we note that η∗, ξ∗ ∈ N by [12, Theorem 2.6.8]. The inequalities η(t) 6
ϕ(x, t) 6 ξ(t) yield that ξ∗(t) 6 ϕ∗(x, t) 6 η∗(t) by [12, Lemma 2.6.4], and thus
ϕ∗ ∈ N(Rn).

By [12, Lemma 2.6.11], t 6 ψ−1(t)(ψ∗)−1(t) 6 2t for ψ ∈ N . Let x, y ∈ B and
t 6 1

|B|
. Then

β
2
(ϕ∗)−1(x, t) 6

βt

ϕ−1(x, t)
6

t

ϕ−1(y, t)
6 (ϕ∗)−1(y, t).

Furthermore, ϕ(x, s) > ϕ(x, 1)s = s when s > 1 (since ϕ is convex). When t 6 1
and s > 1, it follows that st− ϕ(x, s) 6 s(t− 1) 6 0. Hence, for t 6 1,

ϕ∗(x, t) = sup
s>0

(st− ϕ(x, s)) = sup
s∈[0,1]

(st− ϕ(x, s)) = sup
s∈[0,1]

(st− ϕ∞(s)) = ϕ∗
∞(t)

is independent of x. Since 0 = limt→0+
ϕ(x,t)
t

= limt→0+
ϕ∞(t)
t

we obtain that 1 >
ϕ∗
∞(1) = sups∈[0,1](s− ϕ∞(s)) > 0. Therefore we have shown that it is a normalized

N-function. �

6. THE RIESZ POTENTIAL AND THE SOBOLEV EMBEDDING

Let 0 < α < n. For measurable f we define Iαf : Rn → [0,∞] by

Iαf(x) :=

ˆ

Rn

|f(y)|

|x− y|n−α
dy.

The operator Iα is called the Riesz potential operator.

Lemma 6.1. For ϕ ∈ Φ(Rn) we write ϕ̂(x, t) := ϕ∗(x, t
n−α
n ). Assume that M is

bounded from Lϕ̂(·)(Rn) to itself. Let x ∈ R
n, δ > 0, and f ∈ Lϕ(·)(Rn) with ‖f‖ϕ(·) 6

1. Then
ˆ

Rn\B(x,δ)

|f(y)|

|x− y|n−α
dy . |B(x, δ)|

α−n
n ‖χB(x,δ)‖ϕ∗(·).

Proof. Set B := B(x, δ). We start with Hölder’s inequality and take into account that
‖f‖ϕ(·) 6 1:

ˆ

Rn\B

|f(y)|

|x− y|n−α
dy 6 2 ‖f‖ϕ(·)

∥

∥χRn\B|x− ·|α−n
∥

∥

ϕ∗(·)

6 2
∥

∥χRn\B|x− ·|−n
∥

∥

n−α
n

ϕ̂(·)
.

Next we note that, for all y ∈ R
n \B,

M
(

χB|B|−1
)

(y) > −

ˆ

B(y,2|x−y|)

χB(z)|B|−1 dz =
∣

∣B(y, 2|x− y|)
∣

∣

−1
= c |x− y|−n.
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Therefore χRn\B(y)|x − y|−n . M(χB|B|−1)(y) for all y ∈ R
n. Combining the

previous estimates and using the boundedness of M , we find that
ˆ

Rn\B

|f(y)|

|x− y|n−α
dy .

∥

∥M
(

χB|B|−1
)
∥

∥

n−α
n

ϕ̂(·)
= |B|

α−n
n ‖M(χB)‖

n−α
n

ϕ̂(·)

. |B|
α−n
n ‖χB‖

n−α
n

ϕ̂(·) = |B|
α−n
n ‖χB‖ϕ∗(·). �

Recall that a function is almost decreasing if f(x) 6 Qf(y) when x > y, for some
fixed Q ∈ [1,∞). Almost increasing is defined analogously.

Lemma 6.2. Let ϕ ∈ N1(R
n) be normalized and suppose that s 7→ s

ε−n
α ϕ(x, s) is

almost decreasing for every x ∈ R
n. Then

Iαf(x) . ϕ(x,Mf(x))−
α
nMf(x) a.e.

for every f ∈ Lϕ(·)(Rn) with ‖f‖ϕ(·) 6 1.

Proof. Let us write B := B(x, δ). We divide the Riesz-potential into two parts:

Iαf(x) =

ˆ

B

|f(y)|

|x− y|n−α
dy +

ˆ

Rn\B

|f(y)|

|x− y|n−α
dy.

In the first part we split the integration domain into annuli and use the definition of M :
ˆ

B

|f(y)|

|x− y|n−α
dy 6

∞
∑

k=1

(

δ2−k
)α−n

ˆ

2−kδ6|x−y|<2−k+1δ

|f(y)| dy

.

∞
∑

k=1

(

δ2−k
)α
−

ˆ

|x−y|<2−k+1δ

|f(y)| dy

6 δα
∑

k∈N

2−αkMf(x)

= c |B|
α
nMf(x).

Let ϕ̂(x, t) = ϕ∗(x, t
n−α
n ) be as is Lemma 6.1. By Proposition 5.3, ϕ∗ is normalized.

Thus ϕ∗ satisfies (A0)–(A2). Further ϕ̂−1(x, t) = ((ϕ∗)−1(x, t))
n

n−α , and so ϕ̂ inherits
(A0)–(A2) from ϕ∗.

Set γ := n−ε
α

and define ψ(x, t) := tγ sups>t s
−γϕ(x, s) for t > 0. This definition

directly implies that t−γψ(x, t) is decreasing and ψ > ϕ. Since s−γϕ(x, s) is almost
decreasing by assumption, ψ 6 Qϕ, so that ϕ ≃ ψ. By Lemma 5.2, t−γ

′

ψ∗(x, t)
is increasing, and since ϕ∗ ≃ ψ∗ it follows that t−γ

′

ϕ∗(x, t) is almost increasing.
Therefore, with s = t

n−α
n ,

t−γ
′ n−α

n ϕ̂(x, t) = t−γ
′ n−α

n ϕ∗(x, t
n−α
n ) = s−γ

′

ϕ∗(x, s)

is almost increasing. A calculation yields that γ̂ := γ′ n−α
n

> 1. Therefore ϕ̂ is
equivalent to a Φ-function ξ with t−γ̂ξ(x, t) increasing (cf. [19, Section 5]). Since
ϕ̂ ≃ ξ, also (A0)–(A2) hold. By Corollary 3.7, M is bounded on Lξ(·), and hence also
on Lϕ̂(·).

Therefore, the assumptions of Lemma 6.1 hold, and it follows that

(6.3)

ˆ

Rn\B

|f(y)|

|x− y|n−α
dy . |B|

α−n
n ‖χB‖ϕ∗(·)

provided ‖f‖ϕ(·) 6 1.
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We combine (6.3) with Propositions 4.8 and 5.3, and obtain that

Iαf(x) . |B|
α
nMf(x) + |B|

α−n
n ‖χB‖ϕ∗(·) 6 |B|

α
nMf(x) +

|B|
α−n
n

β(ϕ∗)−1(x, 1
|B|

)
.

Now (ϕ∗)−1(x, t) ≈ t/ϕ−1(x, t) by [12, Lemma 2.6.11] and so

Iαf(x) . |B|
α
nMf(x) + |B|

α
nϕ−1(x, 1

|B|
).

When Mf(x) < ∞, we choose the radius δ such that Mf(x) = ϕ−1(x, 1
|B|

), i.e.

|B| = 1/ϕ(x,Mf(x)). Thus

Iαf(x) . ϕ(x,Mf(x))−
α
nMf(x) a.e. �

Lemma 6.4. Let α > 0, ϕ ∈ N(Rn) with t 7→ t−
n
αϕ(x, t) strictly decreasing to 0 for

every x ∈ R
n and let λ(x, t) := tϕ(x, t)−

α
n . Then ϕ ◦ (λ−1) is equivalent to a convex

Φ-function.

By ϕ ◦ (λ−1) we mean the function (x, t) 7→ ϕ(x, λ−1(x, t)).

Proof. Since the claim is point-wise in nature, we drop the variable x for the rest of
the proof.

Let us denote ψ := ϕ◦(λ−1). Since t−
n
αϕ(t) → 0 we find that λ(t) → ∞ as t→ ∞.

Thus also ψ(t) → ∞ as t→ ∞. The function

λ(s)
n
α =

sn/α

ϕ(s)

is strictly increasing by assumption, so the same holds for λ−1. Furthermore, with
s = λ(t), the fraction

λ−1(s)

s
=

t

λ(t)
= ϕ(t)

α
n

is increasing in t (since ϕ is increasing), hence in s as well. Since t 7→ ϕ(t)/t is
increasing (due to convexity of ϕ and ϕ(0) = 0) this yields that

ψ(t)

t
=
ϕ(λ−1(t))

λ−1(t)

λ−1(t)

t

is also increasing. Since ψ(t)
t

is increasing, we obtain limt→0+ ψ(t) = 0. Thus it follows
from Lemma 2.6 that ψ is equivalent to a convex function. �

The previous lemma shows that the next definition makes sense.

Definition 6.5. Let α > 0 and ϕ ∈ N(Rn) with t 7→ t−
n
αϕ(x, t) strictly decreasing

to 0 for every fixed x. We define λ(x, t) := tϕ(x, t)−
α
n and let ϕ#

α ∈ Φ(Rn) be a
Φ-function equivalent to ϕ ◦ (λ−1) (which exists by Lemma 6.4).

Lemma 6.6. If ϕ ∈ Φ(Rn) satisfies assumptions (A0)–(A2) and t 7→ tγϕ(x, t), γ < 0,

is decreasing, then t 7→ tγϕ̄(x, t) is almost decreasing.

Proof. We prove first that t 7→ tγϕ2(x, t) is almost decreasing. Since ϕ ≃ ϕ2, for
s < t,

sγϕ2(x, s) > sγϕ(x, s/L) = Lγ(s/L)γϕ(x, s/L) > Lγ(t/L)γϕ(x, t/L)

> Lγ(Lt)γϕ(x, Lt) > Lγ(Lt)γϕ2(x, t) = L2γtγϕ2(x, t).
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Using this we obtain the same property for ϕ̄: If 0 < s < t 6 1, then

sγϕ̄(x, s) = lim sup
|z|→∞

sγϕ2(z, s) > L2γ lim sup
|z|→∞

tγϕ2(z, t) = L2γtγϕ̄(x, t),

and if 1 6 s < t, then

sγϕ̄(x, s) = sγ(2ϕ2(x, s)− 1) > sγϕ2(x, s)

> L2γtγϕ2(x, t) >
1
2
L2γtγ(2ϕ2(x, t)− 1) = 1

2
L2γtγϕ̄(x, t).

Since the function is almost decreasing on (0, 1] and [1,∞), it is almost decreasing on
the union as well. �

Lemma 6.7. Let ϕ ∈ N(Rn) satisfy assumptions (A0)–(A2) and let t 7→ t−
n
αϕ(x, t)

be strictly decreasing to 0. Then Lϕ
#
α (·)(Rn) = Lϕ̄

#
α (·)(Rn).

Proof. By Theorem 2.8.1 of [12], Lψ(·)(Rn) ⊂ Lϕ(·)(Rn) if and only if there exist
β > 0 and h ∈ L1(Rn) such that ϕ(x, βt) 6 ψ(x, t) + h(x). This can be equivalently
written as ψ−1(x, s) . ϕ−1(x, s+ h(x)).

Let us show that Lϕ̄
#
α (·)(Rn) ⊂ Lϕ

#
α (·)(Rn); the reverse implication follows analo-

gously. The inclusion is equivalent to the inequality

(ϕ̄#
α )

−1(x, s) . (ϕ#
α )

−1(x, s+ h(x)).

By Lemma 6.6, t 7→ t−
n
α ϕ̄(x, t) is almost decreasing which is equivalent to t 7→

t−
α
n ϕ̄−1(x, t) being almost increasing. By the definition of ϕ̄#

α and the almost increas-
ing property, we obtain that

(ϕ̄#
α )

−1(x, s) ≈ λ̄(ϕ̄−1(x, s)) =
ϕ̄−1(x, s)

ϕ̄(x, ϕ̄−1(x, s))α/n
=
ϕ̄−1(x, s)

sα/n
.
ϕ̄−1(x, s+ h(x))

(s+ h(x))α/n
,

where λ̄(x, t) = tϕ̄(x, t)−α/n. By Proposition 4.2, Lϕ(·) = Lϕ̄(·), so that ϕ̄−1(x, s) .
ϕ−1(x, s + h(x)). Using this in the inequality above, and reversing the steps with ϕ,
we get

(ϕ̄#
α )

−1(x, s) .
ϕ̄−1(x, s+ h(x))

(s+ h(x))α/n
.
ϕ−1(x, s+ 2h(x))

(s+ h(x))α/n
. (ϕ#

α )
−1(x, s + 2h(x)),

as required. �

We are now ready for the main theorem of the paper.

Theorem 6.8. Let ϕ ∈ N(Rn) satisfy assumptions (A0)–(A2) and suppose that ε > 0

is such that t 7→ t−(1+ε)ϕ(x, t) is increasing and s 7→ s
ε−n
α ϕ(x, s) is decreasing for

every x ∈ R
n. Then

‖Iαf‖ϕ#
α (·) . ‖f‖ϕ(·).

Note that ϕ is doubling with constant 2
n−ε
α since s 7→ s−

n−ε
α ϕ(x, s) is decreasing.

Proof. Let us first note that since s 7→ s
ε−n
α ϕ(x, s) is decreasing, t 7→ t−

n
αϕ(x, t) is

strictly decreasing to 0.

By Proposition 4.2 and Lemma 6.7, Lϕ(·) = Lϕ̄(·) and Lϕ
#
α (·) = Lϕ̄

#
α (·) with compa-

rable norms. Thus it suffices to show that ‖Iαf‖ϕ̄#
α (·) . ‖f‖ϕ̄(·).

By Propositions 4.5 and 5.1, ϕ̄ ∈ N1(R
n) is normalized. By Corollary 4.4, M :

Lϕ̄(·)(Rn) → Lϕ̄(·)(Rn) is bounded. By Lemma 6.6, t 7→ t−
n−ε
α ϕ(x, t) is almost
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decreasing. Thus, by Lemma 6.2, λ̄−1(x, Iαf(x)) . Mf(x). Applying ϕ̄ to both
sides, we find that

ϕ̄#
α (x, Iαf(x)) ≃ ϕ̄

(

x, λ̄−1(x, Iαf(x))
)

. ϕ̄(x,Mf(x)).

From this we deduce by the normal scaling argument that

‖Iαf‖ϕ̄#
α (·) . ‖Mf‖ϕ̄(·) . ‖f‖ϕ̄(·). �

It is well known that |u| . I1|∇u| for u ∈ C∞
0 (Rn). With this we directly obtain

the following result.

Corollary 6.9 (Sobolev inequality). Let ϕ ∈ N(Rn) satisfy assumptions (A0)–(A2)

and suppose that ε > 0 is such that s 7→ s−(1+ε)ϕ(x, s) is increasing and s 7→

s
ε−n
α ψ(x, s) is decreasing for every x ∈ R

n. Then

‖u‖ϕ#
1 (·) . ‖∇u‖ϕ(·)

for all u ∈ C∞
0 (Rn).

If Ω ⊂ R
n is a John domain, then |u−uΩ| . I1|∇u| by [5], and the same arguments

yields that
‖u− uΩ‖ϕ#

1 (·) . ‖∇u‖ϕ(·)

for all u ∈ W 1,1(Ω). Here uΩ denotes the average of u over Ω.
Let α = 1 and ϕ(x, s) = sp for some p ∈ [1,∞). Then s 7→ s−(1+ε)ϕ(x, s) is

increasing if p > 1 and s 7→ s−(n−ε)ϕ(x, s) is decreasing if p < n. Thus Theorem 6.8

and Corollary 6.9 covers the parameter range 1 < p < n in which case ϕ#
1 (s) =

sp
∗

. The assumption 1 < p can probably be relaxed by weak-type estimates (cf. [12,
Section 6.1]), but this is left for future work.

Let ϕ ∈ N . Next we discuss the sharpness of ϕ#
1 . Let (rk) be a positive sequence

converging to zero. We set

vk := rkϕ
−1(r−nk ),

for k = 1, 2, . . . Define uk ∈ C∞
0 (B(0, 3rk)) such that it equals vk in B(0, rk) and

|∇uk| 6
vk
rk

. By a straightforward calculation we obtain that
ˆ

Rn

ϕ(|∇uk|) dx . rnkϕ
(vk
rk

)

= 1

for every k = 1, 2, . . . Thus ‖∇uk‖ϕ 6 1. On the other hand,
ˆ

Rn

η(|uk|) dx & rnkη(vk) = rnkη
(

rkϕ
−1(r−nk )

)

for η ∈ Φ. Thus we find that the Sobolev inequality ‖u‖η . ‖∇u‖ϕ does not hold for
all u ∈ W 1,ϕ

0 (B(0, 1)) if

lim sup
t→0+

tnη
(

t ϕ−1(t−n)
)

= ∞.

We consider the function η := ϕ ◦ ψ−1. With the substitution t = ϕ(r)−1/n we
obtain

tnη
(

t ϕ−1(t−n)
)

=
1

ϕ(r)
ϕ
(

ψ−1
[

ϕ(r)−
1
nϕ−1 (ϕ(r))

])

=
1

ϕ(r)
ϕ
(

ψ−1
[

rϕ(r)−
1
n

])

=
ϕ (ψ−1 [λ(r)])

ϕ(r)
.



16 PETTERI HARJULEHTO AND PETER HÄSTÖ

If the Sobolev inequality holds, then by the previous argument the limit of this ex-

pression (as t → 0+, i.e. r → ∞) must be finite. Then ϕ(ψ−1[λ(r)])
ϕ(r)

< M ∈ [1,∞)

when r > r0 for some r0. Hence ϕ (ψ−1 [λ(r)]) < Mϕ(r) 6 ϕ(Mr) for r > r0.
Here the last inequality follows by the convexity of ϕ since M > 1. Consequently,
ψ−1 [λ(r)] 6 Mr when r > r0 so that ψ−1(t) 6 Mλ−1(t) when t > λ(r0). If ϕ
is doubling, this implies that η(t) 6 ϕ(Mλ−1(t)) . ϕ#

1 (t). Hence we obtain the
following proposition.

Proposition 6.10. Let ϕ ∈ N be doubling and let λ be as in Definition 6.5. Let

ψ : [0,∞) → [0,∞) be such that

lim
t→∞

ψ−1(t)

λ−1(t)
= ∞.

Then there does not exists a constant c > 0 such that

‖u‖ϕ◦ψ−1 6 c ‖∇u‖ϕ

for all u ∈ C∞
0 (B(0, 1)).
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[30] A. Świerczewska-Gwiazda: Nonlinear parabolic problems in Musielak–Orlicz spaces, Nonlinear

Anal. 98 (2014), 48–65.
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