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Abstract: Digital twins have gained a lot of attention in
modern day industry, but practical challenges arise from
the requirement of continuous and real-time data integra-
tion. The actual physical systems are also exposed to dis-
turbances unknown to the real-time simulation. Therefore,
adaptation is required to ensure reliable performance and
to improve the usability of digital twins in monitoring and
diagnostics. This study proposes a general approach to
the real-time adaptation of digital twins based on a mech-
anism guided by evolutionary optimization. The mecha-
nism evaluates the deviation between the measured state
of the real system and the estimated state provided by the
model under adaptation. The deviation is minimized by
adapting the model input based on the differential evolu-
tion algorithm. To test the mechanism, the measured data
were generated via simulations based on a physical model
of the real system. The estimated data were generated by a
surrogate model, namely a simplified version of the phys-
ical model. A case study is presented where the adapta-
tion mechanism is applied on the digital twin of a marine
thruster. Satisfactory accuracy was achieved in the opti-
mization during continuous adaptation. However, further
research is required on the algorithms and hardware to
reach the real-time computation requirement.
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1 Introduction
Digital twin (DT) technology is the core component of
cyber-physical systems (CPS) [1]. Such technologies have
emerged from the rapid advances in ICT technologies and
from national strategies and initiatives, such as ‘Industrie
4.0’, ‘Industrial Internet of Things’ (IIoT), and ‘Made in
China 2025’, to name a few [1]. Grieves defined the DT orig-
inally in 2003 [2], although the definition by NASA was
widely adopted later [3]. NASA defined DT as an integrated
multi-physics, multi-scale, probabilistic ultra-fidelity sim-
ulation that reflects the state of the physical twin in a
timelymanner byusing the best available physicalmodels,
sensor updates, and historical data [3]. Since then, various
additional definitions have emerged [1].

The backbone technology of digital twins is real-time
and multi-source data collection [4]. Information about
the system operations, history, behavior, and the current
state are required to create digital simulation models that
dynamically update and change along with their physical
counterparts. DT also adopts modern data visualization
schemes such as virtual reality (VR) and augmented real-
ity (AR), providing illustrative and user-friendly views [4].

The general and standard architecture for the digital
twin [2] is composed of three components: physical ob-
jects, digital models, and the data that connect the phys-
ical and digital domains. The physical objects provide
the basis for the building of the digital models. The digi-
tal models support the control, simulation, and decision-
making of the physical objects. The data are the require-
ment for creating new knowledge. Additional components
to the architecture have been proposed as well [5].

Although a common perspective is that digital twins
are virtual copies of physical systems [1–3], there are some
differences in the definitions of the data integration lev-
els [6]. Kritzinger et al. [6] defined three levels of data in-
tegration, as illustrated in Figure 1. The digital model is a
digital representation of the physical object without auto-
mated data exchange between the physical and digital ob-
jects. The digital shadow has an automated data flow from
the physical object to the digital object, but not vice versa.
Finally, the digital twin has fully integrated data flows in
bothdirections. In the recently reported research, the inter-
action between the physical and virtual objects is mainly
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Figure 1: Data flow in digital model, digital shadow, and digital twin.
(Modified from [6]).

off-line interaction, lacking continuous and online interac-
tion [6, 7].

The first digital twin applications originated in the
aerospace sector. At present, various types of DT includ-
ing product digital twins, process digital twins and opera-
tion digital twins have been developed [7]. The case study
in this paper focuses on the maintenance and lifecycle
management areas of product digital twins. In these areas,
digital twins have been proposed for the anomaly detec-
tion and condition monitoring of machines [1, 5], the mon-
itoring of material deformations [8], and the modeling of
the reliability of physical systems [9], for example. More-
over, digital twins have been proposed for mirroring the
entire life of a physical object digitally. This includes tasks,
such as virtual commissioning, where the lifetime of old
machines is extended [10]. Furthermore, the environmen-
tal conditions and external factors require consideration
in studies focusing on the long-term behavior of the sys-
tem [11, 12]. Although digital twins could provide signifi-
cant benefits to industry [6, 13, 14], the practical applica-
tions are still rare due to the challenges arising from the
real-time adaptation. Moreover, the maintenance and cali-
bration of the model are challenging but essential tasks in
real-life applications with limited amount of reliable refer-
ence data.

The coupling between simulation and optimization
is an essential subject for current research [15]. Practical
challenges arise from the continuous and real-timedata in-
tegration in digital twins. Zhang et al. [16] inferred that the
calculation time in real-time optimization has decreased
from hours to minutes recently. The minute level is ade-
quate for certain applications such as chemical process
control with large time constants. However, in certain ap-
plications such as in rotating machines, the significant
phenomena may occur at rates from hertz to several kilo-
hertz. The optimization algorithms face great challenges
to meet the real-time requirements in such cases.

Moreover, physics-based simulators tend to be com-
plex and relatively slow. Such simulators are used for gain-
ing insight into how the system behaves and for analyzing
the system outputs. The simulators are not necessarily op-
timized for fast iterative computations. Lighter modeling
approaches such as surrogatemodels [17–19] are therefore
needed in practical online applications.

In this study, an online adaptationmechanism for dig-
ital twins is proposed. A DT of a driveline in a marine
thruster is used for testing the mechanism. A linear regres-
sion model is applied as a surrogate model to substitute
for the physics-based Simulinkr model of the driveline in
order to speed up the computation. Differential evolution
(DE) is used as the optimization algorithm due to its good
convergence properties in global optimization [20].

In principle, the online adaptation is a parameter es-
timation task in moving time windows [21]. Model adap-
tation is a well-known research area, which has been stud-
ied from various perspectives such as concept drift adapta-
tion [22], soft sensor adaptation [23], state estimation [24],
adaptive control [25], physical model adaptation with sta-
tistical correction models [26], disturbance model adapta-
tion [27], and the adaptation to different local operating
regimes [28]. The mechanism proposed in this study uses
global optimization and is a model-independent solution,
which makes it a general solution and suited for a variety
of different simulators, and both physics-based and data-
based models.

The research objective in this paper is to study the real-
time applicability and accuracy of the proposed adapta-
tion mechanism. The need for this approach originated
from the objective to estimate torque anywhere on the
thruster driveline without a physical sensor in the corre-
sponding location.Although suchestimations canbedone
through modeling in this simulated case, direct modeling
is not alwayspossible, andamore general solution is there-
fore needed for digital twins. Moreover, the digital models
or simulators that are run parallel to the physical system
may operate under assumptions that do not fully match
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the real events. In such a case, the model needs online
adaptation to respond correctly to the events confronted
by the physical system. This creates practical challenges
for real-time simulation and adaptation, which are demon-
strated in this study.

The rest of the paper is organized as follows. Section
2 introduces the studied product digital twin and the pro-
posed adaptation mechanism. The results from the tests
are shown and discussed in Section 3. Finally, the study is
summarized in Section 4.

2 Digital twin adaptation

2.1 Thruster driveline digital twin

Figure 2 shows a simplifieddrawing of an azimuth thruster,
which can be applied in towboats, for example. This
thruster driveline is operated by an electricmotor. Thedriv-
eline can be divided into three parts: the input shaft, ver-
tical shaft, and propeller shaft. The driveline includes two
reduction gears, the propeller, and a flexible coupling in
the input shaft.

Figure 2: Simplified drawing of thruster driveline.

Transient torsional vibrationmodels were used on the
physical modeling of the driveline. The complete drive-
line was compiled in the Simulinkr environment using
SimscapeTM components. The Simulinkr model can be
used to estimate torque in any part of the driveline. A de-
tailed representation of the system and its model structure
is omitted in this study due to proprietary limitations.

2.2 Adaptation mechanism

Figure 3 portrays the digital-physical interaction of a digi-
tal twin and the position of the adaptation mechanism in

Figure 3: Schema for online adaptation of digital twins.

the overall schema. The physical object is the real system,
which ismonitored online and generatesmeasured data. It
is affected by unknown events that cannot be predicted in
advance. The system has a digital model (twin), which ac-
quires data from the input function and themeasurements.
The input function receives estimated (parameter) values
from the adaptation algorithm (differential evolution). The
input adaptation is an iterative procedure, where the devi-
ationof themeasured systemoutput and the estimatedout-
put is minimized. When the data integration level of a dig-
ital shadow is applied, the estimates can be used in deci-
sion support, for example. If the estimates are used to con-
trol the system operation automatically, the highest data
integration level is obtained [6].

In this study, the digital model is used to estimate
the values of a variable, of which in situ measurement
is avoided due to practical considerations, such as low
cost efficiency. The estimated variable is the torque from
the propeller (see Figure 2). The measured and estimated
torque values of the driveline could be used for mainte-
nance support and lifecyclemanagement in a practical ap-
plication. However, the practical use of the information
provided by the digital twin is beyond the scope of this
study.

The adaptation is done in short time windows and
therefore the real-time requirements are strict. Here, the in-
put function estimates a constant value for each time win-
dow. However, amore complicated input function, such as
a polynomial function, can be used as well. In this study,
only one variable of the model was adapted. However, the
mechanism is not limited to the adaptation of a single vari-
able.
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2.2.1 Differential evolution

Differential evolution, developed by Storn and Price [20],
is a heuristic approach to global optimization with real
numbers [29]. It has been used successfully in diverse do-
mains [30–33], and therefore provides a well-founded ba-
sis for the general mechanism of digital twin adaptation.

A DE algorithm consists of four basic steps, which
include the initialization of the population, mutation,
crossover, and selection. The initial vector population (in-
dividual trial solutions) is chosen randomly and should
cover the entire parameter space. A new population is pro-
duced at the end of each iteration (or generation) by mu-
tation and crossover operations on individual vectors [29].
In the selection stage, individuals of the new population
are compared with individuals of the old population. The
best individual based on the value of the objective func-
tion is selectedas a competent individual of thepopulation
for the next generation. The termination of optimization is
done based on a fixed number of iterations or by attaining
a pre-specified objective function value, for example.

DE utilizes NP parameter vectors as a population for
each generation G. Each vector is D-dimensional, where D
is the number of parameters to be manipulated, i.e., the
number of input function parameters in this case. NP is a
user-specified number, such as 10·D. The method has sev-
eral variants for the mutation strategies and all of them
are based on themathematical subtraction operation with
parameter vectors. In this study, the classical strategy of
‘DE/rand/1/bin’ was selected [34].

Other user-specified parameters include the crossover
probability constant (CR) from the interval [0, 1] and the
factor that controls the amplification of differential varia-
tion (F) from the interval [0, 2]. The values F = 0.8 and CR
= 0.5 were tested in this study. The maximum number of
iterations (itermax) and the value to reach (VTR) in the ob-
jective function were defined to reach the end of optimiza-
tion. Practical advice on defining the parameter values is
given in [34].

The original form of DEwasmodified here with the ad-
dition of a constraints check to minimize the calculation
work. In the constraints check, the vectors of a new popu-
lation were pre-checked and rejected if the trial solutions
were outside the user-specified range, thus avoiding the
generation of non-feasible solutions.

2.2.2 Objective function

The objective of model input adaptation is to fit the model
output values to the reference values by adjusting the

model input values. An objective function that describes
the problem well is necessary for successful optimization.
In this study, the difference between themodel output and
reference values was minimized based on the mean rela-
tive error (MRE). The objective function J can therefore be
defined as

J(θ) =
[︃
1
N

N∑︁
t=1

(︃⃒⃒
ŷt − yt

⃒⃒
|yt|

)︃]︃
· 100% (1)

where θ is the evaluated parameter subset, ŷt is the model
output value, yt is the reference value, andN is the number
of time instants in the time series. In this study, the param-
eter subset includes only one value, because a single con-
stant was estimated. The reference data were generated by
the surrogate model using the input data generated by the
Simulinkr model.

In this study, the adapted variablewas the torque from
the propeller. The variable y used in the objective function
was the torque from the flexible coupling (see Figure 2).
However, the mechanism is not limited to the use of a sin-
gle variable in the objective function owing to the global
optimizer.

2.2.3 Surrogate modeling

In this study, a surrogate model of the simulator was gen-
erated in order to speed up the adaptation procedure. The
model is a linear regression model, which can be defined
as

ŷ = a1 · x1 + a2 · x2 + a3 (2)

where x1 is the value of the torque from the propeller; x2 is
the value of the torque from the upper gear; a1 and a2 are
the regression coefficients and a3 is the intercept defined
using least squares fitting [35]. The defined values are a1 =
−0.2798, a2 = 1.5025, a3 = 27.1046. Themodel response ŷ is
the estimate of the torque from the flexible coupling (y).

The Simulinkr model was used to generate the data
for the surrogate model fitting. The data and the surro-
gate model response (ŷ) are shown in Figure 4. The sim-
ulated signals include an acceleration phase (0–5 s) and
a constant phase, which is disturbed by unknown events
around the time instants of 9, 14, and 20 s. The unknown
events are simulated ice loads on thepropeller,whichwere
generated based on the definitions made by the classifica-
tion society. The sampling frequency in this study was set
to 1 kHz.

To evaluate the fitness of the surrogate model, the
following values were computed based on the model re-
sponse (period 1–25 s): MRE = 0.09%, RMSE = 35.45 Nm
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Figure 4: The values of model variables including the estimates
from the surrogate model.

(root-mean-square error), and R2 = 1.00 (coefficient of de-
termination) [35]. The first second of the 25-second simu-
lation was omitted, because the modeling error was rela-
tively large at the start andwould give a false impression of
the overall performance. Otherwise, the surrogate model
emulates the original simulator performance accurately in
the presented operating conditions.

Practical modeling approaches require validation,
such as cross-validation [36], but in this case the model
wasused to test the adaptationmechanismonly.Model val-
idation on separate data sets was therefore omitted. The
main objective in the surrogate modeling was to develop
as simple a model as possible for testing purposes only.

3 Results and discussion
Ninedifferent tests, presented inTable 1,weredoneusinga
varyingmaximumnumber for the iterations inDE, itermax
= {25, 100, 200}. The tests included a varying value to reach
(VTR) and timewindow length. The tested valueswereVTR
= {0.05%, 0.01%, 0.002%} and the number of time instants
in awindowwere {2, 5, 10}. The estimated parameter value

Table 1: Test settings.

Setting number Value to reach,
VTR (%)

Time instants in
window

1 0.05 10
2 0.05 5
3 0.05 2
4 0.01 10
5 0.01 5
6 0.01 2
7 0.002 10
8 0.002 5
9 0.002 2

(a.k.a. the value of the input variable, x1) was constrained
in the range of −10000–200000 Nm in DE. The values out-
side this rangewere rejected from the newpopulation. The
computationswere done usingMatlab R2017a onDell Pow-
erEdgeR720with a 2.8GHz 10-core-E5-2680v2Xeonproces-
sor and 512 GB memory.

Figure 5 presents theMRE values for the adapted input
variable (propeller torque) in each test. Theadaptedvalues
were compared with the values generated by the simula-
tor (see Figure 4). The MRE values were computed based
on the data points from the period 1–25 s. The results in-
dicate that the error decreased together with a decreasing
window size. This is accounted for with the use of a con-
stant value in each time window. The resolution is better
in the shorter windows, resulting in smaller error values.

Figure 5:MRE of the adapted input variable with different test set-
tings.

Interestingly, the VTR value did not have a major in-
fluence on the result. This can be inferred by comparing
the MRE of test settings 3, 6, and 9, for example. This indi-
cates that the error in the model output did not decrease
after a certain limit. This is confirmed in Figure 6, which
shows that the error in the model output did not decrease
substantially when the VTR was reduced. The reason for
the minor effect of VTR originates from the fact that DE
reached the achievable optimum already at the highest
tested VTR (0.05%). This indicates that the defined VTR
could not be attained in every time window by estimating
a constant in the input function.

The results in Figures 5 and 6 indicate that the op-
timization was completed typically when the maximum
number of iterations was attained. The lowest number of
iterations (itermax = 25) was clearly too low, becausemore
accurate estimates could be reachedwith a higher number
of iterations. Then again, two hundred was too much, be-
cause the error did not decrease when compared with the
case of one hundred iterations.

The upper plot in Figure 7 shows the relative errors for
each time instant (1–25 s) from the casewhere theMREwas
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Figure 6:MRE of the surrogate model output variable using the
adapted input variable.

the smallest (0.09%) on the adapted variable (see Figure 5).
One hundred iterations and test setting no. 9 were used.
The results show that the highest error of 3.25% was ob-
tained during the first ice load at the time instant of 8.7 s.
Other simulation stages with relatively high errors include
the acceleration stage, and the twoother ice load instances.
Obviously, a changing system state resulted in higher er-
rors than the constant state. However, in general the rela-
tive errors were small.

The lower plot in Figure 7 shows the relative errors
for each time instant from the case where the MRE was
the highest (0.58%) on the adapted variable (see Figure 5).
Twenty-five iterations and test setting no. 4 were used. The
maximum error (27.78%) was obtained during the acceler-
ation phase at the time instant of 1.7 s. As in the upper plot,
the highest errors were obtained during the ice load in-
stances and the acceleration phase in general. A constant
system state resulted in relatively small error values.

Figure 7: Best performance (above) and worst performance (below)
on the adapted input variable.

Figure 8 presents the computation time of each test.
The number of iterations and the number of time instants
in a time window had a large effect on the computation
time. The computation time increased together with the
increase of itermax. In fact, the computation time was al-
most directly proportional to the number of iterations. One
hundred iterations took roughly half of the time needed

for two hundred iterations and 25 iterations took close to
a quarter of the time required for one hundred iterations.
Moreover, the number of time instants (i.e., data points) in
a window had a strong negative correlation with the com-
putation time. Five time instants in a window took around
double the time required for ten instants. Two instants
took around 2.5 times the duration needed for five time
instants. In conclusion, the computation time increased
when smaller time windows were used.

Figure 8: Computation time with the applied settings.

In summary, the results show that relatively small er-
rors were obtained in the model input by using the pro-
posed adaptation mechanism. The presented case study
was a simplified demonstration where the adaptation of
a single constant in short time windows was tested. In or-
der to obtain even more accurate estimates, more compli-
cated input functions, such as linear or polynomial func-
tions, could be used. The approach is not limited to using a
single variable in adaptation. On the contrary, several vari-
ables can be optimized in more complex applications due
to the suitability of the differential evolution algorithm for
multi-parameter global optimization tasks [29].

Based on these results, the proposed adaptationmech-
anism has great potential for online adaptation in the fu-
ture. The adaptation of the complete 25-second signal with
the smallest error (setting no. 9, itermax = 100) took 630
seconds, which is around 25.2 times the duration of the
signal. The fastest adaptation (setting no. 7, itermax = 25)
took 34 seconds, which resulted in an MRE of 0.57% in
the adapted input variable. Parallel computingwas not ap-
plied in this study, but sucha solution couldpotentially im-
prove the real-time performance of the method. Moreover,
the adaptation can be restricted solely to time instances
with anomalous events if the typical performance of the
physical object is simulated accurately enough at other
time instances. The performance of the adaptation mech-
anism has a trade-off between the desired accuracy and
computation time.
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4 Conclusions
In this paper, the shortcomings of practical DT applica-
tions for industrial monitoring were studied, namely con-
tinuous and real-time data integration and model adap-
tation. A mechanism based on differential evolution was
proposed for the online adaptation of digital twins with
the aim of achieving real-time performance. The mecha-
nism was demonstrated by estimating constants that rep-
resented model input variable values in short time win-
dows. A surrogate model of the physics-based driveline
model of a marine thruster was used to simplify the prob-
lem and to reduce the computational time. The results re-
vealed that small errorswere achieved in themodel output
and in the estimated input variable.However, the real-time
requirement for the kilohertz rate was not achieved with
the applied settings. Therefore, additional research should
be done on parallel processing in order to reduce the
computational time. Other possibilities include hardware-
based speed improvements, algorithm optimization, and
the use of more efficient programming techniques. Finally,
the application of the proposed mechanism in more com-
plexproblemsandother practical digital twin applications
is recommended.
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