Paola Mannucci, Domingo Alberto Tarzia

THE SUPERCOOLED ONE-PHASE STEFAN PROBLEM IN SPHERICAL SYMMETRY

Abstract

The supercooled one-phase Stefan problem in spherical symmetry with a heat flux condition at the fixed face is considered. The relation between the heat flux and the initial temperature is analysed in order to characterize the cases with a global solution (possibility of continuing the solution for arbitrarily large time intervals), a finite time extinction and a blow-up at a finite time.

1. Introduction

We study a supercooled one-phase Stefan problem in spherical symmetry ($r \in\left[r_{0}, 1\right], r_{0}>0$) corresponding to a positive heat flux condition at the fixed face and a negative initial temperature. Problems of this kind have been studied by other authors in connection with the freezing of a supercooled liquid. Several different boundary conditions were analysed in [3], [5], [6], [7], [10], [11], [13], for the one-dimensional case, in [1], [2] for cylindrical symmetry and in [9] for spherical symmetry.

In Section 1 we give the preliminaries corresponding to the description of the problem and in Section 2 we obtain conditions for data in order to characterize the cases with a global solution (possibility of continuing the solution for arbitrarily large time intervals), a finite time extinction and a blow-up at a finite time. In Section 3 we study the asymptotic behaviour of the solution and we give some results concerning the particular case $r_{0}=0$ with null heat flux, which are a sequel to those given in [9].

In this paper we study the following problem:

[^0]Problem I. Find a triple $\left(\theta(\rho, \tau), \sigma(\tau), T_{1}\right)$ such that:
i) $T_{1}>0$
ii) $\sigma(\tau) \in C^{0}\left(\left[0, T_{1}\right]\right) \cap C^{1}\left(\left(0, T_{1},\right)\right), \rho_{0}<\sigma(\tau)<b, 0<\tau<T_{1}, \rho_{0}>0$.
iii) $\theta(\rho, \tau)$ is a bounded continuous function in $\rho_{0} \leq \rho \leq \sigma(\tau), 0 \leq$ $\tau \leq T_{1}, \theta_{\rho}(\rho, \tau)$ is continuous in $\rho_{0} \leq \rho \leq \sigma(\tau), 0<\tau<T_{1}, \theta_{\rho \rho}, \theta_{\tau}$ are continuous in $\rho_{0}<\rho<\sigma(\tau), 0<\tau<T_{1}$.
iv) $\sigma(\tau)$ and $\theta(\rho, \tau)$ obey the conditions:

$$
\begin{array}{ll}
\theta_{\tau}=\alpha\left(\theta_{\rho \rho}+\frac{2 \theta_{\rho}}{\rho}\right), & \rho_{0}<\rho<\sigma(\tau), 0<\tau<T_{1}, \\
\sigma(0)=b, & \\
\theta(\rho, 0)=\tilde{h}(\rho), & \rho_{0}<\rho<b, \\
\theta_{\rho}\left(\rho_{0}, \tau\right)=\tilde{g}(\tau), & 0<\tau<T_{1}, \\
\theta(\sigma(\tau), \tau)=0, & 0<\tau<T_{1}, \\
\alpha c \theta_{\rho}(\sigma(\tau), \tau)=-\Lambda \dot{\sigma}(\tau), & 0<\tau<T_{1} .
\end{array}
$$

The nomenclature is the following:
α material thermal diffusivity,
c specific heat,
Λ latent heat of melting,
θ temperature,
σ free boundary,
ρ radial coordinate variable,
τ time.
The adimensional problem corresponding to Problem I is obtained by the following transforms:

$$
\begin{gathered}
r=\frac{\rho}{b}, \quad t=\frac{\alpha}{b^{2}} \tau, r_{0}=\frac{\rho_{0}}{b}<1, \quad T=\frac{T_{1} \alpha}{b^{2}}, \\
u(r, t)=\frac{c}{\Lambda} \theta(\rho, \tau), \quad s(t)=\frac{\sigma(\tau)}{b}, \\
h(r)=\frac{c}{\Lambda} \widetilde{h}(\rho), \quad g(t)=\frac{c b}{\Lambda} \tilde{g}\left(\frac{\alpha}{b^{2}} \tau\right) .
\end{gathered}
$$

Then the variables (T, u, s) satisfy the problem
Problem II. Find a triple (T, s, u) such that:
i) $T>0$.
ii) $s(t) \in C([0, T]), s \in C^{1}((0, T)), r_{0}<s(t)<1$, for $0<t<T$ and $r_{0}>0$.
iii) $u(r, t)$ is a bounded function, continuous in $r_{0} \leq r \leq s(t), 0 \leq t<T$, $u_{r}(r, t)$ is continuous in $r_{0} \leq r \leq s(t), 0<t<T, u_{r r}, u_{t}$ are continuous in $r_{0}<r<s(t), 0<t<T$.
iv) The following conditions are satisfied:

$$
\begin{array}{ll}
u_{t}=u_{r r}+\frac{2}{r} u_{r}, \text { in } D_{T}=\left\{(r, t): r_{0}<r<s(t), 0<t<T\right\}, \tag{1}\\
s(0)=1, & \\
u(r, 0)=h(r), & r_{0}<r<1, \\
u_{r}\left(r_{0}, t\right)=g(t), & 0<t<T, \\
u(s(t), t)=0, & 0<t<T, \\
u_{r}(s(t), t)=-\dot{s}(t), & 0<t<T,
\end{array}
$$

where we impose, from now on, the following assumptions:
(A_{1}) $h(r) \leq 0, r_{0}<r<1, h(r)$ is a continuous function,
(A_{2}) $g(t) \geq 0,0<t<T, g(t)$ is a piecewise continuous function.
(Whenever we consider the derivatives of h and g we suppose further regularity of these functions).

Three cases can occur ([4], [5], [12]):
(A) The problem has a solution with arbitrarily large T (global solution),
(B) There exists a constant $T_{B}>0$ such that $\lim _{t \rightarrow T_{B}^{-}} s(t)=r_{0}$ (exctintion time),
(C) There exists a constant $T_{C}>0$ such that $\lim _{t \rightarrow r_{C}^{-s}}(t)>r_{0}$ and $\lim _{t \rightarrow T_{C}^{-}} \dot{s}(t)=-\infty$ (blow-up).
As we shall see, any of these cases can actually occur with an appropriate choice of the functions $h(r), g(t)$ in (3), (4).

2. Study of the three cases

In order to characterize the three cases we obtain some preliminary properties.
Lemma 2.1. If (T, s, u) solves problem (1)-(6) then
(7) $\frac{s^{2}(t)}{2}=\frac{1}{2}+\int_{r_{0}}^{1} r h(r) d r-\int_{r_{0}}^{s(t)} r u(r, t) d r-\int_{0}^{t}\left(u\left(r_{0}, \tau\right)+r_{0} g(\tau)\right) d \tau$,
(8) $\frac{s^{3}(t)}{3}=\frac{1}{3}+\int_{r_{0}}^{1} r^{2} h(r) d r-\int_{r_{0}}^{s(t)} r^{2} u(r, t) d r-r_{0}^{2} \int_{0}^{t} g(\tau) d \tau$,
(9) $\quad \frac{s^{2}(t)}{4}\left(s^{2}(t)+2 r_{0}^{2}\right)=\frac{1}{4}\left(1+2 r_{0}^{2}\right)+\int_{r_{0}}^{1}\left(r_{0}^{2}+r^{2}\right) r h(r) d r-$
$-2 r_{0}^{3} \int_{0}^{t} g(\tau) d \tau+2 \iint_{D_{t}} r u(r, \tau) d r d \tau-\int_{r_{0}}^{s(t)}\left(r^{2}+r_{0}^{2}\right) r u(r, t) d r$.

Proof. Consider Green's identity

$$
\iint_{D_{t}}\left(v L z-z L^{*} v\right) d r d \tau=\int_{\partial D_{t}}\left(z_{r} v-z v_{r}\right) d \tau+v z d r,
$$

where L denotes the heat operator and L^{*} its adjoint, with $z=r u(r, t)$. If $v=1$ and $v=r$ we get respectively (7) and (8). (9) follows adding to (7) the integral representation obtained with $v=r^{2}$, taking into account the condition (4).
Lemma 2.2. If assumptions $\left(\mathrm{A}_{1}\right)$ and $\left(\mathrm{A}_{2}\right)$ hold, we have:
i) $u(r, t) \leq 0$, in D_{T},
ii) $\dot{s}(t)<0, \forall t \in(0, T)$,
iii) If $h^{\prime}(r) \geq 0$, then $u_{r}(r, t) \geq 0$ in D_{T},
iv) If $h(r) \geq-h_{1}(1-r), h_{1}>0$ and $0<g(t) \leq h_{1}$, then $u(r, t) \geq$ $-h_{1}(1-r)$ in D_{T}.

Proof. i), iii) iv) follow from the maximum principle applied respectively to u, u_{r}, and $u+h_{1}(1-r)$.
ii) is a consequence of i) and (6).

Now, we shall prove a result which gives us a bound from below for \dot{s}; that is we avoid the occurrence of case (C)(for the planar case see ([5])).
Lemma 2.3. Let (T, s, u) be a solution of (1)-(6). If $h(r) \geq-h_{1}(1-r)$, $0 \leq r \leq 1$ and if there exist two constants $d \in\left(0, s_{T}-r_{0}\right), z_{0} \in(0,1)$ with $s_{T}=\inf _{t \in[0, T]} s(t)>r_{0}$ such that $u(s(t)-d, t) \geq-z_{0}, h_{1} d<z_{0}, \forall t \in(0, T)$ then

$$
\begin{equation*}
\dot{s}(t) \geq \frac{1}{d} \log \left(1-z_{0}\right), \quad \forall t \in(0, T) . \tag{10}
\end{equation*}
$$

Proof. Fix $\epsilon>0$ and define $a=a(\epsilon)=-\inf _{t \in(0, T-\epsilon)} \dot{s}(t)>0, w(r, t)=$ $\frac{-z_{0}}{1-e^{-a d}}\left(1-e^{a(r-s(t))}\right) \leq 0$.

From the maximum principle, $w(r, t) \leq u(r, t)$ in $\Omega_{\epsilon}=\{(r, t): s(t)-d \leq$ $r \leq s(t), 0 \leq t \leq T-\epsilon\}$. It follows that $u_{r}(s(t), t) \leq w_{r}(s(t), t)$, hence from the definition of a and assumptions on h_{1}, z_{0} and d, we get (10).

Under assumptions (A_{1}) and (A_{2}), we proceed now to characterize, cases (A), (B) and (C) in dependence on the value $Q(t)$, where

$$
\begin{equation*}
Q(t)=1+3 \int_{r_{0}}^{1} r^{2} h(r) d r-3 r_{0}^{2} \int_{0}^{t} g(\tau) d \tau . \tag{11}
\end{equation*}
$$

We remark that $\dot{Q}(t) \leq 0, \forall t \in[0, T]$.
Proposition 2.4. Under assumptions $\left(\mathrm{A}_{1}\right)$, (A_{2}) and $h(r) \geq-h_{1}(1-r)$, for $r \in[0,1]$ and $0<g(t) \leq h_{1}$ for $t>0$, then

$$
\text { case }(\mathrm{B}) \Longrightarrow Q\left(T_{B}\right)=r_{0}^{3}
$$

Proof. Performing the limit $t \rightarrow T_{B}$ in (11) and taking into account that $u(r, t)$ is bounded in D_{T}, from (8) we get the result.

REMARK 2.5. We consider the case $g(t) \equiv g$, where g is a positive constant. From (11), we have

$$
Q\left(T_{1}\right)=r_{0}^{3} \Longleftrightarrow T_{1}=\frac{1-r_{0}^{3}+3 \int_{r_{0}}^{1} r^{2} h(r) d r}{3 r_{0}^{2} g}
$$

Therefore, we obtain
If $h(r) \geq-h_{1}(1-r), 0<h_{1}<\frac{4\left(1-r_{0}{ }^{3}\right)}{1-r_{0}^{3}\left(4-3 r_{0}\right)}$, then $T_{1}>0$.
Proposition 2.6. Let $h(r) \geq-h_{1}(1-r), 0<g(t) \leq h_{1}, h_{1} \leq 1$. If there exists a T_{1} such that $Q\left(T_{1}\right)=r_{0}^{3}$ then case (B) occurs with $T_{B}=T_{1}$.

Proof. From the assumptions and iv) of Lemma 1.2 we have that $u(r, t) \geq$ $-h_{1}(1-r)$.

From (8) we have

$$
\begin{aligned}
s^{3}\left(T_{1}\right) & =r_{0}^{3}-3 \int_{r_{0}}^{s\left(T_{1}\right)} r^{2} u\left(r, T_{1}\right) d r \leq r_{0}^{3}+3 h_{1} \int_{r_{0}}^{s\left(T_{1}\right)} r^{2}(1-r) d r \\
& =r_{0}^{3}+h_{1}\left(s\left(T_{1}\right)^{3}-r_{0}^{3}\right)-\frac{3}{4} h_{1}\left(s\left(T_{1}\right)^{4}-r_{0}^{4}\right)
\end{aligned}
$$

Hence

$$
\left(s\left(T_{1}\right)^{3}-r_{0}^{3}\right)\left(h_{1}-1\right)-\frac{3}{4} h_{1}\left(s\left(T_{1}\right)^{4}-r_{0}^{4}\right) \geq 0
$$

and, if $h_{1} \leq 1$ this implies $s\left(T_{1}\right)=r_{0}$.
Proposition 2.7. If the assumptions of Lemma (2.3) hold and $h^{\prime}(r) \geq 0$, then

$$
\text { case }(C) \Longrightarrow Q\left(T_{C}\right) \leq r_{0}^{3}
$$

Proof. If case (C) occurs, from Lemma 2.3 the isotherm $u(r, t)=-1$ exists and reaches the free boundary at $t=T_{C}$.

Moreover, from the assumptions and from Lemma 2.2, we have $u_{r}(r, t) \geq 0$. Hence $u\left(r, T_{C}\right) \leq-1, \forall r \in\left[r_{0}, s\left(T_{C}\right)\right]$ and from (8) and (11) we get

$$
\begin{aligned}
s^{3}\left(T_{C}\right) & =Q\left(T_{C}\right)-3 \int_{r_{0}}^{s\left(T_{C}\right)} r^{2} u(r, t) d r \\
& \geq Q\left(T_{C}\right)+3 \int_{r_{0}}^{s\left(T_{C}\right)} r^{2} d r=Q\left(T_{C}\right)+\left(s^{3}\left(T_{C}\right)-r_{0}^{3}\right)
\end{aligned}
$$

Corollary 2.8. Let the assumptions of Proposition 2.6 and Proposition 2.7 hold.
Case $(C) \Longrightarrow Q\left(T_{C}\right)<r_{0}^{3}$.
Proof. Easily follows from Proposition 2.6 and Proposition 2.7.
Proposition 2.9. If $\|g\|_{1}=\int_{0}^{+\infty} g(t) d t<+\infty$, then

$$
\text { case }(A) \Longrightarrow Q(t) \geq r_{0}^{3}, \forall t>0
$$

Proof. Suppose that there exists a $T_{0}>0$ such that $Q\left(T_{0}\right)<r_{0}^{3}$. Since $\dot{Q}(t)<0$, for all $t>0$, we get

$$
Q(t) \leq Q\left(T_{0}\right)<r_{0}^{3}, \quad \forall t \geq T_{0}
$$

From (8) and (11), we have

$$
\begin{aligned}
\int_{r_{0}}^{s(t)} r^{2} u(r, t) d r & =\frac{Q(t)-s^{3}(t)}{3}<\frac{Q\left(T_{0}\right)-s^{3}(t)}{3} \\
& \leq-\frac{r_{0}^{3}-Q\left(T_{0}\right)}{3}<0, \quad \forall t \geq T_{0}
\end{aligned}
$$

then
(12) $\quad r_{0} \iint_{D_{t}} r u d r d \tau \leq r_{0} \iint_{D_{x_{0}, t}} r u d r d \tau$

$$
\leq \int_{T_{0}}^{t} d \tau \int_{r_{0}}^{s(\tau)} r^{2} u(r, \tau) d r \leq-\frac{r_{0}^{3}-Q\left(T_{0}\right)}{3}\left(t-T_{0}\right)
$$

From (9),

$$
\begin{align*}
2 \iint_{D_{t}} r u(r, \tau) d r d \tau= & \frac{s^{2}(t)}{4}\left(s^{2}(t)+2 r_{0}^{2}\right)-\frac{1}{4}\left(1+2 r_{0}^{2}\right) \tag{13}\\
& -\int_{r_{0}}^{1}\left(r_{0}^{2}+r^{2}\right) r h(r) d r+2 r_{0}^{3} \int_{0}^{t} g(\tau) d \tau \\
& +\int_{r_{0}}^{s(t)}\left(r^{2}+r_{0}^{2}\right) r u(r, t) d r \\
\geq & \frac{r_{0}^{2}}{4}\left(3 r_{0}^{2}\right)-\frac{1}{4}\left(1+2 r_{0}^{2}\right)+2 r_{0}^{3}\|g\|_{1} \\
& +\left(1+r_{0}\right) \int_{r_{0}}^{s(t)} r^{2} u(r, t) d r
\end{align*}
$$

From (8)

$$
\int_{r_{0}}^{s(t)} r^{2} u(r, t) d r \geq \int_{r_{0}}^{1} r^{2} h(r) d r-r_{0}^{2}\|g\|_{1} \geq C, \quad \forall t>0
$$

where C is a suitable constant.
Hence (13) becomes

$$
2 \iint_{D_{t}} r u(r, \tau) d r d \tau \geq \widetilde{C}, \forall t>0
$$

where \tilde{C} is a suitable constant, on the contrary to (12).
Corollary 2.10. Let the assumptions of Proposition 2.6 and Proposition 2.9 hold. Then

$$
\operatorname{Case}(A) \Longrightarrow Q(t)>r_{0}^{3}, \forall t>0
$$

Proof. Easily follows from Proposition 2.6 and Proposition 2.9.
Corollary 2.11. Let the assumptions of Proposition 2.4 and Proposition 2.7 hold. Then

$$
Q(t)>r_{0}^{3}, \forall t>0 \Longrightarrow \text { case }(A)
$$

Proof. It is obtained excluding the other cases.

3. Asymptotic behaviour of the solution

Proposition 3.1. Let (T, s, u) be a solution of (1)-(6) of case (A) under assumptions of Corollary 2.10 and let there exist $\lim _{t \rightarrow+\infty} g(t)$. We denote by $Q_{\infty}=\lim _{t \rightarrow+\infty} Q(t)$ and $s_{\infty}=\lim _{t \rightarrow+\infty} s(t)$. Then

$$
\begin{equation*}
s_{\infty}=\left(Q_{\infty}\right)^{1 / 3} \geq r_{0} \tag{14}
\end{equation*}
$$

where $Q_{\infty}=1+3 \int_{r_{0}}^{b} r^{2} h(r) d r-3 r_{0}^{2}\|g\|_{1}$.
Proof. From the assumptions we obtain that

$$
\lim _{t \rightarrow+\infty} g(t)=0
$$

Moreover if $u_{\infty}(r) \equiv \lim _{t \rightarrow+\infty} u(r, t), u_{\infty}(r)$ satisfies

$$
\left\{\begin{array}{l}
u_{\infty}^{\prime \prime}+\frac{2}{r} u_{\infty}^{\prime}=0, \quad \text { in }\left(r_{0}, s_{\infty}\right) \\
u_{\infty}^{\prime}\left(r_{0}\right)=0 \\
u_{\infty}\left(s_{\infty}\right)=0
\end{array}\right.
$$

hence ([8]) $u_{\infty}(r) \equiv 0$ and, from (8) and (11), we get the result.

REMARK 3.2.

$$
s_{\infty}=r_{0} \Longleftrightarrow \int_{0}^{+\infty} g(\tau) d \tau=\frac{1-r_{0}^{3}+3 \int_{r_{0}}^{1} r^{2} h(r) d r}{3 r_{0}^{2}}
$$

REMARK 3.3. Taking into account (8) and $u(r, t) \leq 0$ we obtain the estimate

$$
\begin{equation*}
s(t) \geq[Q(t)]^{1 / 3}, \quad \forall t \leq T \tag{15}
\end{equation*}
$$

Now we shall consider briefly the particular case $r_{0}=0$ and since we are in spherical symmetry, the condition $g(t) \equiv 0$ is the most natural one.

The local in time existence and uniqueness of the classical solution for the case $r_{0}=0$ is given in [9]. The results obtained in this section are in sequel with those of [9] in order to clarify the behaviour of the solution as a function of the parameter R, defined below by 19 .

We may obtain, as in the proof of Lemma 2.1, the integral representation (7)-(9) with $r_{0}=0, g(t) \equiv 0$,

$$
\begin{align*}
& \frac{s^{2}(t)-1}{2}=\int_{0}^{1} r h(r) d r-\int_{0}^{s(t)} r u(r, t) d r-\int_{0}^{t} u(0, \tau) d \tau \tag{16}\\
& \frac{s^{3}(t)-1}{3}=\int_{0}^{1} r^{2} h(r) d r-\int_{0}^{s(t)} r^{2} u(r, t) d r \tag{17}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{s^{4}(t)-1}{4}=2 \int_{0}^{t} \int_{0}^{s(\tau)} r u(r, \tau) d r d \tau+\int_{0}^{1} h(r) r^{3} d r-\int_{0}^{s(t)} r^{3} u(r, t) d r \tag{18}
\end{equation*}
$$

Moreover the result of Lemma 2.3 can be proved in the same way as before. We may characterize cases (A), (B), (C) in dependence of the constant R defined by

$$
\begin{equation*}
R=1+3 \int_{0}^{1} r^{2} h(r) d r \tag{19}
\end{equation*}
$$

Proposition 3.4. Let $h(r) \geq-h_{1}(1-r)$ for $r \in[0,1]$. Then we have the following properties:
(i) Case (B) $\Longrightarrow R=0$,
(ii) $R=0$ and case $(\mathrm{A}) \Longrightarrow \lim _{t \rightarrow \infty} s(t)=0$,
(iii) Case (A) $\Longrightarrow R \geq 0$,
(iv) $R<0 \Longrightarrow$ case (C).

Proof. We shall only prove (iii). Using (17) and the assumptions on $h(r)$ (thus $u(r, t) \geq-h_{1}(1-r)$), we get

$$
\begin{equation*}
-3 \int_{0}^{s(t)} r^{2} u(r, t) d r=s^{3}(t)-1-3 \int_{0}^{1} r^{2} h(r) d r \leq \frac{h_{1}}{4} . \tag{20}
\end{equation*}
$$

Hence

$$
\begin{equation*}
-\int_{0}^{s(t)} r^{3} u(r, t) d r \leq \frac{h_{1}}{12} \tag{21}
\end{equation*}
$$

Using (18) we have

$$
\begin{equation*}
2 \int_{0}^{t} \int_{0}^{s(\tau)} r u(r, \tau) d \tau \geq-\frac{1}{4}-\frac{h_{1}}{12} . \tag{22}
\end{equation*}
$$

If $R<0$ from (17) we obtain

$$
-\int_{0}^{s(t)} r u(r, t) d r \geq-\int_{0}^{s(t)} r^{2} u(r, t) d r=\frac{s^{3}(t)}{3}-\frac{R}{3}>0, \quad \forall t>0 .
$$

By integrating with respect to t the last inequality we get

$$
\int_{0}^{t} \int_{0}^{s(r)} r u(r, \tau) d r d \tau \leq \frac{R}{3} t,
$$

hence a contradiction with (22).
Acknowledgements. The authors wish to thank Prof. Pedro Marangunic for helpful discussions.

References

[1] D. Andreucci, Continuation of the solution of a free boundary problem in cylindrical symmetry, Meccanica 19 (1984), 91-97.
[2] D. Andreucci, A. Fasano and M. Primicerio, On the occurrence of singularities in axisymmetrical problems of Hele-Shaw type, Int. Series Numer. Math. 106 (1992), 23-38.
[3] E. Comparini, R. Ricci and D. A. Tarzia, Remarks on a one-dimensional Stefan problem related to the diffusion-consumption model, ZAMM 6412 (1984), 543-550.
[4] A. Fasano and M. Primicerio, General free-boundary problems for the heat equation, J. Math. Anal. Appl. 57 (1977), 694-723.
[5] A. Fasano and M. Primicerio, New results on some classical parabolic free-boundary problems, Quart. Appl. Math. 38 (1980), 439-460.
[6] A. Fasano and M. Primicerio, A critical case for the solvability of Stefan-like problems, Math. Meth. Appl. Sci. 5 (1983), 84-96.
[7] A. Fasano, M. Primicerio, S. D. Howison and J. R. Ockendon, Some remarks on the regularization of supercooled one-phase Stefan problems in one dimension, Quart. Appl. Math. 47 (1990), 153-168.
[8] A. Friedman, Partial differential equations of parabolic type, Prentice Hall, Englewood Cliff (1964).
[9] A. M. Meirmanov, The Stefan problem with surface tension in the three dimensional case with spherical symmetry: nonexistence of a classical solution, European J. Appl. Math. 5 (1994), 1-19.
[10] A. G. Petrova, D. A. Tarzia and C. V. Turner, The one-phase supercooled Stefan problem with temperature boundary condition, Adv. Math. Sci. Appl. 4 (1994), 35-50.
[11] M. Primicerio, The occurrence of pathologies in some Stefan-like problems, in: Numerical Treatment of Free Boundary Value Problems, J. Albrecht-L. Collatz-K.H. Hoffmann (Eds.), ISNM 58, Birkhauser Verlag, Basel (1982), 233-244.
[12] B. Sherman, A general one-phase Stefan problem, Quart. Appl. Math. 28 (1970), 377-382.
[13] D. A. Tarzia and C. V. Turner, The one-phase supercooled Stefan problem with a convective boundary condition, Quart. Appl. Math., 55 (1997), 41-50.

Paola Mannucci
DIPARTIMENTO DI MATEMATICA PURA ED APPLICATA
UNIVERSITA DEGLI STUDI DI PADOVA
Via Belzoni, 7
PADOVA, ITALY
E-mail: mannucci@math.unipd.it
Domingo Alberto Tarzia
DEPTO MATEMATICA
FCE UNIVERSIDAD AUSTRAL
Paraguay 1950, 2000-ROSARIO, ARGENTINA
E-mail: tarzia@uaufce.edu.ar

Received June 8, 1998.

[^0]: The first author is partially supported by the Italian M.U.R.S.T. National Project "Problemi non lineari..."

 Key words:One-phase Stefan problem, phase-change problem, parabolic free boundary problem.

 AMS Subject classifications: 35R35, 80A22, 35B40, 35K05.

