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Abstract: In the multiple testing context, we utilize vine copulae for optimizing the effective number of tests.
It is well known that for the calibration of multiple tests for control of the family-wise error rate the dependen-
cies between the marginal tests are of utmost importance. It has been shown in previous work, that positive
dependencies between the marginal tests can be exploited in order to derive a relaxed Sidak-type multiplicity
correction. This correction can conveniently be expressed by calculating the corresponding ,.effective num-
ber of tests“ for a given (global) significance level. This methodology can also be applied to blocks of test
statistics so that the effective number of tests can be calculated by the sum of the effective numbers of tests
for each block. In the present work, we demonstrate how the power of the multiple test can be optimized by
taking blocks with high inner-block dependencies. The determination of those blocks will be performed by
means of an estimated vine copula model. An algorithm is presented which uses the information of the esti-
mated vine copula to make a data-driven choice of appropriate blocks in terms of (estimated) dependencies.
Numerical experiments demonstrate the usefulness of the proposed approach.

Keywords: Diimann Algorithm, family-wise error rate, global significance level, Kendall’s 7, local signifi-
cance levels, multiple testing
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1 Introduction

Dependence modeling by means of copula functions has recently received a lot of attention in multiple test-
ing, see [6], [2], [14], [13], [15], [3], [12], and Sections 2.2.4 and 4.4 of [5]. For example, in [6] it has explicitly
been shown that the copula approach leads to the most general construction method for single-step multiple
tests under known univariate marginal null distributions of test statistics or p-values, respectively.

In this context, concepts of positive dependency are of particular importance. Intuitively speaking, if test
statistics are positively dependent, then the corresponding marginal tests are likely to reject their correspond-
ing null hypotheses for similar sets of observations, meaning that their rejection regions are overlapping or in
extreme cases of "total positive dependence" even identical. This similarity of the marginal tests "effectively"
reduces the multiplicity of the multiple test problem. In order to make this intuitive notion mathematically
rigorous, positive dependency concepts (having their origins in multivariate analysis) like monotonic sub-
Markovianity of order i (MSM;), multivariate total positivity of order 2 (MTP,), positive regression dependency
on subsets (PRDS), and positive lower orthant dependency (PLOD) have been studied in previous multiple
testing literature. In particular, the MSM; property (for an appropriate order i, where ofteni € {2, 3, 4} is con-
sidered) has been exploited in [7] to derive a mathematically grounded quantification of the "effective number
of tests" of order i for control of the family-wise error rate (FWER), M @ for short. The number Mgf)f can be inter-

eff
preted as follows: Due to the strength of positive dependency among the M test statistics under consideration
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(which are assumed to fulfill the MSM; property), the multiplicity correction of the FWER level a is such as if
the problem would involve Mgf)f stochastically independent test statistics. From the aforementioned intuitive
considerations it is clear that Mgi)T is in general smaller than M if the MSM; property is fulfilled for the vector
of test statistics at hand. One practical implication is that instead of the Sidak correction 1 - (1 - a)/ (which
is exact under joint independence and valid also under PLOD of the test statistics) the relaxed correction
1-(1- a)l/ Mg can be used as a local significance level for each of the M individual tests. This relaxation
of the multiplicity correction in turn leads to higher statistical power of the resulting multiple test, meaning
that on average more false null hypotheses can be rejected. More details about the underlying mathematical
concepts and related literature can be found in [7] and in Section 4.3 of [5].

In the present work, we contribute to copula-based multiple testing by demonstrating how vine copula
models (cf. [4] and references therein) can be used to optimize effective numbers of tests (in the sense of
[7]) for control of the FWER. Assuming that the dependency structure among the test statistics is a nuisance
parameter (of potentially infinite dimension), we propose to fit a regular vine copula model to the observed
data. Under certain structural assumptions, this entails an approximation of the joint null distribution of the
vector of test statistics, which can then be used to calibrate a multivariate multiple test for FWER control. By
means of computer simulations, we will demonstrate that this strategy clearly improves existing approaches.
In particular, choosing blocks of highly dependent test statistics by means of the estimated vine copula can
lead to a substantial increase in statistical power when compared with a naively chosen block structure.

The rest of the material is structured as follows. In Section 2, we introduce our basic statistical model, the
concept of effective numbers of tests, and the vine copula modeling technique. Section 3 contains our main
contributions, namely, the proposed methodology for combining the concepts introduced in Section 2 and
some remarks on the implementation into computer software. Section 4 presents numerical examples, and
we conclude with a discussion in Section 5.

2 Notation and preliminaries

2.1 Multiple testing
Throughout the work, we will assume the following statistical model.

Model 2.1. Let n € N denote a sample size, and assume that we can observe stochastically independent and
identically distributed (i.i.d.) random vectors X4, ..., Xn, where X; = (Xy 1, ..., X y) takes values in RM for
1 <k <nand M € N. Altogether, this entails an observable random matrix

X, X110 Xim

Xn Xn,l Xn,M

taking its values in the sample space X = R™M, Assume that we have uncertainty about the distribution of X;.
We express this by writing X1 ~ Pg ¢, where 9 € 6 C RM is a parameter vector, such at each 9 refers to the
marginal distribution of X4 j, j € I = {1, ..., M}. Moreover, Cx denotes the copula of X,. For the distribution of
the entire sample represented by X, we write Pg ¢, = P?'&X. Assume that we would like to test (simultaneously)
M null hypotheses Hy, ..., Hy, where each H; refers to §;, j € I. We may hence interpret each H; as a subset
of R. The corresponding alternative hypothesis will be denoted by K; = R \ H;. For testing H; versus K;, we
assume that a real-valued test statistic T; : R" — R is at hand, where T; = T,-(Xl,]-, ... ,Xn,,-), j € I. The vector
of all M test statistics will be denoted by T = (T4, ..., Ty)". The multiple test based on T will be denoted by
@ =(P1,...,0m) " : X — {0, 1}M, where the event {@; = 1} means that we reject H; in favor of K, j € I. For
the calibration of ¢, we aim at controlling the FWER, which is given by

FWERg ¢, (@) = | J{p; = 1},
j€lo
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where Iy = I5(9) C I denotes the index set of true null hypotheses under 9. For a given constant a € (0, 1), we
say that ¢ controls the FWER at level a under 9 € 0 and Cx, if FWERy ¢, () < a holds true.

Model 2.1 is a standard multiple testing model in the context of studies with M endpoints, which are all mea-
sured for the same n observational units; see, among many others, [7], [15], and [12]. Under Model 2.1, we
make the following general assumptions.

(GA1) For allj € I, the test statistic T; tends to larger values under the alternative K;. We thus reject H; for
large values of T;.

(GA2) The copula Cx is a nuisance parameter in the sense that it does not depend on 9.

(GA3) There exists a parameter value 9" in the global null hypothesis Hy = ﬂ?ﬁ 1 Hj which maximizes the
FWER of the multiple test ¢p which is under consideration. Such a parameter value is often called a "least
favorable (parameter) configuration", LFC for short.

(GA4) For allj € I, the marginal distribution of T; under 9" is known, and it only depends on the j-th com-
ponent J;.

Theorem 2.2 (Effective numbers of tests, Theorem 3.1in [7]). Under our general assumptions (GA1) - (GA4),
let Cx be such, that T fulfills the MSM; property in the sense of Definition 2.2 of [7] for some i > 1 under 9".
Define critical values ¢ = (c1,...,cy)" € RM suchthatVvj e I : ]P)S;((pj =1) = IP’S;(Tj > ¢j) = o for a fixed
local significance level a;,,. € (0, 1) in each marginal. Define also for j € I:

Y1 =€) = Pg}f(Tj < ¢j),
j-1
Yi=70l€) = Pg o | Ti<cl ﬂ {Tp=cp} ], fori<isj.
h=j-i+1

(i) Incaseofi < 2, set &(i) = 0. Otherwise, let

log(ye.¢(c))
$0) = Z 108(1 - aieg)”

Moreover, for every i < j < M, define

log(v;,i(c))

D = Do Try ooy Ty) = B ) 1
K] = K] (aloc; 1 ’ ]) lOg(l _ aloc) ( )

Then it holds 0
FWERg ¢, () < 1- (1 - azo0)"r @)

for an "effective number of tests" of order i, given by
MO = M @goe, T) = 1+ £ + Z KD, 3)
eff = loc»
j=iv2

(ii) Optimized bounds k](.i) and 1\_/[5}2 :
If, for every permutation m € Sy, the MSM; property is preserved if T = (T1,...,Ty) ' is replaced by
(Tr(ys -+ - » T,,(M)) it is possible to optimize Kl(l) and, consequently, M(’) in that the maximum strength of
positive dependence between T; and the preceding Ty, 1 < h < j -1, lS used. For i = 2, this leads to an

optimized version

log (maxy.; Py Cx (Tj<cj| T <cx))

Tog(1 - agy) “)

I_<](-2) = R;Z)(aloc; T1, ceey Tj) =

Mo 2D

An optimized effective number of tests of order i is given by ME}; =1+&3)+ Zj:ivz e
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Remark 2.3.

(a) The MSM; property is a positive dependency property. In plain terms, it means that a particular test statistic
T; tends to small values, given the information that i - 1 test statistics T, with h < j have realized small
values.

. . . 7 . @)
(b) The bound on the nght—hand s@e of (2) is of Siddk-type, where M is replaced by M e’ﬁ\
(c) It holds that 1 < Mg%r < M. If Mf?’/;r < M, this has the interpretation that we "“effectively" only have to correct

for ME% tests, due to certain similarities between them.

(d) Inpractice, we have to find the value of a;,. such that the right-hand side of (2) equals the pre-defined global
significance level a. This can be achieved by starting with a reasonable upper bound for «,,., and iteratively
evaluating (2) and decreasing a;,. until the aforementioned equality holds (approximately).

2.2 Vine copulae

Here, we collect some essential definitions and properties of (regular) vines and vine copulae. For more de-
tails, see Chapter 5 in [4] and the references therein.

Definition 2.4 (Vine). Let M € N. The setV = {71, ..., Ty_1} is called a vine of M elements, where E(V) =
Eq{ U...UE_q denotes the set of edges of V, if

(i) T, is a connected tree with nodes N1 = {1, ..., M} and edges E1, and
(ii)) T;is a tree withnodes N; = E;_1,for2 <i<M - 1.

If it holds, in addition, that
(iii) #la A b)=2forall2 <i<M-1and {a, b} € E;, where I\ denotes the symmetric difference,

thenVis called a regular vine (R-vine). As usual in graph theory, we call the number of edges which are connected
to a particular node the degree of that node.

Definition 2.5 (Complete union, conditioning set, conditioned set). LetV be a given vine of M elements, and
let e; € E; be a given edge. The set Ue, = {n; € N1|3e; € Ej,j=1,...,i—1, suchthatn; c e; € ... € ej_q €
e;} C Nj is called the complete union of e;. In words, Ue, denotes the set of nodes in the first tree T1 which can
be "reached" from e;. Letting e; = {j, k}, we call De, = U; N Uy the conditioning set of e;. Finally, the conditioned
set Be, of e; is defined by

Be, = 'Bei’]' @] Bei,k = U] A Uk’

where Be, o = Uy \ De, for £ € {j, k}.

Example 2.6. Let M = 4. Figure 1 graphically displays two R-vine structures of four elements. Namely, C-vines
and D-vines are important special cases of R-vines.

(a) The upper panel in Figure 1 displays a C-vine structure for M = 4. A C-vine is a regular vine fulfilling that
every tree T; has a node with degree M —i,for1 <i<M - 1.

(b) The lower panel in Figure 1 displays a D-vine structure for M = 4. A D-vine is a regular vine fulfilling that all
nodes in T, have a degree of at most 2.

Each edge in Figure 1 is labeled such that the elements of the corresponding conditioning set are provided after
the "|", and the elements of the corresponding conditioned set are provided before the "|". This kind of notation
will be used throughout the remainder.
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C-Vine for M=4

T2

T3
14 24|10 14
[24]

D-Vine for M=4
T1 T2 T3

Figure 1: C- and D-vines for M = 4.

Definition 2.7 ((Regular) Vine distribution). LetV = (T4, ..., Ty-1) be a given vine of M elements. The vine
distribution induced by V is given by the so-called "pair copula construction", meaning that a bivariate copula
Ce is attached to each edge e ¢ E(V) = E; U ... U Ey_1. Formally, a triple (F,V, C,) is called a regular vine
distribution, if F = (F1, ..., Fy) | is a vector of continuous and invertible cumulative distribution functions (cdfs)
on R, Vis a regular vine in dimension M, and C, = {Ce : 1 <i < M- 1,e € E;} is a set of bivariate copula
functions.

We say that the RM-valued random vector (X1, ..., Xyr) " possesses the regular vine distribution (F, V, C,),
if F; is the marginal cdf of X; for all 1 < i < M, and if Ce is the (conditional) bivariate copula of (X, ,, XBM)T
given Xp, for each edge e = {a, b} € E(V).

The tuple (V, C,) will be referred to as a regular vine copula throughout the remainder.

Theorem 2.8 (Corollary 1in [1]). Let V = (T4,...,Ty_1) be a regular vine of M elements. Assume that the
(conditional) copula C,, ., p, possesses a copula density c., ., p, for each edge e € E(V) with conditioning set
D. and conditioned elements e, and e,. Furthermore, assume that the cdf F; admits a Lebesgue density f; for
each 1 < i < M. Then, there exists a unique probability distribution on RM which has the Lebesgue density

M
fl...M = Hfl x H Ce1,€z|De(F91|De’ Fez‘De)' (5)
i=1 ecE(V)

Hence, under the aforementioned assumptions there exists an RM-valued random vector (X1, ..., X1) | possess-
ing the regular vine distribution (F, V, C,), and F e, |D. IS the conditional cdf of X.., given Xp,, where y € {1, 2}
and e € E(V).

3 Main contributions

3.1 Proposed methodology

The following lemma, the proof of which is provided in Appendix A of [17], connects the concept of effective
numbers of tests with copula theory.

Lemma3.. Letj € Iand1 < i < j. Forall1l < h < j, denote by Fr, the univariate marginal cdf
of Ty, under 9’, and assume that F T, 1S continuous and strictly increasing on its support. Furthermore, let
cp = F}:(l - ape)s 1 < h < j, for a fixed local significance level a;,. € (0, 1). To avoid pathologies, assume
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that Py ¢, (ﬂ};:,-,m{Th < ch}) > 0. Then we have, that

CT]-,,~+1,...,T]-(1 ~Qocs+ v+ 1- aloc)
CT,-,M,...,T,-,l(l ~Aocs+ v+ 1- aloc)

(6)

75,i(€) =

Asmentioned in part (ii) of Theorem 2.2, it is advantageous for an optimization (in terms of statistical power) of
the effective number of tests to find a structure / pattern in the degree of dependency among the test statistics
T1,..., Ty. This means that we aim at subdividing the total index set I into blocks, such that the inner-block
dependencies between test statistics are strong, while test statistics belonging to different blocks exhibit weak
dependencies or are even stochastically independent. As argued in Section 5 of [16], in some applications like,
for instance, genetic association analyses, an appropriate block structure or at least appropriate block lengths
can be deduced from expert knowledge about the experiment. An effective number of tests of appropriate
order i can then be calculated for every block b separately. Letting M f;l?f , denote the effective number of tests
of order i in block 1 < b < B, where B is the total number of blocks, we can take the number

Mgf)f,l + Mg()m oot Mgf)f’B @
as a (conservative) approximation of the optimized total effective number of tests ME;Q of order i. In this, the
term "conservative" means, that under MSM; the sum in (7) is guaranteed to be not smaller than 1\_/152; see
Section 5 in [16] for further details.

Our proposed methodology is to apply vine copula modeling for (i) finding the appropriate block struc-
ture, and (ii) estimating the copulae appearing in (6). The underlying pair copula construction can be ex-
ploited in a greedy-style algorithmic manner to determine an appropriate block structure. This property
makes the vine approach particularly well-suited in our context. In the remainder of this section, we explain
the two steps indicated above in more detail.

For automated model selection and pair copula estimation, we employ Algorithm 3.1 of [8], referred to as
"The Diffmann Algorithm" in Section 8.3 of [4]. This algorithm delivers an estimate V of the vine structure V
underlying the data, as well as an estimate €, of the family C, of pair copulae underlying the construction in
(5). Furthermore, for regularization purposes, we choose a truncation level K < M and finally work with the
approximation

M K
Froan = TIF T T 2ejrexin.Feipes ey ®
i=1

i=1 eeEi

where the E ;’s refer to the estimated vine structure V. A formal, information criterion-based method for choos-
ing K has been proposed in [11]. However, as documented in Section 4, the choice K = 2 already worked well
in our numerical examples.

Remark 3.2.

(i) Notice, that we do not have to estimate the (univariate) marginal densities f; for 1 < i < M in (8), because
we have to calibrate the multiple test under the LFC 9" € Hy, and under 9" the marginal distributions of
the test statistics are assumed to be known, see (GA4).

(ii) Comparing (8) with (5) and noticing that the density of the independence (or: product) copula is identically
equal to one on the unit cube, it becomes clear that in (8) only the first K (estimated) trees of V are explicitly
taken into account. In the remaining M - 1 — K trees, all pair copulae are set to the independence cop-
ula. This strategy is justified, because the Difimann Algorithm is designed to capture the most pronounced
dependencies in the first trees.

(iii) The estimated (joint) density f1...M refers to the distribution of X;. For calibrating the multiple test ¢,
though, we need the null distribution of the vector T of test statistics. However, since T = T(X4, ..., Xn)
is a given function of the (i.i.d.) data vectors X1, . .., Xn, the dependency structure among the components
X1,1, ..., X1 u of X1 already determines the dependency structure among T4, ..., Ty. Even if the map-
ping T is complicated, we can approximate the joint distribution of the random vector T(X1, . .., Xn) under
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9" ¢ H, with arbitrary precision by means of a Monte Carlo simulation, once the dependency structure
among the components of X, has been estimated.

Based on the estimated quantities ¥ and €, we propose the following algorithm for finding appropriate
blocks for the operationalization of (7). In Algorithm 3.3, we assume that the blocks (or groups) are all of
(approximately) equal size.

Algorithm 3.3 (Greedy algorithm for determining a grouping of the M test statistics).

Input The estimated quantities V and C., and the targeted group size.
Output Grouping of the M test statistics, which correspond to the nodes in the first tree in V.

1) Find the pair of coordinates with largest estimated Kendall’s T coefficient (according to C,), and assign the
two corresponding nodes to Group 1.

2) Find all nodes, which share an edge (according to V) with a node in Group 1, but are themselves not in Group
1 (yet). We call these nodes the neighbors.

3) Choose the neighbor with the strongest dependency with Group 1, and assign this neighbor to Group 1. This
means, that we find

argmax |2, gl + Z 12 ilgtm)» 9)
néeSet of neighbors icH(g(n)

where g(n) denotes the neighboring node of n from Group 1, and H(g(n)) denotes the set of nodes from Group
1which are neighbors of g(n). In (9), 1; ; denotes the estimated (unconditional) Kendall’s T coefficient of X1 ;
and X, j, and ‘?]-,,-‘k denotes the estimated conditional Kendall’s T coefficient of X, ; and X ; given X .

4) Repeat 3), until Group 1 has reached the targeted group size.

5) For Group 2 until Group B (last group), carry out steps 1) to 4) analogously by considering only those nodes,
which have not been assigned to any group yet. If no neighbors are found, go to the next group.

6) If there are still nodes left which have not been assigned to any group yet, assign them randomly to those
groups which have not yet reached the targeted group size.

Remark 3.4.

(i) The neighboring node g(n) appearing in (9) is uniquely determined, because the tree contains no cycle.
(ii) When constructing Group 1, it is guaranteed that a neighbor can be found.
(iii) In the case that B is fixed in advance, the targeted group size is |M/B|.
(iv) For Algorithm 3.3, only the first two trees in V, together with their corresponding pair copulae from €5, are
needed.
(v) For any given copula C on [0, 1]2, the corresponding Kendall’s T coefficient is given by

(C) = 4/ / Clu, V)ACQ, v) - 1 = 4E[C(U, V)] - 1,

[0,1]?

with (U, V)T ~ C.

3.2 Details on the implementation

Summarizing the proposed methodology presented in Sections 2 and 3.1, we obtain the following data anal-

ysis workflow.
Scheme 3.5. Given are the realized data matrix X = X, the null hypotheses Hy, ..., Hy, the mappings (test
statistics) T, ..., Ty, their univariate marginal cdfs (F r;rlsjs M) under 9", the FWER level a, the order i

for the effective numbers of tests, and the number B of blocks.
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1) Inorder to have (approximately) marginally uniformly distributed data as input for the Dif§mann Algorithm,
we transform the data points (X j)1<x<n With their empirical marginal cdfs, meaning that we set
1<jsM
Upj = F]-(xk,j), l<ksn,1<j<M.

2) We apply the Difsmann Algorithm to (u; : 1 < k < n, 1 < j < M) obtained in Step 1), and receive the esti-
mated quantities V and €. The Difimann Algorithm also computes and outputs all estimated (conditional
and unconditional) Kendall’s T coefficients pertaining to Cz ; ¢f. Part (v) of Remark 3.4.

3) We apply Algorithm 3.3 to the estimated quantities obtained in Step 2), and thereby determine the B blocks
for operationalizing (7).

4) We carry out a Monte-Carlo simulation for approximating the joint distribution of T4, ..., Tyiunder the
global null hypothesis Hy. In this simulation, we combine the univariate marginal cdfs (F ;0 l<j< M)
under 9" with the estimated vine copula from Step 2).

5) We compute the block-wise effective numbers of tests Mg%,l, ... ,Mg;, g Of order i as well as the critical
values c1, ..., Cjy based on the estimated joint null distribution from Step 4); see Theorem 2.2 and Remark
2.3.

6) Wereject the global null hypothesis H, iff there exists an 1 < j < Mwith Tj(xy j, ..., Xn ;) > cj. Furthermore,
we reject all individual null hypotheses H; with Tj(X1 j, ..., Xnj) > Cj, 1 < j < M.

In the remainder of this section, we briefly describe how we have implemented this workflow in the statistical
computing environment R (https://www.r-project.org/).

3.2.1 Implementation of the DiBmann Algorithm

The Difimann Algorithm is included in the R package VineCopula (https://cran.r-project.org/web/packages/
VineCopula/); see the function RVineStructureSelect in that package. As one argument, the transformed
data (uy; : 1 < k < n, 1 <j < M) are required. As another argument, copula families are required, from which
the bivariate copulae appearing in €, are chosen. For our numerical experiments described in Section 4, we
have taken the following families.

0) Independence copula (product copula),
1) Gaussian copula family,

3) Clayton copula family,

4) Gumbel copula family,

5) Frank copula family,

6) Joe copula family,

together with their rotated versions. The numbering in the above list corresponds to that in the R package
VineCopula. The package also offers further families, but we have worked only with the aforementioned
ones. Finally, the function RVineStructureSelect requires the specification of the truncation level K. In
our experiments, we have set K = 2; cf. Part (iv) of Remark 3.4.

3.2.2 Implementation of the other steps in Scheme 3.5

A custom implementation of Algorithm 3.3 is available from the authors upon request. Notice that all required
quantities for Algorithm 3.3 (namely, v, Cz, as well as the estimated (conditional and unconditional) Kendall’s
7 coefficients pertaining to C,) are delivered by the Difimann Algorithm. Hence, it essentially remains to code
the neighbor search and the evaluation of (9).

For the simulation in Step 4) of Scheme 3.5, we have used the function RVineSim from the R package
VineCopula. This function generates pseudo-random vectors from the estimated vine copula. Combining this
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with the principle of quantile transformation yields pseudo-random vectors which behave like realizations
of Tunder 9".
Many further resources for working with vine copulae can be found at http://www.vine-copula.org/.

4 Numerical experiments

4.1 Multivariate Gaussian model

In our first numerical example, we let M = 15. We assume that X; follows the 15-variate normal distribution
with mean vector 9 and covariance matrix X. In our simulations, we set 9; = 0 for 1 < j < 11 and ; = 0.15 for
12 <j < 15. The covariance matrix is given by

™M

I
O Oobvo Oofvo oo oo O R
oo ogvo oo Oogvo © ~ O
o © OO OO OFvo O~ O O
O OBvo OFvo OO © » O OfFe
ofo oo OFvo © ~ O OFv 0O
Heo ofvo ofvo © » © oFvo ©
O OO oo O R O OFvwo O
ofo oo O O OFvwOo OFv o
Heo ofvo o » 0 oo oFvo ©
O oo O R O OO OFvo OFw
oo O r O oo OFvo OFv o
Heo or o ofvo oo ofvo o
O O O OLvo OFvo OFvo OFe
O~ O O8O OFvo OFvo OFv o
R O OgO OFvwo Ogloo OFvwo O

10
The marginal test problems of interest are assumed to be H; : {J; = 0} versus K; : {9; # 0} for1 < j < 15.
The vector T = (T1,..., Tq5)" is given by Tj = |vnXpjl, where Xnj=n -1 > ke Xyj, for 1 < j < 15. We let
a = 5%. Making use of Proposmons 4.1 and 4.2 in [5], it can be shown that T fulfills the MSM, property under
9" = 0 ¢ R'®, and that this property is preserved under coordinate permutations.

Analyzing the structure of X, we see that there are three blocks of highly correlated coordinates, namely
(1,4,7,10,13),(2,5,8,11,14),and (3, 6, 9, 12, 15). The goals of our computer simulations are to assess (i)
how reliably our proposed methodology can identify these blocks, and (ii) how much gain in statistical power
can be achieved by exploiting the dependency structure. We performed 400 simulation runs for sample sizes
n € {100, 200, 300}. The number of groups has been set to B = 3, with a targeted group size of five per
group.

For one particular simulation run with n = 300, Figure 2 displays the two estimated trees in V. Table 1
displays our (averaged) simulation results. Since all test statistics have the same null distribution, we have
chosen c; = ¢; = ... = ¢35 = c. Utilizing the R function gmvnorm from the package mvtnorm, we have
computed that the optimal value of ¢ (i. e., the true equi-coordinate two-sided 95%-quantile of the centered
normal distribution on R'®> with covariance matrix X) approximately equals 2.691. The rows labeled "fixed
groups" refer to the fixed group structure (1, 2, 3, 4, 5), (6,7, 8,9, 10), and (11, 12, 13, 14, 15).

The results in Table 1 clearly demonstrate the advantage of choosing the blocks in a data-driven manner.
Our proposed methodology leads to a decrease in the effective numbers of tests and in turn to an increase in
statistical power, when compared with the setup with fixed groups. Furthermore, the column labeled "FWER"
indicates that the FWER level a = 5% is kept in all considered simulation settings when applying our pro-
posed methodology. This is also reflected by the fact that the empirically calibrated values of ¢ are in all
considered simulation settings larger than the optimal value 2.691. The simulations referring to the column
labeled "FWER" have been performed under the LFC 9" = 0 € R'°.
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K=2 Mg c power FWER
Sample size =100

Sidak correction 15  2.928 9.00 1.25
fixed groups 11.83 2.857 9.81 3.25
chosen groups 8.62 2.754 11.44 4.00
Sample size = 200

Sidak correction 15  2.928 22.63 2.75
fixed groups 11.79 2.856 24.75 3.00
chosen groups 8.77 2.760 27.13 3.50
Sample size =300

Sidak correction 15  2.928 37.88 2.50
fixed groups 11.72 2.854 40.63 3.25
chosen groups 8.77 2.761 44.13 4.00
K=3 Mg c power FWER
Sample size =100

Sidak correction 15 2928 9.00 1.25
fixed groups 11.87 2.858 9.88 2.50
chosen groups 8.60 2.754 11.38 4.25
Sample size =200

Sidak correction 15  2.928 22.63 2.75
fixed groups 11.85 2.857 25.13 3.00
chosen groups 8.71 2.757 27.81 4.00
Sample size =300

Sidak correction 15  2.928 37.88 2.50
fixed groups 11.83 2.857 40.44 3.25
chosen groups 8.71 2.758 44.75 4.25
K=4 Mg c power FWER
Sample size = 100

Sidak correction 15  2.928 9.00 1.25
fixed groups 11.85 2.858 9.88 2.50
chosen groups 8.58 2.752 11.56 4.25
Sample size =200

Sidak correction 15 2.928 22.63 2.75
fixed groups 11.74 2.854 25.00 3.00
chosen groups 8.63 2.754 27.69 4.00
Sample size =300

Sidak correction 15  2.928 37.88 2.50
fixed groups 11.84 2.857 40.63 3.25
chosen groups 8.68 2.757 44.63 4.25

Table 1: Results of computer simulations with 400 simulation runs under the model from Section 4.1. The column labeled M
displays average values of Mgzﬁ)’l + M(ezf?,z + M(ezf?j. The column labeled c displays average values of the multiplicity-adjusted
critical value c. The corresponding local significance level can be computed as a;,. = 2(1 - @(c)), where @ denotes the cdf of
the standard normal distribution on R. The column labeled power displays empirical powers in per cent. The column labeled
FWER displays empirical FWERs in per cent. For the latter column, the simulations have been performed under the LFC 9" = 0 ¢

R15,
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Tree 1 Tree 2

Figure 2: The two estimated trees in ¥ for one simulation run with n = 300 under the model from Section 4.1. The graphs have
been produced by the function RVineTreePlot from the R package VineCopula. The letters at the edges refer to the selected
pair copula families as defined by the R function BiCopName.

4.2 Vine copula model

In our second numerical example, we let M = 9, and we assume that the Lebesgue density of X; on R is

given by
9

fo=11fix 11 cevesin.Feypes Feyn.)s (10)

i=1 ecE(V)

cf. (5). The marginal densities f1, . .., fo are Lebesgue densities of univariate normal distributions with unit
variance. The expected values of these normal distributions are set to zero in the first five coordinates and
the remaining ones are set to 0.15. The vine V utilized in (10) is a D-Vine with truncation level K = 2, and its
structure is displayed in Figure 3.

Tree1 Tree 2

2iS

Figure 3: The first two trees in the D-Vine V which has been used in the simulation study of Section 4.2. The letters at the edges
refer to the utilized pair copula families as defined by the R function BiCopName.
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In Table 2, we list the copula families utilized in V, together with the values of the associated copula
parameters and the corresponding values of Kendall’s 7. To all nodes which do not appear in Table 2, the

Tree Nodes Copulafamily Copula parameter Kendall’s

1 1,4 Clayton 11 11/13 = 0.846
4,7 Clayton 12 12/14 ~ 0.857
2,5 Clayton 12 12/14 = 0.857
5,8 Gumbel 8 7/8=0.875
3,6 Gumbel 7 6/7 ~0.857
6,9 Clayton 8 8/10=0.8

2 1,7|4 Gumbel 2 1/2=0.5
2,8|5 Clayton 11 11/13 = 0.846
3,9|6 Gumbel 2 1/2=0.5

Table 2: Copula families and copula parameters for the simulation study of Section 4.2.

independence copula has been assigned. Hence, we have the three independent blocks (1, 4, 7), (2, 5, 8),
and (3, 6, 9) of three coordinates each in the data-generating process for the distribution of X;. For a further
illustration, Figure 4 displays the corresponding contour plots.

39;671;4/86;3(24;7(53;8|57;2 28,5
6.9 7.4 8,3 2,7 5,8 5,2

Figure 4: Contour plots of the pair copulae which have been used in the simulation study of Section 4.2.

We assume, that J; is given as the marginal expected value in coordinate 1 < j < 9, and that the test
problem of interest is given by H; : {J; < 0} versus K; : {J; > 0} for 1 < j < M = 9. The test statistics are given
by Tj = v/nX,;, where X, j = n"1 Y3, X; ; for 1 < j < 9. Hence, 9" = 0 € R®. Under 3, each T; marginally
possesses the standard normal distribution on R (leading to choosing the same critical value c for each T}),
while T; has a shifted normal distribution under the alternative K;. In terms of the marginal tests, the only
difference to the setup in Section 4.1 is, that we now carry out one-sided Z-tests instead on two-sided ones.
Furthermore, the dependency structure of X; is now much more involved, such that a simple check of the
validity of the MSM, property is not straightforward here. However, notice that the copula families appearing
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in Table 2 are only capable of expressing positive dependencies, indicating that MSM; is likely to be fulfilled
in this simulation. In particular, the covariance matrix of X; has only non-negative entries.

In analogy to Section 4.1, we display our (averaged) simulation results (for truncation level K = 2) in
Table 3.

K=2 Mg c power FWER
Sample size =100

Sidak correction 9 2531 15.63 3.50
fixed groups 7.68 2.478 16.75 3.50
chosen groups 4.95 2.318 21.88 4.75
Sample size =200

Sidak correction 9 2.531 3263 1.25
fixed groups 7.78 2.482 34.25 1.25
chosen groups 491 2.315 40.38 2.75
Sample size =300

Sidak correction 9 2,531 5231 2.25
fixed groups 7.78 2.482 5481 3.25
chosen groups 4.88 2.313 60.81 4.25

Table 3: Results of computer simulations with 400 simulation runs under the model from Section 4.2. The column labeled M

displays average values of M(esz),l + M(ezﬁ)2 + Mg_zf? ;- The column labeled c displays average values of the multiplicity-adjusted

critical value c. The corresponding local significance level can be computed as a;,. = 1 - @(c), where @ denotes the cdf of the
standard normal distribution on R. The column labeled power displays empirical powers in per cent. The column labeled FWER
displays empirical FWERs in per cent. For the latter column, the simulations have been performed under the LFC 9" = 0 € R®.

5 Conclusion

We have proposed a vine copula-based construction method for multivariate multiple tests. The main ad-
vantage of the vine copula estimation approach is, that the tree structure in V straightforwardly allows for
choosing appropriate blocks for a block-wise evaluation of the effective numbers of tests. In the computer
simulations presented in Section 4, the dependency structure was explicitly given. Notice, however, that the
workflow from Scheme 3.5 is data-driven in the sense, that the pair copulae are chosen from a large pool of
copula families on the basis of the sample only, without relying on any prior information about the type of
dependencies among the test statistics. This is particularly useful in cases with a moderate or high dimension-
ality M, when it is typically infeasible to model (pair) copulae of the data explicitly. Due to the combinatorial
explosion involved in the vine model selection, we consider M = 15 (cf. Section 4.1) or M = 9 (cf. Section 4.2)
already as quite high dimensionalities in our context.

There are several possible extensions of the present work. First, it may be of interest to compare our
approach with further data-driven techniques, in particular with multivariate resampling techniques as pro-
posed, for instance, in [18]. We have not included such a comparison here, because our main point was to
demonstrate how much can be gained by choosing the blocks in a sophisticated manner instead of a naive
choice. Second, one may consider nonparametric copula estimators in C,. Finally, from the theoretical per-
spective it may be of interest to analyze conditions for the validity of the MSM, property for certain relevant
families of pair copulae. In the case of Archimedean copula families, an important contribution in this di-
rection is [10]. The authors analyze conditions for the validity of the MTP, property for such families. It is
well-known that MTP, distributions are also MSM, distributions; see [9].
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