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Abstract: Increasing volumes of data, referred as big data,
require massive scale and complex computing. Artificial
intelligence, deep learning, internet of things and cloud
computing are proposed for heterogeneous datasets in hi-
erarchical analytics to manage with the volume, variety,
velocity and value of the big data. These solutions are
not sufficient in technical systems where measurements,
waveform signals, spectral data, images and sparse perfor-
mance indicators require specific methods for the feature
extraction before interactions can be properly analysed.
In practical applications, the data analysis, knowledge-
based methodologies and optimization need to be com-
bined. The solutions require compact calculation units
which can be adaptively modified. The artificial intelli-
gence is extended with various methodologies of computa-
tional intelligence. The advanced deep learning approach
proposed in this paper uses generalized norms in feature
generation, nonlinear scaling in developing compact in-
dicators and linear interactions in model-based systems.
The intelligent temporal analysis is available for all in-
dices, including for stress, condition and quality indica-
tors. The service and automation solutions combine these
data-driven solutions with the domain expertise by using
fuzzy logic for case-based systems. The applications are
developed gradually in connections, conversion, cyber,
cognition and configuration layers. The advanced method-
ology is based on the integration of features, scaling func-
tions and interaction models specified by parameters. All
the sub-systems and different combinations of them can
be recursively updated and optimized with evolutionary
computing. The systems adapt to the changing operat-
ing conditions and provide situation awareness for the
risk analysis. The approach supports different levels of the
smart adaptive systems.

Keywords: big data analysis, artificial intelligence, deep
learning, statistical methods, computational intelligence,

recursive analysis, temporal analysis, fuzzy logic, smart
adaptation

1 Introduction

Amounts of data are growing rapidly with increasing mea-
surement possibilities and advancements of Internet of
Things (IoT). The large and complex datasets, which are
challenging for commonly used data processing software
and relational database management systems, are often
referred as Big Data. The term has been used since the
1990s with focus on unstructured data. Currently, the
same approaches are proposed for structured and semi-
structured data [1]. Cloud Computing, which is a power-
ful technology to perform massive scale and complex com-
puting, has many research challenges, including scalabil-
ity, availability, data integrity, data transformation, data
quality, data heterogeneity, privacy, legal and regulatory
issues, and governance. Only few tools can address the is-

sues of big data processing in cloud [2].

Challenges in the big data processing originate from

four Vs [2]:

—  Volume refers to the amount of all types of data gener-
ated from different sources and stored in growing dig-
ital storages.

— Variety refers to different types of data, including data
sets, image, video, text and audio, in either structured
or unstructured form.

—  Velocity refers to the speed of data generated and the
continual change of content.

— Value refers to the discovering huge hidden values
from large datasets.

Big data analytics focuses on heterogeneous datasets
which include structured, semistructured and unstruc-
tured data. Information in natural language is increas-
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ing. Data processing and discovering solutions from partly
redundant, obsolete or trivial data may lead to non-
consistent results: essential information might be missing
or is confidential. There is some application potential but
scale, diversity and complexity introduce problems of ac-
cessing, analysing, interpreting and applying.

Artificial intelligence mimic human cognitive func-
tions, including reasoning, knowledge, planning, learn-
ing, natural language processing, perception and ability to
move and manipulate objects. Machine learning is based
on the iterative seeking of solutions by using new archi-
tectures, techniques and algorithms. Neural networks have
been widely used in these studies as behavioural models
to map system inputs to outputs regardless of the nature
of the system. Connecting ANNs to other modelling tech-
niques is vitally important as far as complex systems are
concerned [3]. Different methodologies of computational
intelligence have their strengths and drawbacks: the anal-
ysis of capabilities shown in Fig. 1.

Deep learning refers to layered hierarchical unsuper-
vised learning and extraction of different levels of com-
plex systems [4]. Global learning patterns and relation-
ships are obtained from data without any human interface.
Possibility to a more or less automatic modelling has in-
creased popularity of ANNs in building nonlinear transfor-
mation layers for complicated interactions within different
sources of varying data [5].

Genetic algorithms can assist other methods of compu-
tational intelligence by optimizing structures (Fig. 1). The
family of evolutionary computation is extending with var-
ious ideas of nature inspired systems.

In technical systems, all four Vs should be taken into
account, but the material is mostly structured. The vol-
ume of datasets is huge and is growing rapidly but the do-
main expertise is not easy to include in the cloud based so-
lutions. Large volumes of data require compact solutions
to different types of data. Challenges are in the detecting
changes of operating conditions, adaptation, recursive up-
dates and uncertainty processing. Predictions and deci-
sion support are needed in applications.

Finnish companies and research institutions devel-
oped the utilisation of environmental data in a multidis-
ciplinary research program Measurement, Monitoring and
Environmental Assessment (MMEA) in 2010-2015 [6]. The
program extended over the entire value chain from mea-
surement technology to managing environmental infor-
mation. Application areas included agriculture, air qual-
ity, energy, environmental efficiency, mining, water, data
management, remote sensing and sensors in extreme con-
ditions. Keydemos covered air, earth, energy and water
combined with fifth element, data.
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Arrowhead project (2013-2017) addressed efficiency
and flexibility by introducing a framework to enable col-
laborative automation. Pilots were built in five applica-
tion verticals: Production, Smart buildings and infrastruc-
ture, Electro-mobility, Energy production and end-user
services, Virtual market of energy [7]. A service based ap-
proach was introduced for collaborative automation in
an open network environment connecting many embed-
ded devices. The demonstrator Condition monitoring and
maintenance integrated to production management in the
mining industry piloted advanced operations and mainte-
nance, including their immediate interactions with con-
trol systems performances, maintenance activities, and ul-
timately with the ERB/MES level of the respective company
network [8].

In industry, where very large datasets have been com-
mon already long time, the problem has been tackled
by Data Analytics and Intelligent Systems. Artificial intel-
ligence can be applied in various subtasks but experi-
ences in practical industrial applications have shown that
the versatile challenges, including events, process phases,
changes of operating conditions, subprocesses and recycle
flows, require solutions which combine statistical analy-
sis, computational intelligence and optimisation in adap-
tive case-based systems. Models have been developed for
different phenomena theoretically and with data-driven
identification. The highly complex systems need an ad-
vanced set of methodologies and utilisation of domain ex-
pertise in various levels.

Steady-state models can be relatively detailed nonlin-
ear multiple input, multiple output (MIMO) models y =
F(X), where the output vector y = (y1, y2, ..., yn) is calcu-
lated by a nonlinear function F from the input vector X =
(x1, X2, ..., Xxm). Statistical modelling includes a wide vari-
ety of models based on linear regression, e.g. response sur-
face models (RSM) consisting of linear, quadratic and in-
teractive terms [9]. These models can be extended by semi-
physical models by using appropriate calculated variables
as inputs [10]. Principal component analysis (PCA) com-
bines effects of several variables by using linear combina-
tions of the original variables [11] and Partial least squares
regression (PLS) uses potentially collinear variables [12].
Nonparametric models for y; at each X are constructed from
data as a weighted average of the neighbouring values of
y; [13].

Additional methodologies for the function F(X) are
provided by fuzzy set systems, artificial neural networks
and neurofuzzy methods (Fig. 1). Fuzzy set theory pre-
sented by Zadeh [14] forms a conceptual framework for
linguistically represented knowledge interpreted by using
natural language, heuristics and common sense knowl-
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Figure 1: Computational intelligence for combining data and expertise, modified from [3].

edge. Fuzzy logic introduced approximate reasoning into
artificial intelligence by maintaining clear connections
with fuzzy rule-based systems and expert systems [15].
Fuzzy set systems can also handle contradictory data [16,
17]. The fuzzy sets can be modified by intensifying or weak-
ening modifiers [18]. Fuzzy relational models [19] allow one
particular antecedent proposition to be associated with
several different consequent propositions. Type-2 fuzzy
models take into account uncertainty about the member-
ship function [20].

The extension principle generalises the arithmetic op-
erations for monotonously increasing inductive mappings
F(x;). The interval arithmetic presented by Moore [21]
is used together with the extension principle on several
membership a-cuts of the fuzzy number x; for evaluating
fuzzy expressions [22-24]. Takagi-Sugeno (TS) fuzzy mod-
els [25] combine fuzzy rules and local linear models.

Linguistic equation (LE) approach originates from
fuzzy set systems [26]: rule sets are replaced with equa-
tions, and meanings of the variables are handled with
nonlinear scaling functions which have close connections
to membership functions [27]. The nonlinear systems are
built by using the nonlinear scaling with linear equations
[28]. Constraints handling [29] and data-based analysis
[30], facilitate the recursive updates of the systems [31, 32].

The LE models provide inductive mappings for the exten-
sion principle in combined fuzzy systems including fuzzy
arithmetics and inequalities [33]. A natural language in-
terface is based on the scaling functions [34]. Temporal
reasoning is a very valuable tool for diagnosing and con-
trolling slow processes: the LE based trend analysis intro-
duced in [35] transforms the fuzzy rule-based solution [36]
to an equation-based solution.

The deep learning should support applications in
three levels. Firstly, Embedded intelligence and networks
of interacting elements, called Cyber-physical systems
(CPS), strengthen links between computational capabili-
ties and physical assets. Lee et al. proposed in [37] a five-
layer architecture, including (1) smart connections for data
acquisition, (2) data-to-information conversion, (3) cyber
level for analysing information, (4) cognition to trans-
fer acquired knowledge to the users, and (5) configura-
tion level is to apply corrective and preventive actions.
Secondly, Decision support systems combine knowledge-
based information with data-based solutions. The inte-
gration with domain expertise and the human interaction
needs natural language interfaces and uncertainty pro-
cessing [34]. Thirdly, Industrial internet (IIoT) and Cloud
computing focus on services which need to integrate oper-
ations in several sites.
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Smart adaptive systems (SAS) are aimed for developing
successful applications in different fields by using three
levels of adaptation [38]: (1) adaptation to a changing en-
vironment, (2) adaptation to a similar setting without ex-
plicitly being ported to it, and (3) adaptation to a new or
unknown application. The recursive analysis is important
in all these levels.

This paper presents a smart adaptive big data analy-
sis methodology and an advanced deep learning solution
which keep the application system in operation. Introduc-
tion summarizes shortly the background. Section 2 focuses
on variable specific data analysis, which forms the basis
for the modelling discussed in Section 3. Smart adapta-
tion methodology based on recursive tuning is presented
in Section 4 and the proposed advanced deep learning is
discussed in Section 5. The conclusions are drawn in Sec-
tion 6.

2 Data analysis

Data processing chain needs to be adapted to four types of

data (Fig. 2):

— Process measurements are ready to the feature extrac-
tion. Sampling is adapted to the phenomena and dif-
ferent statistical features are commonly used in au-
tomation and data acquisition systems. Peaks of emis-
sion spectra can be analysed in the same way.

- Waveform signals have high frequency components
and therefore, the feature extraction is necessary be-
fore further processing. Signal processing can improve
extracting informative features, e.g. from condition
monitoring measurements.

— Image data and videos are analysed in image process-
ing, which is aimed to get an enhanced image or to ex-
tract some useful information from it. In big data anal-
ysis, the feature extraction is emphasised: patterns
and shapes are going to the further processing.

— Sparse data from laboratories, performance indi-
cators, periodic condition monitoring, maintenance
data and events need own special processing.

The nonlinearities of all the data types are handled by the
nonlinear scaling of the variables. The approach extends
normalisation and takes into account asymmetry, recur-
sive updates, uncertainties and is linked with natural lan-
guage. Domain expertise is highly important in all phases
of the data analysis.
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2.1 Feature extraction

Feature extraction means dimension reduction in pattern
recognition and image processing. In literature, feature ex-
traction and selection methodologies include a wide vari-
ety of topics, e.g. classification is important in [39]. The use
of statistical features is specialized: arithmetic mean and
standard deviation are used for process data, root-mean-
square, kurtosis and peak values for signals.

Generalised moments and norms extend this analysis
to a wide range of features [40]. The generalised norm is
defined by

N
M2 = (MDY = [ S g1, 1)
i=1

where the order of the moment p € R is non-zero, and N
is the number of data values obtained in each sample time
7. The norm (1) calculated for variables x;, j = 1,...,n,
have the same dimensions as the corresponding variables.
The norm | \TMf’ ||p can be used as a central tendency value
if all values x; > 0, i.e. HTMf.’Hp € R. [41]. The norm can be
extended to variables including negative values [31]. Vari-
ables x; can be process measurements, peaks of spectra,
measured waveform signals and sparse data.

2.2 Signal processing

Signal processing methods transform, combine or divide
the waveform data, including sound, vibration, images or
sensor data, and all these may have components from sev-
eral sources. Blind source separation (BSS) methods are
used in separating signals to find useful signals [42]. Sub-
set selection techniques are in literature presented in wide
meanings, e.g. feature selection techniques include mod-
elling, optimisation and classification in [43]. In high di-
mensional systems, a subset of variables is selected with-
out altering the original representation of the variables
[43]. Feature extraction transforms high dimensional data
to lower dimensions by constructing combinations of vari-
ables. Wavelet decomposition is used for finding local fea-
tures or compressing the data [44]. Spectrum analysis, e.g.
fast Fourier analysis (FFT), represents the signal in the fre-
quency domain [45].

Filtering and smoothing are widely used for process
data, but derivation and integration can reveal interesting
features from waveforms. The calculation of the time do-
main signal x@(¢), which is based on a rigorous mathe-
matic theory [46], is performed with three steps. The fast
Fourier transform (FFT) is used for the displacement sig-
nal x(t) to obtain the complex components {X;}, k =
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0,1,2,..,(N-1). The corresponding components of the
derivative x\?(¢t) are calculated by

Xok = (iw) Xy,

@

where w = 27af, a € R is the order of derivation. Fi-
nally, the resulting sequence is transformed with the in-
verse Fourier transform FFT! to produce the derivative
signal. The appropriate order of derivation is a — 2 for the
acceleration signals. [41]

Generalised spectral norms are calculated for wave-
form signals from the frequency spectrum by

N
X = (o S 1@y, 3)
i=1

where {X]-}(“) is the sequence of complex numbers, rep-
resenting different frequency components of the signal
{xj}(“) [46]. This kind of norm can be used, to provide for
information about the change in signal in a certain fre-
quency range or frequency ranges [47].

2.3 Image processing

Digital image processing aims to enhance images or to ex-
tract some useful information from them. In big data an-
alytics, algorithms are used to detect and isolate shapes

- Steady-state Situation awareness

- Dynamic >
- Multimodel - Procej’ss. Cases & Faults
_CBR - Predictions

- Anomaly detection
- Risk levels

from images or video streams. Concepts and techniques
are discussed in [48]. The hardware and software compo-
nents need to be used together to facilitate an early detec-
tion of problems, e.g. product defects and changes in pro-
cess operation. The online optical monitoring based on im-
age analysis revealed useful information from the process
and can be used in forecasting the quality of biologically
treated wastewater [49]

2.4 Sparse measurements

Sparse condition monitoring measurements are analysed
with the methods presented above for the waveform sig-
nals, the only difference is the sparsity of values. Labora-
tory analyses are based on sampling and can be frequent
only if automatic sampling is used. These measurements
may contain spectroscopy. Uncertainty fundamentally af-
fects the decisions that are based upon the measurement
result [50].

Maintenance and operation performance can be as-
sessed with various measures: harmonised indicators are
based on cost, time, man-hours, inventory value, work or-
ders and cover of the criticality analysis, key performance
indicators (KPIs) reflect the critical success factors and
the goals, the overall equipment effectiveness (OEE) in-
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cludes non-financial metrics for the manufacturing suc-
cess. Reliability-centered maintenance (RCM) is based on
statistical analyses and statistical process control (SPC) is
used in monitoring a process through the control charts.
[51] These indicators need interpolation and uncertainty
handling (Fig. 2).

2.5 Nonlinear scaling

Nonlinear scaling brings various measurements and fea-
tures to the same scale by using monotonously increasing
scaling functions x; = f(X;) where x; is the variable and X;
the corresponding scaled variable. The function f() con-
sist of two second order polynomials, one for the negative
values of X; and one for the positive values, respectively.
The corresponding inverse functions X; = f’l(xj) based
on square root functions are used for scaling to the range
[-2, 2], denoted as linguistification. The monotonous func-
tions allow scaling back to the real values by using the
function f(). [28]

The parameters of the functions are extracted from
measurements by using generalised norms and moments.
The support area is defined by the minimum and max-
imum values of the variable, i.e. the support area is
[min (x;), max (x;)] for each variable j,j = 1,..., m. The
central tendency value, c;, divides the support area into
two parts, and the core area is defined by the central ten-
dency values of the lower and the upper part, (c;); and
(cn)j, correspondingly. This means that the core area of the
variable j defined by [(c));, (cp);] is within the support area.
The orders, p, corresponding to the corner points are cho-
sen by using the generalised skewness,

N
O = o 106 = ML 1" )
] i=1

The standard deviation o; is the norm (1) with the order
p =2.[30]
The scaling functions monotonous and increasing if

the ratios,
o« = (c);—min (x;)
] cj—(c); (5)
at = max ()-(cn);
] (Ch)j_ci

are both in the range [%, 3], see [29]. The coefficients of the
second order polynomials are represented by

a = 1(1- ;) Ac;,
b; = 3B-a))Ac, ©)
ai = 3 -1)Ac,
bi = 3B-af)Ac,

where Ac; = ¢; - (cpjand Ac]f' = (cp)j - ¢j-
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2.6 Uncertainty

The feasible range can be defined as a type-2 trapezoidal
membership function since the norm values obtained from
different time periods have differences, i.e. the parameters
of the scaling functions can be represented as fuzzy num-
bers. A strong increase in uncertainty may demonstrate a
change of operating conditions. The ratios a; and a; are
calculated by applying the interval arithmetic on (5). The
constraint range [%, 3] must be taken into account before
calculating the coefficients (6). Then the extension princi-
ple is used for calculating the scaled values as fuzzy num-
bers.

2.7 Natural language

The nonlinear scaling approach provides an unified so-
lution for natural language interpretations since all the
scaled variables are in the same range [-2, 2]. The integer
numbers {-2, -1, 0, 1, 2} correspond labels {very low, low,
normal, high, very high} or {high negative, negative, zero,
positive, high positive}, for example, and represented as
fuzzy numbers, which can be modified by fuzzy modifiers,
which are used as intensifying or weakening adverbs. The
resulting terms,

AL CA) CA3 C A4 CAs, 7

correspond to the powers of the membership in the power-
ing modifiers (Table 1). The vocabulary can also be chosen
in a different way, e.g. highly, fairly, quite [52]. Only the se-
quence of the labels is important. Linguistic variables can
be processed with the conjunction (and), disjunction (or)
and negation (not). More examples can be found in [18].

Table 1: Modifiers of fuzzy numbers [34]

Fuzzy number Fuzzy label Degree of membership
Aq extremely A u*
A, very A u?
A3 A )2
Ay more or less A y%
As roughly A U i

3 Modelling

Intelligent indices, which are developed from the scaled
data and enhanced with temporal analysis, are the key el-
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ements of modelling (Fig. 2). Interactions are normally lin-
ear but more complex solutions can be built with compu-
tational intelligence and case-based solutions. Dynamic
models are based on parametric model structures. Indices
are used as indirect measurements and models enhance
situation awareness.

3.1 Intelligent indices

The basic form of the intelligent index is a scaled feature
or measurement but more indices can be developed as the
weighted sums of several scaled features. In [30], the cav-
itation index of a Kaplan turbine was based on a single
scaled feature and several faults of the supporting rolls of
a lime kiln required two features. Linguistic principal com-
ponents (LPCs), which extend the linear PCA by using the
nonlinear scaling, are generalisations of this. Intelligent
condition and stress indices provide an unified approach
to use different measurements and features in condition
monitoring [30].

3.2 Temporal analysis

Temporal analysis focused on important variables pro-
vides useful information, including trends, fluctuations
and anomalies, for decisions on higher level recursive
adaptation. Trend analysis produces useful indirect mea-
surements for the early detection of changes. For any vari-
able j, atrendindex I ]-T(k) is calculated from the scaled val-
ues X; with a linguistic equation

k k
1 . 1 .
F0= =g > X0- 5 3 %0, ®
S i=k—n5 i=k-np,

which is based on the means obtained for a short and a
long time period, defined by delays ng and n;, respectively.
The index value is in the linguistic range [-2, 2], repre-
senting the strength of both decrease and increase of the
variable x;. [35, 53]

An increase is detected if the trend index exceed a
threshold IjT(k) > €. Correspondingly, IjT(k) < -¢ for
a decrease. The derivative of the index I]-T(k), denoted as
Al }-T(k), is used for analysing the full set of the triangular
episodic representations (Fig. 3). Trends are linear if the
derivative is close to zero: —€5 < AIjT(k) < —€3. Area D close
to[2, 2] and area B close to [-2, -2] are dangerous situa-
tions, which introduce warnings and alarms. Areas A and
C mean that an unfavourable trend is stopping.

Severity of the situation can be evaluated by a devi-
ation index, which is a weighted sum of X;(k), I (k) and
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Figure 3: Triangular episodic representations defined by the index
IjT(k) and the derivative AII.T(k).

AIjT(k). This index has its highest absolute values, when
the difference to the set point is very large and is getting
still larger with a fast increasing speed [53]. This can be
understood as a third dimension in Fig. 3. The trends of
the parameters a;, aj, Ac]T and Ac]-* give useful informa-
tion about changes of the scaling functions. The ranges of
these parameter are [3, 3], [1, 3], [#, 3](¢; - min(x;)) and

%, %](max(xj) - ¢;j), respectively. The changes in the case
structure are seen in the trends of the interaction coeffi-
cients.

The trend analysis is tuned to applications by select-
ing the time periods n; and ng. Further fine-tuning can be
done by adjusting the weight factors w}* and w;? used for
the indices I]-T(k) and AI] (k). The thresholds €] = €7 = €5 =
€5 = 0.5. The calculations are done with numerical values
and the results are represented in natural language.

The fluctuation indicators calculate the difference of
the high and the low values of the measurement as a dif-
ference of two moving generalized norms:

AxF (1) = ([T M, = | MP [, )

where the orders p, € R and p; € R are large positive and
negative, respectively. The moments are calculated from
the latest Ks + 1 values, and an average of several latest
values of Ax}E (k) is used as an indicator. [54]

3.3 Interactions
The basic form of the linguistic equation (LE) model is a

static mapping in the same way as fuzzy set systems and
neural networks, and therefore dynamic models will in-
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clude several inputs and outputs originating from a sin-

gle variable [28]. Adaptation of the nonlinear scaling is

the key part in the data-based LE modelling (Fig. 4). All
variables can be analysed in parallel with the methodol-
ogy described above and assessed with domain expertise.

Interactions are analysed with linear modelling method-

ologies from the scaled data in the chosen time period. In

large-scale systems, a huge number of alternatives need

to be compared, e.g. in a paper machine application, 72

variables produced almost 15 million three to five variable

combinations. Correlations and causalities based on do-
main expertise are needed to find feasible variable groups

[56].

Fuzzy set systems and fuzzy arithmetics expand the ap-

plication areas in following ways [57]:

— LE models replace linear models in TS models;

— Fuzzy calculus is applied in models by using LE mod-
els, fuzzy inputs and/or coefficients both in the an-
tecedent and consequent part;

- Use fuzzy inequalities in developing fuzzy facts for the
fuzzy rule-based systems.

Domain expertise is important in these modules. Neural
networks can represent very complex nonlinear interac-
tions but only highly simplified models are needed when
the nonlinear scaling is successfully defined. Modelling
and simulation methodologies of complex systems are dis-

cussed in more details in [33]. In decomposed systems, the
composite local models consisting of partially overlapping
models are handled by fuzzy logic [58].

Complexity is gradually increased with decomposi-
tion and higher level structure. Case based reasoning
(CBR) integrates problem solving and learning in variety of
domains [59] but does not prescribe any specific technol-
ogy [60]. Therefore, it is a feasible methodology for inte-
grating the overall system. Evolutionary computation pro-
vide efficient tools for all these systems since everything is
defied by parameters.

3.4 Dynamic modelling

External dynamic models provide the dynamic behaviour
for the LE models developed for a defined sampling inter-
valin the same way as in various identification approaches
discussed in [10]. Dynamic LE models use the parametric
model structures, ARX, ARMAX, NARX etc., but the non-
linear scaling reduces the number of input and output sig-
nals needed for the modelling of nonlinear systems. For
the default LE model, all the degrees of the polynomials

become very low:
Y(t)+a,Y(t-1) = b U(t - ng) + e(t) (10)

for the scaled variables Y and U.
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Process phases can have totally different models with
different variables. Also phenomenological models can be
included in the overall system but their parameters need
to be adapted to the operating condition by computational
intelligence.

4 Smart adaptation

All the phases of the data-based LE modelling shown in
Fig. 4 can be used in the recursive analysis as well. The re-
cursive part focuses on the scaling functions and the inter-
actions are updated only if needed. The adaptation ranges
from the slight modifications of scaling functions to com-
pletely new models. The adaptation level is chosen by us-
ing fuzzy logic.

4.1 Recursive scaling

The parameter of the scaling functions can be recursively
updated by using the norms (1) with the orders defined in
the tuning. The norm values are updated by including new
equal sized sub-blocks in calculations since the computa-
tion of the norms can be done from the norms obtained for
the equal sized sub-blocks, i.e. the norm for several sam-
ples can be obtained as the norm of the norms of the indi-
vidual samples:
KsTppp 15 T aP)1/P1py1/p
[P M ||p = E;[( M) PP 11
where K is the number of samples {x;}¥ ;. In automation
and data collection systems, the sub-blocks are normally
used for arithmetic mean (p = 1).

The parameters of the scaling functions can be recur-
sively updated with by including new samples in calcula-
tions. The number of samples can be increasing or fixed
with some forgetting or weighting [31]. The orders of the
norms are redefined if the operating conditions change
considerably. The new orders are obtained by using the
generalised skewness (4) for the data extended with the
data collected from the new situation. If the changes are
drastic, the calculations are based on the new data only.
The decision of starting the redefinition is fuzzy and the
data selection is important.

4.2 Interactions

Linear regression and parametric models are used in the
recursive tuning of the interaction equations. The set of

Smart Adaptive Big Data Analysis = 411

equation alternatives (Fig. 4) is useful in the recursive
analysis since the set is validated with domain exper-
tise. The LE approach uses the preference sequence: scal-
ing, shape of scaling functions and interaction equations,
which is consistent with the stages of adaptive fuzzy con-
trol: first scaling, then the shape of membership functions
and finally rulebase.

The interaction models are not changed if the scal-
ing functions change only slightly. The coefficients are ob-
tained by using the data collected from the chosen time
period if the feasible range is changed. Uncertainties can
be calculated by comparing the coefficients extracted from
several short periods.

Considerably revised scaling functions may require
updates for the interactions as well. However, the re-
tuning is started only if the current equations do not op-
erate sufficiently well. The earlier chosen set of alternative
equations is used first. New equations are included if new
variables become important. The selected variable groups
(Fig. 4) are analysed first. Considerable changes in oper-
ating conditions mean that the full data-based analysis
is needed. This level forms the model basis for the case-
based reasoning (CBR), see [56].

4.3 Fuzzy logic

The recursive data analysis produces parameters for the
scaling functions and interactions. Uncertainties of the pa-
rameters are obtained for any time period which contain-
ing several sub-blocks, i.e. the variables are represented
by fuzzy numbers. Changes in operating conditions are
detected by comparing the similarities of the original and
modified fuzzy numbers. The detection is based on fuzzy
inequalities <, <, =, > and > between the new fuzzy pa-
rameters and the fuzzy parameters of the case. The re-
sulting 5X5 matrix includes the degrees of membership of
these five inequalities for five parameters. The results are
interpreted with the natural language interface which pro-
vides an important channel in explaining the changes to
the users.

4.4 Changes of operating conditions

Changes of the scaling functions and interaction coeffi-
cients are symptoms of changes in operation. The intelli-
gent trend analysis provides early warning about changes
in variable levels, fluctuations and uncertainty. All the
variables and intelligent indices are represented in the
same range [-2, 2], i.e. the same analysis and linguistic in-
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terpretation can be applied in all of them. The correspond-
ing levels and their degrees of membership can be used in
the fuzzy decision making.

The full analysis is needed fairly seldom although the
process changes considerably. For example, new phenom-
ena activate with time in wearing, but the models used
in prognostics can be updated by expanding the scaling
functions (Fig. 5). The generalised statistical process con-
trol (GSPC) introduced in [61] could give an early warning.
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Figure 5: Recursive adaptation in prognostics [62].

5 Advanced deep learning

Technical systems have data in various forms which re-
quire specific methodologies (Fig. 2) but similar scales for
all of them makes the analysis of interactions easier. The
data processing chain from measurements and open data
to applications was the main result of MMEA [6]. The smart
integration of subsystems (Fig. 6) extends the solutions
based on IoT and Data analytics towards Industrial inter-
net of services (I?0S). The collaborative automation frame-
work introduced in Arrowhead is a good platform for these
systems [8].

The advanced deep learning combines statistical and
modelling methodologies with computational intelligence
(Fig. 1). Five hierarchical layers can be structured from the
processing chain shown in Fig. 2. The levels are consistent
with the levels presented in [37].

Layer 1 - Connections. Variable specific features are
extracted and specifications defined for process measure-
ments (Section 2.1), waveform signals (Section 2.2), im-
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ages and videos (Section 2.3), spectral data (Section 2.1)
and sparse measurements (Section 2.4). The generalised
norms are beneficial in providing similar settings for var-
ious applications, especially for waveform signals where
Edge computing is needed for local calculations, especially
for the waveform signals and image data.

Layer 2 - Conversion. Features are converted to the
same scale by extracting the meanings with the variable
specific nonlinear scaling (Section 2.5). The output in-
cludes feature specific uncertainties (Section 2.6) and the
results are presented in natural language (Section 2.7). Re-
cursive scaling is available (Section 4.1) and the tempo-
ral analysis provides information about trends (Fig. 3) and
fluctuations (Section 3.2). This layer is the key to the ad-
vanced deep learning by providing a feasible solution to
divide the conversion and cyber levels. The differences of
scaling functions between operating areas can be used in
selecting possible cases.

Layer 3 - Cyber. Interactions are analysed for the intel-
ligent indices (Fig. 4): indicators may combine several in-
dices (Section 3.1) and versatile interaction models can be
developed by linear methodologies (Section 3.3). Dynamic
structures are included if needed (Section 3.4). In prac-
tice, case-based solutions are important: local composite
models can be sufficient but the interactions might also be
highly different in different operating conditions. The need
for additional cases is finalised in this layer. The overall
system can be managed by case-based reasoning (CBR).
The recursive tuning is the key to expanding the system
(Section 4.1). The resulting intelligent analysers can be sin-
gle scaled indices or combinations of them. Phenomeno-
logical models are important extensions of this layer.

Layer 4 - Cognition. Service solutions are developed
by combining intelligent analysers and forecasting models
in Monitoring. Changes of operating conditions (Fig. 5) are
detected and the situation awareness is improved in the
risk analysis. The Domain expertise is essential in Decision
support systems. The natural language interface defined in
the conversion level (Section 2.7) is important in this layer:
all important features and indices are available in scaled
and linguistic forms.

Layer 5 - Configuration. Automatic solutions for con-
trol and maintenance solutions are developed by combin-
ing intelligent analysers and control (Fig. 6). The controller
can include many special control actions which are acti-
vated when needed [63]. Condition monitoring is the key
to the improved Condition-based maintenance when real-
time measurements are processed though the layers dis-
cussed above.

The advanced deep learning uses gradually refining
layers: informative features are needed in the conversion
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Figure 6: Smart integration of subsystems in the monitoring and management framework for early risk management, modified from [58].

layer which forms the basis for the intelligent analysers,
and finally, the service and automation solutions combine
these data-driven solutions with the domain expertise.
The levels of Smart adaptive systems are further refined
by the recursive analysis within these layers. The adap-
tation to a changing environment has two sub-levels: first
updating the scaling functions (Layer 2) and then interac-
tions (Layer 3) if needed. A short-term memory is needed
for incremental or on-line learning, a long-term memory
for recognising context drifting.

Similar settings are realised with the set of equation al-
ternatives (Fig. 4). Successful past solutions and the idea
of reasoning by analogy are used: the generalised norms
and nonlinear scaling provide compact solutions for this
level. The nonlinear scaling makes similar settings more
widely available also in Cyber, Cognition and Configura-
tion layers.

The adaptation to a new or unknown application in-
cludes the full data analysis and modelling (Fig. 4). In real
applications, the constraint of starting from zero knowl-
edge is modified to building new knowledge or, at least,
improving the existing one.

The learning layers and the modular application struc-
tures together with edge computing are promising for
cyber-physical systems: measurement technology, intelli-
gent analysers, control and maintenance are realized as
agents which are communicating through I°0T (Fig. 6).
For a waveform signal, the local calculations reduces the

amount of data with a factor 10° even if several features
are extracted. The analysis of images and videos results
a number of features. Already this and conversion layer
make cloud computing possible but in technical systems,
the local calculations are preferred for the cyber level as
well when known compact structures are used.

The modules of the smart adaptive data analysis have
been developed and tested in various applications, includ-
ing monitoring [53, 61], control [31, 63], diagnostics [56],
condition monitoring and maintenance [57, 64, 65], and
management [51, 66]. The basis of the calculation chain
was introduced in MMEA, see [6]. The local calculations
and integration of systems in collaborative automation
have been discussed in [8].

Many artificial intelligence approaches, especially
neural computing, rely highly on unsupervised meth-
ods and simultaneous processing of massive datasets.
The hierarchical deep learning ideas, which improve the
solution, have been developed for heterogeneous sys-
tems, which include also unstructured data. This type of
methodologies do not utilize the domain expertise and
known operational information. Layers 1and 2 are needed,
especially for the more structured data. Artificial intelli-
gence can be useful in finding possible interactions in the
Cyber layer but the results must be assessed through the
advanced analysis presented above.
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6 Conclusion

The smart adaptive data analysis and the data processing
chain are reorganized to form a five-layer advanced deep
learning platform which supports levels of smart adaptive
systems and development of cyber-physical systems.

Connections. Generalised norms operate for extract-
ing features from process measurements, peaks of spectra,
measured waveform signals and sparse data. Measured
waveform signals can be transformed, combined and di-
vided before the feature extraction. Image processing is
used for detecting and isolating shapes from images and
videos.

Conversion. Generalised norms and moments are
used in the data-driven tuning of the monotonously in-
creasing scaling functions. The nonlinear scaling is the
key approach of the advanced deep learning since it ex-
tracts the meanings of the feature levels and opens new
possibilities for temporal analysis and uncertainty estima-
tion. The parametric definitions allow recursive analysis
for all these.

Cyber. Interactions between the scaled values can be
analysed with linear methodologies: versatile indicators
can be constructed as the weighted sums of indices. The
compact models also allow case-based systems expand-
ing through recursive adaptation. Local composite mod-
els and dynamic structures extend solutions to intelligent
analysers further. Neural deep learning can be a part of
this level.

Cognition. Domain expertise is used in combining
service solutions and intelligent analysers obtained from
features, indices and models. Resulting systems can be
used in monitoring and decision support.

Configuration. Automatic solutions for control and
maintenance utilize services for varying operating condi-
tions in large scale complex systems. Trade-off between so-
lutions is handled with fuzzy logic.
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