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SIX-DIMENSIONAL LANDAU INEQUALITIES

Abstract. Let X be a complex Banach space, and let t — T(t)(|T(t)|| < 1,t > 0)
be a strongly continuous contraction semigroup (on X) with infinitesimal generator A.In
this paper we prove that the following five inequalities

14%1|° < R (6)ll=)1°" )| A%

hold f D(A®) and for a fixed number i = 1,2, 3,4, 5, where R1(6) = 823 [6]¢;
old for every z € D(A®) and for a fixed number ¢ = 1,2, 3, 4, 5, where R; ( )_W[i]el

67 _ _ 65 _olabe5 _ _ 606 _ _ ol5

such that our symbol [1] i e holds as well as g3 = 2735, €2 = 5°7°,e3 = 277,
g4 = 243076 g5 = 2555, Analogous inequalities hold for strongly continuous contraction
cosine functions. In this case of cosine functions constants R} (6) are replaced by R3(6) =

And
( (f;)!')’ [6] €; . Inequalities are established also for uniformly bounded strongly continuous

1
semigroups and cosine functions.

1. Introduction

Edmund Landau (1913) [6] initiated the following fundamental eztremum
problem: The sharp inequality between the supremum-norms of derivatives
of twice differentiable functions f such that

(L) I£1% < 4lFINILFN

holds with norm referring to the space C|0, 0o].
Then R. R. Kallman and G.-C. Rota (1970) [3] found the more general
result that inequality

(1) lAz* < 4lz]| || A%
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holds for every z € D(A?), and A the infinitesimal generator (i.e., the strong
right derivative of T' at zero) of ¢t — T'(t)(t > 0): a semigroup of linear
contractions on a complex Banach space X.

Z. Ditzian [1] achieved the better inequality for every z € D(A?),

(2) 1 Az(|* < 2||]] | A%

where A is the infinitesimal generator of a group ¢t — T(¢) (||T(¢)] = 1,
t € R) of linear isometries on X.

Moreover H. Kraljevi¢ and S. Kurepa [4] established the even sharper
inequality for every = € D(A?),

(3) 1Azl* < 2 [l | A%

Wl

and A the infinitesimal generator (i.e., the strong right second derivative
of T at zero) of t — T(t) (t > 0): a strongly continuous cosine function of
linear contractions on X.
Therefore the best Landau’s type constant is % (for cosine functions).
The above-mentioned inequalities (1)—(3) were extended by H. Kraljevié
and J. Pecari¢ [5) so that new Landau’s type inequalities hold. In particular,
they proved that

243
(1a) 14z]° < ==l 4%],  [|4%]® < 24]|=] | A*=]}?

hold for every z € D(A%), where A is the infinitesimal generator of a strongly
continuous contraction semigroup on X. Besides they obtained the analo-
gous but better inequalities

9
(2a) 14z < Sl A%], 1A% < 3ljz]| | A%2|)®

which hold for every x € D(A3), where A is the infinitesimal generator of a
strongly continuous contraction group on X. Moreover they got the set of
analogous inequalities

81 72
(3a) 142]° < Sl=l®il 4%,  14%(° < el [| 4%

for every z € D(A3?), where A is the infinitesimal generator of a strongly
continuous cosine function on X.
Denote the afore-mentioned constants by

Ri(2) =4; Ri(2)=2; R}(2) =

Wl

for every £ € D(A?) (on X), as well as

81 72
R3(3) =3 R33) = o5, R3) = 5

1 _ 243 oa. D2 _

cofl ©



Siz-dimensional Landau Inequalities 415

for every z € D(A%) (on X). These constants are employed for the estab-
lishment of the two-dimensional Landau inequalities ([1], [2], [3], [4], [6]) and
the three-dimensional Landau inequalities [5], respectively.

Similarly we established the four-dimensional Landau inequalities [7] and
the five-dimensional Landau inequalities [8] such that inequalities

(+) |A%z||™ < RE(n)||z| || Ame |
hold for every z € D(A™) (on X), a fixed number n = 4 and n = 5, and
1=1,2,...,n—1, where k = 1 corresponds to the case of semigroups, k = 2

to groups, and k = 3 to cosine functions, as well as constants R¥(n) (n = 4
and n = 5) are of the following form:

104

R =23, Ri#)=-g, RAH=19
=12, Bo=2, -0
R =12 RW=T, Be=22
for every « € D(A*) (on X) and
R =50 BO=22  BE=15T R =360
o= me -T2 me -2 me-s(L);
Be =3 "o =2 me =T e - L

for every z € D(A%) (on X).

In this paper, we extend the above inequalities so that the six-dimen-
sional Landau inequalities (+) hold for every z € D(A®) (on X), where A is
infinitesimal generator of a uniformly bounded continuous semigroup (resp.
cosine functions).

2. Semigroups

Let t — T'(t) be a uniformly bounded (||T'(¢)|| £ M < oo, t > 0) strongly
semigroup of linear operators on X with infinitesimal generator A, such that
T(0) = I (:= Identity) in B(X) := the Banach algebra of bounded linear
operators on X, ltil%l T(t)z = z, for every z, and

(4) Az = ltilrg it)t_—Im(z T'(0)x)
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for every z in a linear subspace D(A)(:= Domain of A) dense in X [2]. For
every z € D(A), we have the formula

(5) Tt)z=z+ §T(u)A:c du.
Using integration by parts, we get theo formula
(6) § (§T(v)A2z dv) du = §(t —u)T(u)A%z du.
00 0
Employing (6) and iterating (5), we find for every z € D(A?) that
(5a) T(t)z =z + tAz + §(t — u)T(u) A%z du
0

Similarly iterating (5a), we obtain for every z € D(A®) that
(5b) T(t)=z

t

1 S(t — u)®T(u) A%z du.

B3 4t
—A’z + — 1)

t5
4 5
3 4!A m+§A T+

—_ t A t2A2

=z+ F T+ a T+

Consider our auxiliary (6 x 5) coefficient matrix
(ai;) :1=0,1,2,3,4,5; j = 1,2,3,4,5, such that

Qo1 = Qo2 = Q03 = Qo4 = Qo5 = %t1t2t3t4t5;

a11 = tatatals, a12 = titslels, @13 = titatsls,
a14 = titolsts, a15 = titatlsly;

a21 = tatsty + tatstls + tatats + Latats,

a2z = titgly + t1tgls + t1tals + tatats,

az3 = t1laty + f1tals + f1tals + fatyts,

a24 = t1latls + titats + t1lzts + tatsts,

a5 = titats + t1taty + t1t3ty + Latsty;

az1 = {otg + Loty + tols + L3ty 4 t3ts + t4ls,

a3z = t1t3 + t1tg + E1ts + t3tg + 35 + t4is,

azz = l1ta + t1tq + E1l5 + Loty + tots + tats,

azq = tita + t1t3 + t1ts + Lot + tots + t3is,

azs = t1to + tytg + t1tg + Loty 4 Loty + taty;

aq1 =t2+t3+ta+1ls, ag2=11+1t3+1+1s,
ag3 =ty +ta+ta+ts, asa =1t +1l2+1t3+1s,
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aq5 =11 + 12 + i3 + 14;
as51 = as2 = G53 = G54 = as5 = L.
Also consider
dy = totatats(ta — t3)(t2 — ta)(t2 — t5)(t3 — ta)(t3 — t5)(ta — t5),
da = tytatats(th — t3)(t1 — ta)(t1 — t5)(t3 — ta)(t3 — t5)(ta — t5),
d3 = titatats(ts — t2)(t1 — ta)(t1 — t5)(t2 — ta)(t2 — t5)(ta — t5),
dq = titatats(ty — to)(t1 — t3)(t1 — ts)(t2 — t3)(t2 — t5)(t3 — ts5),
ds = titatsta(ts — to)(ts — ta)(t1 — ta)(t2 — t3)(t2 — ta)(ts — ta).
Finally consider vectors:
@; = (a1, ai2, @iz, Gig, ai5) (1 = 1,2,3,4,5) and d = (dy,ds,ds,dq,ds)
as well as vectors: @y = (ao1, @02, @03, @04, @os) such that ag; = %W5 (=

1, 2, 3, 4, 5) where Wy = t1t2t3t4t5 and T = (1, 1, 1, 1, 1).
Note that

5
E aijdj =a;ed
Jj=1

holds for i = 1,2,3,4,5, where “o” is the dot (“inner”) product vector
operation.

Also note that
titatstats =ws =ap e 1,
titatats + titatsts + titatats + titstats + tatstets = a1 @ 1,
tilots + t1lats + titals + t1tsts + tatals + t1tats + Latsty + totsts + talsils

+tstats = (@2 0 1)/2,

titg + t1tg + t1t4 + L1l5 + Lotz + Loty + Loty + t3tg + t3ts + t4ts = (63 ° T)/3,
ti+to+ts+tas+ts=(asel)/4, and 1= (asel)/5.

Denote vector

T (Tl’T2aT37T47T5) with T = ( l)J 105d T(t ) .7= 1’2’374’5,

where 05 = IJ,M—,‘I, (= 720000) and “determinant”:

(11) D= 0’5[t1t2t3t4t5(t1 - tg)(tl - t3)(t1 - t4)(t1 - t5)(t2 - t3)(t2 — t4)
X (b2 — t5)(ts — ta)(t3 — 5)(ta — t5)]

or

T = (le(tl), —dzT(tz), d3T(t3), —d4T(t4), d5T(t5)).

1
0'55
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Also denote

1, for i € {1,2}
(9) Te= {%, for 7 € {3,4,5}.

THEOREM 1. Let t — T'(t) be a uniformly bounded (||T(t)|| < M < oo, t > 0)
strongly continuous semigroup of linear operators on a complex Banach space
X with infinitesimal generator A, such that Az # 0. Then the following five
inequalities

() N4

< (i!){ [MC]; (@; o d) + %s(al . 1] lz| + [ M(ri(@i—1 -T))] IIA%II},

6!
hold for every x € D(A%) and a fized number i = 1,2,3,4,5, where o3, D,
ws,m; (1=1,2,3,4,5), @ (i = 1,2,3,4,5),d,1,a are given above. Besides
(7) holds for every t; € Rt = (0,00) (i = 1,2,3,4,5) : 0 < {1 < t2 <13 <
g4 <ts.

Proof of Theorem 1. In fact, formula (5b) yields system of five equations:

5! 2, 3 43 4 44 5 45
(10) tA:z:-f-atzA 3't1A z+4't1A T+t A%z
t;
= 5!T(t)z — 5lz — S(ti —u)’T(u)A%z du, fori=1,2,3,4,5.
0

The coefficient determinant with respect to Az (i = 1,2, 3,4, 5) of alge-
braic system (10) is D given by (11).

It is clear that D is positive because: 0 < t; < 13 < t3 < t4 < ts.
Therefore there is a unique solution of system (10) of the following form:

(12) Az = (1!){[(t2t3t4t5)d1T(t1)$ - (t1t3t4t5)d2T(t2)1}
+ (t1t2t4t5)d3T(t3)$ - (t1t2t3t5)d4T(t4).’l}
+ (t1t2t3t4)d5T(t5).’E]/—o_l—z’-

- [(t1t2t3t4 + t1t2t3t5 + f1tatals + t1t3tsls + t2t3t4t5)/&)5]$}
ts

- S K1 (w;u)T(u)A8zdu,
0

where w = (1,12, t3,14,15),
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(128.) A’z = ( ){[(t2t3t4 + tatsts + totals + t3t4t5)d1T( 1)13
(t1t3t4 + t1tsts + t1i4t5 + t3t4t5)d2T(t2)

+ (t1t2t4 + t1tots + t1tats + tatals d3T(t3)

=

(

-1

)
titats + t1tats + t1tsls + t2t3t5)d4T( )
+ (t1tots + t1taty + t1t3ts + t2t3t4)d5 (tg,):l)]/——-

(t1t2t3 + t1toty + t1tots + t1tsty + t1t3ls + t1t4t5 + t2t3ty

ts

+ tatsts + tatats + tatats) /ws]z} + | Ka(w; )T (u)ACzdu,
0

(12b) Adz = (3!){[(t2t3 + totg + tots + L3tg + L3t5 + t4t5)d1T(t1)£B

— (t1t3 + t1t4 + t1ts + t3ts + tals + t4t5)d2T(t2).’l}

+ (tltz + t1tg + t1ts + Latg + tols + t4t5)d3T(t3).’1:

- (tltg + t1t3 + t1t5 + tat3 + tats + t3t5)d4T(t4)£II

)

D
+ (t1t2 + t1t3 + t1tg + tots + toty + taty)dsT (ts).’z:]/-o_—
5

— (tltz + t1t3 + t1tg + t1ts + Lotz + Loty + L2i5
+ t3ts + tats + tats)/ws|x}
ts
- S K3(w;u)T(u) A%z du,
0
(12c) Az = — (@){[(t2 +t3 +ta +t5)diT(t1)x — (t1 + t3 + ta + t5)d2T (t2)
+ (tl + 1o+ 14+ ts)dgT(tg):Z: — (tl + ity +t35 + t5)d4T(t4)fl)

D
+(t1+t2+t3+ t4)d5T(t5)iE]/a—5

ts

— [(t1 +t2 + ts + ta + ts) /wsla} + | Ka(w; w)T(u) A%z du,
0

(12d) Adz = (5'){[d1T(t1).’lJ — dzT(tz)IE + d3T(t3).’L‘ - d4T(t4).’E

+ d5T(t5):1:]/a% - [l/ws]w} - SsKs(w;u)T(u)AGz du,
0

where K; = K;(w;u) are given by the following formula (13). The above
mentioned solution A’z (i = 1,2,3,4,5) of algebraic system (10) is of the
form:
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. . 1 - ks
(x) Az = (=1)"? {(z') [(Ei oT)— E(Ei . 1)] T — S Ki(w;u)T (u) A%z du},
3 0
where K; = K;(w;u) = (—1)" 13 K;(w;u) such that K; = 0;K;, and

51)4 51)4
ag; = (5 ) (e.g. g3 = T'%'S')’
Ig

Jj=1
(F#1)
as well as
( aindi(ts — w)® — aiada(t2 — u)® + a;3ds(ts — u)®
—aiqda(ts — u)® + aisds(ts — u)®, 0<u<st
_ —aizdz(tz — u)5 + ai3d3(t3 — u)5 - a,~4d4(t4 — u)5
i= +aisds(ts — u)d, t) Su<t;
aizds(ts — u)® — aiada(ts — u)® + aisds(ts — u)®,  to <u <ts,
—a;4d4(ts — u)® + aisds(ts — u)®, t3<u<iy
aisds (ts — u)®, ts <u<ts
for a fixed number ¢ = 1, 2, 3,4, 5, or equivalently
o~ S~y 5 .
K;=Kix =Y (=1)7ta;;d;(t; —u)®, te—1 <u<ty,
j=k

for a fixed number 7 = 1,2, 3,4,5 and all numbers £k =1,2,3,4,5:t =0 <
t; <ty < t3 <ty < ts. Thus we get the formula
5
. 1 .
(13) K= (—1)’-10—,~B D (1Y lagd;(t; —u)®,  ther Su <,
i=k

for a fixed number 7 = 1,2, 3,4,5 and all numbers k =1,2,3,4,5:t5 =0 <
1) <ty <tz <ty <ts.

It is obvious that (—1)5"'K;(w;u) > 0 (i = 1,2,3,4,5) for every u €
[0,t5] and claim that

ts Wws ts 7,' _ —
§)K1du=a and (SJKiduzm(ai—l.l)
hold, or
s il - -
(14) | Kidu= (—1)5—16;7~,.(a,._1 o) = gri(@-10T)
; ! !

where r; (1 =1,2,3,4,5) are given by (9). In fact,
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(1) dyt8 = 4\
(15) ;(1 d;t Z[ (Htk>t]

k=1
(k#5)
= ws[(—1)°"H(D)(t1 + t2 + t3 + t4 + t5)/o5w]
D
40’5 (a4 ¢ 1)

Therefore for 1 =5
ts

5
. D
(st 3= o0 = 25 [ 2 @re)

0
1 - 5!
—_ 1 —_—
4( )= (5 —1)(6")
Similarly we prove the other cases (i = 1,2,3,4) of (14) .Besides

(64 .T) = —6}?7.5(64 OT)

5
a; o T = (ai1, i, i3, @i, ai5) ® (T1, T2, T3, Ty, Ts) = Z(aijTj)
=1
os 5 p
=3 Z ~tai;d; T(t;)),
or
(16) @ o T| < M2 (@ -3)

1=1,2,3,4,5, holds by the triangle inequality.

Therefore from the formulas (*)-(14) and the triangle inequality as well
as the inequalities (16) we establish the inequalities (7). This completes the
proof of Theorem 1.

Note that if we set

t1 =1, ta=mt, I3 =mot, 14 =mazt, I5=myl,
ort; =(m;j_1)t ( =1,2,3,4,5),

(17) mo(=1) <my <my <mg <my, t>0,
in matrix (ai;) : 4 =0,1,2,3,4,5; 7 = 1,2,3,4,5, then we obtain the new
(6 x 5) matrix (as;) :4=0,1,2,3,4,5; j = 1,2,3,4,5, such that
ag; = a()jts, i=1,2,3,4,5, where

Qo1 = Qo2 = Qo3 = Qo4 = Qo5 = %m1m2m3m4;
ayj = aljt4, 7=12,3,4,5, where

Q11 = M1pM2M3my, Q@12 = M2M3M4, Q13 = M1TN3MN4,
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Q14 = MMMy, Q15 = M1M2M3;
azj = az;t3, §=1,2,3,4,5, where
Qi1 = M1Mam3 + MMMy + M1M3My + TMaM3Mmy,
Q22 = mMaomg + mamy + m3gmy + mMamsmy,
Q23 = M1mg + MMy + M3my + Mmpmamy,
Q24 = M1Ma + Mmimy + Mmomy + mimaomy,
Qs = mymag + mims + momsa +mipmomas;
asj = a3jt2, 7=1,2,3,4,5, where
Q3] = MMy + mims + mymy + moms + momy + mamy,
Q32 = M2 + M3 + my -+ mama + Mmamy + mamy,
a3z = my + ma + myg + mimsg + mimg + mamy,
Q34 = M1 + Mo + myg + mimg + mimy + momy,
Qg5 = my + mao + m3 + mpmsg + mymsa + mams;
Q45 = Oz4jt, _] = 1,2,3,4,5, where
a4 = mi+metmst+my, ag2 = l4motmz+my, ayg3 = 1+mi+maz+my,
g =1+m+ma+my, aygs=1+my+ms+ msz;
as; = as;, j =1,2,3,4,5, where
051 = 52 = Q53 = Q54 = Q55 = L.
Therefore
(17a) aij = ait° 7 $=0,1,2,3,4,5 j=1,2,3,4,5,
where a;; are given above. Also setting (17) in d; (¢ = 1,2, 3,4,5), we get
(17b) d; = 6;t*°, j=1,23,4,5,
where 10 = 4 + (g) and
81 = mymomgmy(my — ma)(my — mz)(my — my)
X (mg — m3)(mg — my)(mz — my)

82 = mamgmyg(l — ma)(1 — m3)(1 — my)(ma — m3)(me — mg)(m3z — my),
my — m3)(my — my)(ms — my),
(
(

my)

63 = Mmim3zmy 1- ml)(l - m3)(1 - 4)
my) my — mg)(mz — my),
)

(
( ( )
84 = mamamyg(l — my)(1 — m2)(1 — my)(my — my)
( ( )

65 = Mi1MaMmMms 1- ml)(l - m2)(1 —mg){m] — ma)}{my — m3)(m2 - m3)



Siz-dimensional Landau Inequalities 423

Therefore from (17a)—(17b) , we find that
5

5 5
(17¢) a; od= Zaijdj = Z(aijts_i)(6jt10) =151 Zaijéj, or

j=1 j=1 i=1
E‘i OE: (aiOS)tls-i, 1= 1,2,3,4,5,
where

15 =5+ [4 + (;1)] and vectors

@ = (o1, 2, s, g, i) (3 = 1,2,3,4,5) and 6 = (61, 62,83,64,65), as

well as vectors @y = (o1, 02, @03, 04, 0tp5) such that ag; = %w; (G =
1,2,3,4,5):

where wy = mimamamy.

Also note that

dp e 1 = ws = wlt®, where

wg = 60 ® T =_m1mgm3m4,

ay .T = (61 ® 1)t4, where

@1 0 1 = mymams + mimomy + mimamys + mamamy + mimamamy,
(@2 01)/2 = [(a2 @ 1)/2]t%, where

(52 ° T)/2 = mimsy + M1Mm3 + MMy + MaM3 + MMy + M3My
+ mimema + mimaomy + Mym3amy + MeM3zMy,
(as 0 1)/3 = [(@3 @ 1)/3]t2, where
(53 0T)/3 =1my + mg +m3 + myg + mimeo + mims + mimy
+ mamg + Moy + M3my,
(3 0 T)/4 = [(@a o T)/4]t, where
(@s01)/4=1+my1+ma+m3+my, and

(55 OT)/S = [(65 0T)/5], where

(65 ° T)/S =1

Therefore in the afore-mentioned inequalities (7) we have

G, e1=(ael)t>

(17e) 1_(1)_6.,
and a;_jel=(a;_;el)t° "
fori=1,2,3,4,5. Besides

T = (Tl,Tg,T3,T4,T5) with

;10 i g
Ty = (1Y 5diT(t) = (-1 5

(D*)t15

(68T (m;_1t),
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i=1,2,3,4,5, where

(17f) D = D*t'®

with

(11a) D" = os[(mimamama)(1 — my)(1 — m2)(1 — m3)(1 — my)
x (my — ma)(my — m3)(my — my)(ma — m3)

X (my — mq)(m3 — my))

and
T; = (—1)j_1;i T (mj—1t)|t7°.
Therefore
(11b) T=Tt"° oT;=T;t"
where

T = (Ty, Ty, Ty, Ty, T with

Tr = (-1~ "5 —8; T(mj-1t), j=1,2,3,4,50r

= 1
T = 0'55(61T(t), —62T(m1t), 63T(m2t), —64T(m3t), 65T(m4t)).

Thus from (17a) and (11b) , we obtain

Gg;ieT = Za,JT = Z awts") T;t™°)=1t" Zaw
j=1

or
(11c) GieT=(o; 0T )t i=1,2,3,4,5.
Besides
5
a; e T = ZQUT* Z[ j laijéjT(mj_lt)],
ij=1
or
(11d) @ o T*| < M%(Ei %), i=1,2,3,4,5

holds by triangle inequality.
Finally we claim that

(1le) Ki(w;u) = (K (w*;u*)t274t > 0,my_2 < u*( = %) < mg-1

where
5

* *, _*x i~ 1 j — *
K (w5 u®) = (-1) laiﬁ D (-1Y ay;65(mj1 — w*)’,
i=k
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for a fixed number i = 1,2,3,4,5, and all numbers £k =1,2,3,4,5:
m_1(=0) < mp(=1) <My < mz <mz < Mmy.
In fact, from (13) and (17)—(17a)—(17b)—(17f) we obtain

Ki = (_l)i (D*)t15 Z 1)J l(awt5 2)(6 th)( - u*)stS,

mg—2 < u' ( = %) < Mmg-1,
yielding (11e).

Note that from (11e) and (17) as well as u = u*t : du = tdu* , we obtain
u=ts u*=m
S K;(w;u)T (u)Abzdu = S K* (w*;u*) 5 T (u*t) A%z (tdu*), or

u=0 u*=0

ts md
(11f) SKi(w;u)T(u)Aszdu = [ S K;(w*;u*)T(u*t)Asa:du*] 61,
0 0
for a fixed number i = 1, 2, 3, 4, 5.
Thus from (17d)—(17e) and (11c)-(11f) as well as (*), we find

Aig = (—1)i—1{{i! [(ai o T — é(m oT)Jm}%
_{ ﬁ K ", u*)T(u*t)du*] Aﬁz}tﬁ*i}

0
for a fixed number i = 1, 2, 3,4, 5.

THEOREM 2. Let t — T'(t) be a uniformly bounded (||T(t)I| < M < oo, t>0)
strongly continuous semigroup of linear operators on a complex Banach space
X with infinitesimal generator A, such that A%z # 0. Then the following five
inequalities

[+]

i1)8 ) ) )
(72 4ol < S [ oo yiate 4%l

hold for every z € D(A®) (on X) and a fized number i = 1,2,3,4,5, where

our symbol
6] 66
i|  4i(6 - )61

holds for a fized number i = 1,2,3,4,5 and

5(6") = [M g2 o)+ (@ o T) ; (@ T)]i
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with w* = (my,my, m3, my) for some m; € R* = (0,00)(j = 1,2,3,4) :
1<m <my < mg < my as well as 0'5,D*,wg,’l"1;(i = 1,2,3,4,5),5&}(2' =
1,2,3,4,5),6,1,@, are given above.

Proof of theorem 2 . Employing (17)-(17c)-(17d)—(17e) and (17f) in (7),
we obtain the following five inequalities

) 1 :
(18) ||A1$B|| < blt_’ + Cite_l,
where

b= (o[ @+ oD el

5

Q—M[ mH)QMzu

for any fixed number ¢ = 1,2, 3,4, 5.
Note that (18) yields also from [*] and (11d) as well as from the fact
mq
S K} (w*;u*)du* =
0

il
6!7' i(@_101) fori=1,23,4,5.

Minimizing the right-hand side functions of ¢ of (18), we get the sharper
inequalities

(182) Jaialf < |§]e6vc
where
6 66
e MR
for a fixed number i =1,2,3,4,5 and
(18¢) b¢-ict = L Mg o401
as well as
1 6—1 _ 1
(8) g = M @eD+ @ eD| [n(@aeD),
5

with w* = (m1, ma, m3, my) for a fixed number ¢ = 1,2, 3,4,5.
Therefore from (18a)—(18b)—(18c)-(18d), we obtain the inequalities (7a).
This completes the proof of Theorem 2.

Note that the point w* = w§ = (mi0,M20, M30, M4o) such that m; =
mio = 2+ V3, ma = mao = 4+ 2v3, mz = mao = 6 + 3v/3, mg = myo =
7+ 4\/3, where mig = mgg — Mg = M3g — Mog = My — M3zo + 1 is the
common global minimum point for all functions g; = g;(w*) (: = 1,2, 3,4,5).
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Setting
g; = ming;(w*) = g;(wg) (1 =1,2,3,4,5)
we find that
(18e) €3 = 2'355% &y = 5978 3 = 215 ¢4 = 243578 ¢5 = 255° (= 100000)
Consider constants R}(6) for a fixed number i = 1,2, 3,4, 5 such that

i1)8
(18f) RY(6) = E 6'!))i me

Therefore from (7a) (theorem 2 with M = 1) and from (18e) - (18f) we
prove

THEOREM 3. Let t — T(t) be a strongly continuous contraction (||T'(¢)| <
1,¢t > 0) semigroup of linear operators on a complezr Banach space X with
infinitesimal generator A, such that Az # 0. Then the following five in-
equalities

(7b) 1 4%2([® < R} (6))|=)I°~ (1A%

hold for every x € D(A®) (on X) and for a fized number i = 1,2,3,4,5,
where constants R}(6)(i = 1,2,3,4,5) are given above.

3. Cosine functions

Let t — T'(t) (¢t > 0) be a uniformly bounded (||T'(¢)|| < M < oo,t > 0)
strongly continuous cosine function with infinitesimal operator A, such that
T(0) = I (: = identity) in B(X), lim; o T'(t)z = z,Vz, and A is defined as
the strong second derivatives of T at zero,

(19) Az =T"(0)z

for every z in a linear subspace D(A) dense in X [5]. For every z € D(4),

we have the formula
t

(20) T(t)z =z + |t - v)T(u)Azdu .
0

Using integration by parts, we get from (20) the formula

(21) (D) ( f(u-— v)f(v)dv)du = % [t —v)2f(w)dv ,

0 0 0
where f(v) = T(v)A2%z. Note the Leibniz formula

(22) % (lf(u —v)" f(v)dv) = n(§(u ) f(v)dv) :

0 0
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Employing (21)-(22) and iterating (20) we find for every z € D(A?) that

2 t

t|Az + = ! S(t —u)3T (u)A%zdz .

(20a) Ttz =z+ o1

Similarly iterating (20a) we obtain for every x € D(AS) that

4 10

¢10
(20b) T(t)z =z 41 5 Aa: + 4|A2z + 6|A3x + -8—'A4 T+ 1—O'AE”gng
t

1
STl S(t — w) T (u)Alzdu .
"0

THEOREM 4 . Lett — T'(t) be a uniformly bounded (||T(t)|| < M < o0,t > 0)
strongly continuous cosine function on a complex Banach space X with in-
finitesimal generator A, such that A%z # 0. Then the following five inequal-
ities

® sl @[+ @ D|lsl
+ [ MOy o D) 14%1

hold for every z € D(A®) and a fized numberi = 1,2,3,4,5, where 05, D, ws
— 0'+
r; (1=1,2,3,4,5),a; (1=1,2,3,4,5,), d, 1, G are given above and i =

g5
D -

Proof of Theorem 4. In fact, setting ¢(> 0) instead of ¢2 in (20b), we get

20 T(Viz) = A t2A2 t3A3 t4A4 £ AS
(20c) (tm)—x+ﬁ m+a x+a z+§ m+1—0! z
Vi

+ % S (vt — w) T (w) A8zdu .

Formula (20c) yields an algebraic system of five equations with respect
to Atz:
11! 11! 5 2, 11! 4 3. 1!y s 5 A5
(1)  Srtide+ ptiATe+ A+ otA a:+1—0|t1A
v
= 11T (Vtz) — 11z — S (Vti — )T (u) Al zdu |
0

i=1,2,3,4,5.
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The coefficient determinant Dt of the system (21) with respect to un-
knowns A‘z(i = 1,2,3,4,5) is

D
(11a) Dt =g —
J5
where
i (111)5
(11b) % T orarers 10!’
NG
7= 1ot a4l
and D is given by (11). Also from (11) we find
Dt D
(11C) o'_+ = 0_—5 = t1t2t3t4t5(t1 - tg)(tl - tg)(tl - t4)(t1 - t5)(t2 - t3)
5

X (tz - t4)(t2 — t5)(t3 - t4)(t3 — t5)(t4 - t5).

The solution A’z(i = 1,2,3,4,5) of the system (21) is unique and of the
form
(22)

stz = -1y @it @eTh) - L@eD|s TK;(w;u)T(um%du},

where

T" = of o (T (VE), ~&T(Va), &T(VE), ~diT(Va), dsT(VE))
and K" = KM (w;u)(i = 1,2,3,4,5) :
(13a) K = (-1 +—51—§k 1iYayds (v/G-)%, v/t < u < Vi

for a fixed number 7 = 1, 2, 3,4, 5 and all numbers k = 1,2, 3, 4,5 such that

Vo =0 < T1 < V2 < VI3 < vI4 < y/t5 and

11)H4 14
o = LADY (e (AUY )
[TP5=1 (25)! 2! 41 8! 10!
(3#1)
Note that K" = K" (w;u) > 0(i = 1,2,3,4,5) for every u € [0,/75] and
Vs .
2 \!
(14a) | Kifdu= ((12)) ri(@—-y01),
0

where 7;(i = 1,2, 3,4, 5) are given by (9).
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The rest of the proof is similar to that of Theorem 1. Thus the proof of
Theorem 4 is complete.
Similarly from Theorems 2-3 we establish the following Theorems 5-6.

THEOREM 5. Lett — T'(t) be a uniformly bounded (J|T'(¢t)|| < M < 0o, t > 0)
strongly continuous cosine function on a complex Banach space X with in-
finitesimal generator A, such that A%z # 0. Then the following inequalities

; 20)6 167 . ; » .
8 At 6<(( i Mzi* 61A61
(62) iale < SBEE %] atgu(wlal~ sl
hold for every x € D(A%) (on X) and a fized number i = 1,2,3,4,5, where

9 = gi(w*) and ? are given as in Theorem 2.

THEOREM 6. Let t — T(t) be a strongly continuous contraction (||T'(¢)| <
1,t > 0) cosine function on a complex Banach space X with infinitesimal
generator A, such that A%z # 0. Then the following five inequalities

(8b) 14%2]|® < R} (6)llz)®~* 1A%,

hold for every x € D(A®) (on X) and for a fized number i = 1,2,3,4,5,
where constants R3(6) (i = 1,2,3,4,5) are of the form

3y _ ((20)D° 6]
RA©) = (2| 4]
with [f] given as in Theorem 2 and ¢; (i = 1,2,3,4,5) by (18e).

Query. The corresponding case to groups (k = 2) and the computation
of the constants R2(6) (i = 1,2,3,4,5) is still open.

Acknowledgement. We are grateful to the computer scientist Panos
Karagiorgis for his assistance to find numerical results given by (18e).
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