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Abstract: This article presents a statistical prediction
model-based intelligent decision support tool for center
line deviation monitoring. Data mining methods enable
the data driven manufacturing. They also help to under-
stand the manufacturing process and to test different hy-
potheses. In this study, the original assumption was that
the shape of the strip during the hot rolling has a strong ef-
fect on the behaviour of the steel strip in Rolling, Anneal-
ing and Pickling line (RAP). Our goal is to provide infor-
mation that enables to react well in advance to strips with
challenging shape. In this article, we show that the most
critical shape errors arising in hot rolling process will be
transferred to critical errors in RAP-line process as well. In
addition, our results reveal that the most critical feature
characterizes the deviation better than the currently used
criterion for rework. Thedevelopedmodel enables theuser
to understand better the quality of the products, how the
process works, and how the quality model predicts and
performs.

Keywords: smart decision support, data driven manufac-
turing, machine learning, steel strip rolling, GBM

1 Introduction
Constantly emerging demands for the product properties
increase the need to manage the manufacturing processes
more effectively and in amore automatedway in steelmak-
ing. With a good process control, the production of defec-
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tive products, fault situations, waste and external failure
costs, which arise when the product does not meet the de-
sign quality standards, can be prevented and the competi-
tiveness of the company increases.

The use of dataminingmethods inmanufacturing pro-
cesses has gradually become more common along with in-
dustry 4.0. Therefore, the area of machine learning (ML),
including the fields of artificial intelligence (AI), data min-
ing (DM) and knowledge discovery (KD), have become one
of the key interests inmanufacturing process development
[1]. Especially data mining is widely used for quality diag-
nostics and improvement in complex steel manufacturing
processes. Current manufacturing process development is
heading towards data driven smart manufacturing. The
topic is elaborated with examples in [2].

Data based statisticalmethods enable the discovery of
the knowledge that cover the whole product selection in
manufacturing and the whole process with a single model
[3–5]. With that knowledge, the process outcomes can be
predicted and relationships between process parameters
can be found. Moreover, data mining approaches have en-
abled the development of intelligent tools for extracting
useful information and knowledge automatically from the
industrial data [6].With this kind of automated support for
decision-making, the workload and the cognitive load of
the workers can be decreased and they can concentrate on
improving the process when an alarm for increased risk of
failure occurs, for example. Statistical prediction models
are especially suitable for the decision-making; with their
ability to predict the future outcome, the reaction time af-
ter an alarm is longer [7]. The performance of the predic-
tion models can be improved by personalizing the base
models dynamically by using incremental methods [8]. In
the steel making domain the personalizing can be done
based on the products groups, for example.

In Tornio, the stainless steel is cold rolled with an inte-
grated rolling, annealing and pickling line, which is called
a RAP-line. The center line deviation of the steel strip in
the RAP-line is a major quality factor that can produce
serious problems if the strip did not stay in place during
RAP processing. In the worst case, a diverged strip posi-
tion can stop the whole production and brake the devices.
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Hot rolling strip center line deviation at the previous pro-
cess step is a commonly used and easily availablemeasure-
ment of the strip shape. In Tornio, the center line measure-
ment is followed in white collar level and it’s also used
as a rework criterion. The center line measurement is a
good way to rate strip shape, but it does not tell the whole
story of the asymmetrical flatness. Center line is relative to
the mass of the strip that’s already on the roller table. The
longer/heavier the strip is on the roller table, the less sen-
sitive it becomes for the center line deviation.

It could be possible to simulate the behaviour of the
strip with a certain shape in the RAP-line during different
individual phases. Ilmola et al. present a very exact pic-
ture of simulating the rolling and water cooling processes
of the steel strip in twoparts, the hot rolling andheat trans-
fer and microstructure formation during water cooling [9].
However, in this case, the incoming strips at the RAP-line
include a large amount of different shapes, and to get the
big picture of the whole production, all of them require
simulating. In addition, there are hundreds of products be-
having differently because of their chemical composition
or the mechanical properties, and thus that the simula-
tionworkwouldbehuge if not practically impossible.With
data mining methods, the big picture of the process can
be achieved quickly. These methods can process a large
set of different process settings and products data simulta-
neously and take into account the variation caused by the
measurement error or actual realization related to the fea-
tures of the products and the process parameters [10–12].
Powerful machine learningmethods are capable of model-
ing highly nonlinear process parameter dependencies and
enable the effective use of the process data.

In the beginning of this study, the hypothesis was that
the behavior of the strip in the RAP-line is highly depen-
dent on the shape measurements of the strip in an ear-
lier stage of the process, during hot rolling. In that case,
it would be easy to react well in advance to strips with
challenging shapes. In this article, we propose a method
for finding root causes behind the center line deviation of
the steel strips. Our results support the original hypothe-
sis, and furthermore, we have been able to determine the
most defective values for the critical process parameters.

The article is organized as follows: Section 2 intro-
duces the used data and data pre-processing process, sta-
tistical methods and feature extraction are explained in
Section 3. Modelling results and implementation are then
presented in Section 4. Finally, the conclusion is in Section
5.

2 Data description
The data consists of over 5,400 steel strips and over 50
variables from the hot rolling process to the RAP-line.
The dataset includes samples from all the main product
groups, and it was collected from Outokumpu Stainless
Oy, Tornio, Finland steel strip mill process during 2017
with two different measurement devices which produced
hundreds of data points for each strip and variable. The
data collection involved a considerable amount of manual
work, which limited the number of observations.

Duringhot rollingprocess, each strip ismeasuredwith
a device equipped with pyrometer and X-ray. The mea-
sured variables relate to asymmetrical flatness, position
deviation, crown andwedge shape of the strip. From these
measurements, descriptive features used in the modeling
process are extracted. For example, the asymmetrical flat-
ness is calculated by fitting a slope between the edges of
the strip. Figure 1 illustrates the transversal slope, which is
calculated from the normalized 3D flatness data. The vari-
able slope_max is the absolutemaximumof the calculated
slope values.

Figure 1: The transversal slope, which is calculated from the normal-
ized flatness data of the strip.

The second device measures at the RAP-line, and the
data set includes the center line deviation measurements.
Again, hundreds of data points are gathered from each
strip and each variable. The response variable is calcu-
lated from these measurements.

A lot of attention has been paid to the combination of
the hot rolling and RAP-line data sets and the extraction
of the features. Careful pre-processing was done in order
to remove redundant variables and clearly defective obser-
vations. More than half of the data had to be removed be-
cause of the exceptional rolling process, such as another
preceding process step after hot rolling line, too short a
measurement sequence, a roll change during the rolling
process, over 30 minutes pause during the process, or ex-
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ceptionally low processing speed. Proper pre-processing
ensures that the data is more reliable and the statistical
analysis is more accurate. The final data set includes 2,071
steel strips.

3 Methods for quality prediction

3.1 Machine learning methods for process
data utilization

In this application, the center line deviation is predicted
byusing gradient boostingmethods (GBM) [13]. The idea of
this machine learning algorithm is to form a strong learner
by combining together the set of iteratively estimatedweak
learners. The model is able to treat efficiently the complex
and nonlinear relationships within the data set, which
is mandatory with industrial applications. Other advan-
tages are that the method is capable of processing obser-
vations with missing information, and contrary to neural
networks, it works also with smaller data sets.

The availability of the variable importance and the
possibility to visualize the relationships between the vari-
ables and the predictions of the model help to under-
stand the modelled process better. Partial dependence
plots (PDP) can be drawn independently for each variable
in the model and also the interaction between variables
based on H-statistic can be visualized [14, 15].

Especially, when a high center line deviation has been
predicted for a product, it is important to find out the rea-
sons behind the high risk for this particular product. Game
theory based SHAP (SHapley Additive exPlanation) val-
ues relate to the change in the expected model prediction
based on each input variable [16]. Themethod enables the
finding of the high-risk variables for each product based
on its individual backgroundcompared to similar products
in general.

3.2 Feature extraction

GBM-model is trained using features extracted from the
data measured from the hot rolling process. The original
raw data included about 50 variables, but the number
was reduced with the feature extraction and the knowl-
edge of domain experts. One example of extracted variable
was the slope of asymmetrical flatness of the strip during
hot rolling. Additional 14 new features were constructed
from the original variables. These features were different
minimums and absolute maximum values of slope, crown

and wedge shapes of the strip. Additionally, thickness of
the strip was classified in two classes and width in three
classes. Steel type was divided into five indicator vectors,
with 1 or 0, depending on if the strip was that type or
not. Variables about the chemical composition (Cr, Ti, Nb
andN)were included aswell. Furthermore, three variables
were left out due to strong correlation with other variables.
The final number of variables used for model training was
18.

Due to the complexity of the center line deviation as-
sessment, a lot of attention has been paid to the selection
of the response variable that describes the position devia-
tion best. We ended up considering the 90 m of the inner
circle of the strip coil and calculated the mean of the pro-
cess variable, ST6 super position for describing the center
line position of the strip. The RAP process is continuous,
that is, the consecutive strips are seamed together. This
seamareawas left out in order to concentrate on the stable
area, where the preceding strip has no influence anymore,
and the measurement from hot rolling can be assumed to
be stable.

Next, we applied an average filtering (n=10) for ST6 su-
per position values of the selected length and calculated
the difference between the mean of the ST6 super position
and the filtered curve. Figure 2 illustrates the calculation of
the response variable. The solid line shows ST6 super po-
sition values and the dotted line indicates the average fil-
tered curve of the ST6 super position. The formed response
variable was predicted with GBM model that was imple-
mented with R-program.

4 Practical use case

4.1 Results of the center line deviation
modeling

The data set was divided into five parts in chronological or-
der. The first 70% from every part was selected in the train-
ing set and the last 30% to the test set. The procedure re-
duced the dependence of the training and the test sets and
increased the temporal coverage of the test set. Thus all the
steel types were represented both in training and test sets.

Features described in Section 3 were used to train the
GBMmodel. Theperformance andgeneralizationbasedon
the test set results of the GBM-model are presented in Ta-
ble 1. According to the results, the overall correlation (R)
between the measured and predicted values of the test set
was 0.74, the root mean square error (RMSE) was 7.2 and
themean absolute error (MAE) was 4.6. The scatter plot be-
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Figure 2: The ST6 super position values (solid) and an average fil-
tered curve (n=10) (dotted). The straight line indicates the mean of
the ST6 super position. Max_dev (arrow) is the calculated maximum
difference of the mean of the ST6 super position and the filtered
curve.

Figure 3: Predicted ST6 super position (x-axis) vs. measured values
(y-axis) in the test set. A product group with inferior performance is
highlighted (black).

tween the predicted response variable and the measured
values in the test set are shown in Figure 3. Themajority of
the observations have been predicted quite accurately, but
there is some deviation due to the complexity of the pro-
cess and variability of the products. Especially, one prod-
uct group (highlighted in black) is quite different on its

Figure 4: The importance of each variable in the model.

mechanical properties, and thus, behaves differently from
others duringRAPprocess. Generally, as canbe seen in Fig-
ure 3, this type of products behaves well at the production
line, but the sparse deviations are difficult to predict, and
thus, the observations belonging to this group reduce the
overall performance of the model.

Table 1: Root mean squared errors (RMSE), mean absolute error
(MAE) and correlations (R) of the models in test and training set

train test
RMSE 6.5 7.2
MAE 4.2 4.6
R 0.81 0.74

In GBM, the relative importance of the input variables
is determined by their occurrence on the splits during the
tree building process and how much each variable then
improves the MSE (mean squared error) of the whole pre-
diction model. The importance in the model for each vari-
able affecting the center line position is shown in Fig-
ure 4. The overall sum of variable importance values is
100. The most important one is the hot rolling parame-
ter slope_max, which describes the maximum slope of the
strip asymmetrical flatness during the hot rolling process.
With Partial Dependence Plots (PDP), the effect of each
variable on the response variable can be visualized. From
PDP in Figure 5, it can be clearly seen that the higher
the slope_max is during hot rolling, the higher the center
line deviation is in RAP process correspondingly. The in-
crease in deviation is especially large after 40 units. This
result proved the hypothesis that the shape errors in hot
rolling forecast problems also in RAP-line. The next impor-
tant feature is the thickness of the strip. As we can see
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Figure 5: The PDP for slope_max reveals the feature’s increasing
impact on the response. Especially, after 40 units, the feature has a
hazardous effect on the center line position.

in Figure 6, the center line deviation risk is larger with
the thinner strips class, for which the thickness was be-
low 3.5 mm. Thin strips are more vulnerable under the
force of the roller than the thicker ones because of the
lower mass of the strip, and thus, the risk of the shape er-
rors increases. Like variable slope_max, the absolute max-
imum deviation (ku_max_dev) calculated from first 50 m
of the strip head lengthwise, and the absolute minimum
deviation (shape_min_dev) from the same area have in-
fluence on the response variable as well. Figure 7 shows
the relation between ku_max_dev and the response vari-
able. Up to the present, the ku_max_dev is used as a
rework criterion in hot rolling process and this analysis
proves that the slope_max is amuchbetter criterion. There-
fore, it is interesting to analyze if the asymmetrical flat-
ness measurement could give a better indicator of strip be-
havior during the next process step, compared to the hot
rolling center line deviation measurement. Additionally,
absolute maximum of crown measured 40 mm from the
side (ku_crown_40_max) andboth relative andaveragede-
viation of the last 5mof the inner circle of the strip coil (rel-
ativ_dev_tail, avg_dev_tail) have some influence on the re-
sponse variable. These variables describe the shape errors
of the strip during hot rolling process. Modeling results
showed that it is possible to find the strips, which have an
increased risk for center line deviation later in RAP pro-
cess, and to inform the operators immediately after hot
rolling step. Thus, the risk for breaking devices and stop-
ping the RAP line production can be decreased.

Less critical shape errors were the minimum and ab-
solute maximum wedge shape measured 40 mm from the

Figure 6: The PDP for classified thickness shows that the thicker
strips are less vulnerable for the defect.

Figure 7: The PDP of maximum deviation of the strip in hot rolling
shows the feature’s increasing risk on the response.

side (ku_wedge_40_max, ku_wedge_40_min) and the de-
viation in the middle part of the strip (dev_waist) mea-
sured during hot rolling. Clearly, the shape errors in heads
of the strip are riskier for center line deviation than the er-
rors in the middle part of the strip. Additionally, it seems
that the crown is worse than wedge shape of the strip for
the center line deviation. Even though the steel type is the
least important factor in the model, it is known that the
variance between the steel types is large, because of the dif-
ferent chemical compositions and the mechanical proper-
ties. For example, one strip can be more elastic and softer
than other one, which adds complexity to the manufactur-
ing.

In manufacturing, the result is not only dependent on
the features independently, but also the interactions of
the variables have their impact. In GBM, the interactions
of the variables can be included in the model and in this
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Figure 8: The overall interaction strength (H-statistic) for each
feature independently.

application, the interaction depth (the highest level of in-
teractions between variables allowed during training the
model) was three. Figure 8 shows how strongly the hot
rolling features interact with each other. The interaction
strength value corresponds to the proportion of explained
variance of f (x) for each feature. The value is between 0
when there is no interaction and 1 if all variation depends
on a given feature’s interactions. Some of the variables
may have quite strong impact on interactions, but most
of them do not interact actively with the other variables.
In practice, the impact of the most important individual
variables always outperforms that of interactions. For each
feature, it is possible to inspect visually the strongest in-
teraction partners as well. In Figure 9, the interaction be-
tween themost important feature slope_maxandother fea-
tures are shown. The strongest interaction is between the
slope_max and the absolute maximum crown measured
40 mm from the side of the strip (ku_crown_40_max).
Overall, most of the interactions between other features
and slope_max is quite weak.

It is important to reveal the reasons behind the predic-
tions, especially, when a product has a higher predicted
risk for the failure. SHAP visualizations enable to inspect
the reasoning behind the estimation for each observation
individually. The selection of the reference group has to be
done carefully, because the visualization should be able
to reveal the difference between the prediction of the cur-
rent observation and the average prediction result of the
other similar products. In this application, SHAPvalues for
each product were calculated based on the product group.
Thus, the products were compared to the average perfor-
mance within the group of similar products. We selected
two examples from the same steel type (steel_type_3) to
demonstrate the usage of the method; the product with

Figure 9: The 2-way interaction strengths (H-statistic) between the
most important feature slope_max and the other features.

Figure 10: SHAP values for a bad product with a prediction of
31.24, while the average prediction is 11.54 inside the group of
steel_type_3.

bad prediction is shown in Figure 10 and the good one in
Figure 11. As can be seen, the prediction for center line de-
viation is 31.24 with the bad one, when the average pre-
diction is 11.54 for this steel type in general. The phi value
describes the strength of the feature value contribution in
the prediction. The strongest candidate behind a poor pre-
diction is slope_max. Also, the membership in the thinner
strips class increases the risk. The strip with a good predic-
tion result in Figure 11 has properties that have decreasing
impact on the deviation; thicker and wider strips can be
controlled better. In this case, the harmful crown_40_max
value cannot outweigh the positive values.
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Figure 11: SHAP values for a good product with a prediction of
4.66, while the average prediction is 11.54 inside the group of
steel_type_3.

4.2 Smart decision support

The model can be implemented for the online monitoring
of the process. Thus, the operator can get an alarm for the
risk of divergent position effectively. We have built in co-
operationwith VTT (Oulu, Finland) an online qualitymon-
itoring tool that presents the product quality information
during manufacturing with easy-to-understand colouring
for a selected period [7]. The tool is web based, and it has
an online access to the process and product information
database. The visualized quality information is based on
the prediction results, and in this case, the colour-coding
will be selected based on the center line deviation risk.

As a result of this research,we found the best response
variable that describes the center line deviation. Our root
cause analysis behind the center line deviation gives es-
sential knowledge to the process development workers at
the Tornio mill. Based on the Partial dependence plot, in
Figure 5, we were able to define a clear critical limit value
40 for slope_max. In the first step, this information can
be used for redirecting the strips which exceed the limit
to repair treatment before RAP-line. It is also possible to
implement the model for online use and to predict more
efficiently the products that need to be repaired. The indi-
vidual information behind the prediction for each product
provides useful guidance for the rework.

Next, the driving parameters of the RAP line can be
used for finding out what is the best way of dealing with
the high-risk strips. By comparing the current high-risk
product to its counterparts, the best process settings can
be found. Especially, when the analysis reveals a less suc-

cessful productionplan, the operator canbeprovidedwith
a recommendation for better settings. With the proposed
method, it is possible to build smart decision support tools
that enable faster actions to prevent malfunctioning. Fur-
thermore, it is possible to test in advance different process
settings and find out which ones produce the best results.

5 Conclusion
In this article, we presented a machine learning based
method for steel strip center line deviation analysis. In ad-
dition to the quality prediction, our ensemble model pro-
vides information about the variable behavior during pre-
diction. This information is valuable for the result interpre-
tation and process understanding. Our research showed
that the most critical shape errors arising during hot
rolling process will be transferred to critical errors in RAP-
line process as well. Themodeling results indicate that the
currently used criterion for rework is not the best candi-
date to characterize the strip behavior. Instead, the most
important parameter is the slope_max, which describes
the asymmetrical shape of the strip during hot rolling. The
thickness of the strip has an impact on the response vari-
able as well. Our results reveal also the less critical shape
errors, which are thewedge shape and the longitudinal de-
viation measured from the middle of the strip.

The developed model enables the user to understand
better the quality of the products, how the process works,
and how the quality model predicts and performs. The re-
sults can be developed further to a smart decision support
tool that helps to find out the best way of dealing with the
critical products. The tool enables the identification of the
quality problems of the steel strips at the earliest possible
moment, which leads to the reduction of the rejection risk
and to increased profits for the producer. Because of the
laborious and manual data collection, the current model
covers the main product groups. The performance of the
model can be improved by collecting more data from the
product groups with a smaller number of representatives,
but online learningmethods could provide amore service-
able solution in the long run.
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