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THE SUPERCOOLED ONE-PHASE STEFAN PROBLEM
IN SPHERICAL SYMMETRY

Abstract. The supercooled one-phase Stefan problem in spherical symmetry with
a heat flux condition at the fixed face is considered. The relation between the heat flux
and the initial temperature is analysed in order to characterize the cases with a global
solution (possibility of continuing the solution for arbitrarily large time intervals), a finite
time extinction and a blow-up at a finite time.

1. Introduction

We study a supercooled one-phase Stefan problem in spherical symmetry
(r € {rg,1], 7¢ > 0) corresponding to a positive heat flux condition at the
fixed face and a negative initial temperature. Problems of this kind have been
studied by other authors in connection with the freezing of a supercooled
liquid. Several different boundary conditions were analysed in [3], [5], [6],
(7], (10}, [11], [13], for the one-dimensional case, in (1], [2] for cylindrical
symmetry and in [9] for spherical symmetry.

In Section 1 we give the preliminaries corresponding to the description
of the problem and in Section 2 we obtain conditions for data in order to
characterize the cases with a global solution (possibility of continuing the
solution for arbitrarily large time intervals), a finite time extinction and a
blow-up at a finite time. In Section 3 we study the asymptotic behaviour of
the solution and we give some results concerning the particular case rg = 0
with null heat flux, which are a sequel to those given in [9].

In this paper we study the following problem:
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ProBLEM 1. Find a triple (8(p, 7),0(7),T1) such that:

i) >0
ii) o(7) € C{0, TA))NC*((0,T1,)), po < a(t) < b, 0 <7 < Ty, po > 0.
ili) 8(p,7) is a bounded continuous function in py < p < o(7), 0 <
7 < T1, 6,(p,7) is continuous in pg < p < o(7), 0 < 7 < T4, b,,,0, are
continuous in pg < p < o(71), 0 < 7 < T7.
iv) o(7) and 6(p, 7) obey the conditions:

26
0,=a(0pp+7p), po<p<o(r), 0<7T<T,
o(0) = b,
8(p,0) = h(p), po < p < b,
0o(po, 7) = g(71), 0<7<T,
6(o(7),7) =0, 0<7< Ty,

aclp(o(r),7) = —Ao(r), 0<7<T1.

The nomenclature is the following:

a material thermal diffusivity,

¢ specific heat,

A latent heat of melting,

0 temperature,

o free boundary,

p radial coordinate variable,

T time.

The adimensional problem corresponding to Problem I is obtained by
the following transforms:

P = he
r—b, t—bzf,ro—b<1, =z
_ _on)
U(’I‘,t)— Ag(p,T), S(t)— b )

c~ ch (a

r) = £5(0), o) = T3( 7).

Then the variables (T, u, s) satisfy the problem
PrOBLEM II. Find a triple (7, s, u) such that:

iyT > 0.

i) s(t) € C([0,T)), s € C}{(0,T)), ro < s(t) <1, for 0 < ¢ < T and
o > 0. .

iii) u(r,t) is a bounded function, continuous in 1o < r < s(¢),0<t < T,
ur(7,t) is continuous in ro < r < s(t), 0 < t < T, upp, u¢ are continuous in
ro<r<s(t),0<t<T.
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iv) The following conditions are satisfied:

(1) Up = Upr + %ur,in Dy ={(r,t): o <7 < s(t),0 <t <T},
@ sO=1

(3) u(r,0) = h(r), ro <7 <1,

(4) ur(ro, 1) = g(t), 0<t<T,

(5) u(s(t),t) =0, 0<t<T,

(6) ur(s(t),t) = —5(2), 0<t<T,

where we impose, from now on, the following assumptions:

(A1) h(r) <0, rop <r <1, h(r) is a continuous function,

(A2) g(t) >0, 0<t<T, g(t) is a piecewise continuous function.
(Whenever we consider the derivatives of h and g we suppose further regu-

larity of these functions).
Three cases can occur ([4], [5], [12]):

(A) The problem has a solution with arbitrarily large T (global solution),
(B) There exists a constant Tg > 0 such that limt_,TEs(t) = 7o (exctin-

tion time),
(C) There exists a constant T¢ > 0 such that limt_*Tc_‘s(t) > 7o and

limt_,TC-‘ 5(t) = —oo (blow-up).

As we shall see, any of these cases can actually occur with an appropriate
choice of the functions h(r), g(¢) in (3), (4).

2. Study of the three cases
In order to characterize the three cases we obtain some preliminary prop-
erties.

LEMMA 2.1. If (T, s, u) solves problem (1)-(6) then

9 1 s(t) t
(7) .s_2(t_) = % + S rh(r)dr — S ru(r,t)dr — S(U("'O,T) + 7o g(7)) dr,
To To 0
1 s(t) t
© SOl ey | - ot
To T0 0

0

%), 2 2y _ 1 2y L T2 2
(9) =% (O) +2r8) = Z(1+208) + [(r8 + r)rh(r) dr -

To

t s(t)
—27'8 S g(t)dr+2 SS ru(r,7)drdr — S ('r2 + rg)r u(r, t) dr.
0 Dy T0
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Proof. Consider Green’s identity
SS(sz — zL*v)drdr = S (2pv — zvp) dT + vz dr,
Dy 0D,
where L denotes the heat operator and L* its adjoint, with z = ru(r,t). If
v =1 and v = r we get respectively (7) and (8). (9) follows adding to (7)
the integral representation obtained with v = r?, taking into account the
condition (4). =
LEMMA 2.2. If assumptions (A1) and (A2) hold, we have:
i) u(r,t) <0, in Dy,
il) $(t) <0, Vte (0,T),
iii) If B'(r) > 0, then up(r,t) > 0 in Dr,
iv) If h(r) > —ha(1 —7), h1 > 0 and 0 < ¢(t) < hy, then u(r,t) >
—h1(1 =) in Dr.

Proof. i), iii) iv) follow from the maximum principle applied respectively
to u, ur, and u + hy(1 —r).
ii) is a consequence of i) and (6). =

Now, we shall prove a result which gives us a bound from below for s;
that is we avoid the occurrence of case (C)(for the planar case see ([5])).

LeMMma 2.3. Let (T,s,u) be a solution of (1)—(6). If h(r) > —hi(1 — 1),
0 < r <1 and if there exist two constants d € (0, st — 19), 2o € (0,1) with
st = infepo 1) s(t) > ro such that u(s(t) —d,t) > —20, had < 20, V t € (0,T)
then 1

(10) 5(t) > 3 log(1 — 2yp), Vte (0,T).

Proof. Fix € > 0 and define a = a(e) = —infycor_e)$(t) > 0, w(r,t) =

—20 -
(- e ) <o

From the maximum principle, w(r,t) < u(r,t) in Q = {(r,t) : s(t) —d <
r < s(t), 0 <t <T—e}. It follows that u.(s(t),t) < wr(s(t),?), hence from
the definition of a and assumptions on h;, 29 and d, we get (10). =

Under assumptions (A1) and (Az), we proceed now to characterize, cases
(A), (B) and (C) in dependence on the value Q(t), where

1 t

(11) Rit)y=1+3 S r2h(r) dr — 3r2 S g(T)dr.
0

To

We remark that Q(t) <0,V t € [0,T).

PROPOSITION 2.4. Under assumptions (A1), (A2) and h(r) > —hi(1 —r),
forr €[0,1] and 0 < g(t) < hy fort >0, then
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case (B) = Q(T) = r}.

Proof. Performing the limit ¢ — Tg in (11) and taking into account that
u(r, t) is bounded in Dr, from (8) we get the result. =

REMARK 2.5. We consider the case g(t) = g, where g is a positive constant.
From (11), we have

1-r8+3 S:O r2h(r)dr

— 3 —
QM) =rf < T1= e

Therefore, we obtain

4(1 - 7‘03)
> - —

If h(r) hi(l—-7), 0<hi < T=1r3(4=3rq)’
PROPOSITION 2.6. Let h(r) > —h1(1 —7), 0 < g(t) < hy, hy < 1. If there

ezists a T such that Q(T1) = r3 then case (B) occurs with Tg = T.

then 77 > 0.

Proof. From the assumptions and iv) of Lemma 1.2 we have that u(r,t) >
—hl(l - ’l").
From (8) we have

s(T1) s(T1)
(M) =r3 -3 S r2u(r, T1) dr < r§ + 3k S r2(1 —r)dr
T0 To

3
=715+ h(s(T1)® —rf) - Zhl(s(Tl)4 —r3).
Hence

- )

3
(s(T1)? —r§)(h — 1) — Zhl(S(Tl)4 —75) >0
and, if A1 < 1 this implies s(T1) =7¢. =

PROPOSITION 2.7. If the assumptions of Lemma (2.8) hold and h'(r) > 0,
then
case (C) = Q(T¢) <.

Proof. If case (C) occurs, from Lemma 2.3 the isotherm u(r,t) = —1 exists
and reaches the free boundary at ¢t = T¢.

Moreover, from the assumptions and from Lemma 2.2, we have
ur(r,t) > 0. Hence u(r,T¢) < -1, V r € [ry,s(T¢)] and from (8) and
(11) we get

s(Tc)
$*(Tc) = Q(Te) - 3 S r2u(r, t) dr
7o
s(Tc)
2QTc)+3 § r*dr=Q(Tc) +(s*(Tc) —rf). m

To
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COROLLARY 2.8. Let the assumptions of Proposition 2.6 and Proposition 2.7
hold.
Case (C) = Q(Tc) < 1.

Proof. Easily follows from Proposition 2.6 and Proposition 2.7. m
+o00
PROPOSITION 2.9. If ||glli = § g(t)dt < +oo, then
0
case (A) = Q(t) >rd, Vt>0.

Proof. Suppose that there exists a To > 0 such that Q(Ty) < r3. Since
Q(t) <0, for all t > 0, we get

QW) <QM) <3, Vi
From (8) and (11), we have

s(t) 3 o
SﬁMﬁm=Qm £(1) _ Q) = 8°(1)
T0 3 3
3 _
S“TOTQ(TO)<0, Vi> T,
then
(12)  rof{frudrdr <ro (| rudrdr
D. Dy,
t s(7) 3
< SdT S rzu('r, T)dr < —W(t ~To).
To 70
From (9),

52(t), o 3y 1 2
(13) 2 “ ru(r,7)drdr = T(s (t) + 2r5) — Z(l + 273)
Dy
1 ¢

- S (rg + r¥rh(r) dr + 21'3 S g(T)dr

T0 0

s(t)
+ S (r? 4 rd)ru(r,t) dr

T

[=] %)

1
> —(3r3) ~ 7+ 2r8) + 2r{llglh

s(t)
+ (1+ o) S riu(r, t) dr.

To

o |
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From (8)
s(t) 1
S riu(r, t)dr > S r2h(r)dr —=r2llgli > C, VYt>0
0 T0
where C is a suitable constant.
Hence (13) becomes

Z“TU(T,T)d’I"dT > C~’, YVt>0
D,

where C is a suitable constant, on the contrary to (12).

COROLLARY 2.10. Let the assumptions of Proposition 2.6 and Proposi-
tion 2.9 hold. Then

Case (A) => Q(t) >3, YVt >0.
Proof. Easily follows from Proposition 2.6 and Proposition 2.9. =

COROLLARY 2.11. Let the assumptions of Proposition 2.4 and Proposi-
tion 2.7 hold. Then

Q(t)y>rd, Vt>0 = case (A).

Proof. It is obtained excluding the other cases. =

3. Asymptotic behaviour of the solution

PROPOSITION 3.1. Let (T, s,u) be a solution of (1)—(6) of case (A) under
assumptions of Corollary 2.10 and let there exist lim¢—, ;0 g(t). We denote
by Qoo = limy 4 0 Q(t) and Seo = limy—,405(t). Then

(14) Sco = (Qoo)l/3 270
where Qoo =1+ 35 r2h(r)dr — 3r¢||gl|1-
0
Proof. From the assumptions we obtain that
Jlim g(¢) = 0.

Moreover if uxo(r) = , liin u(r, 1), uco(r) satisfies
— 100
w2 :
Uy, + 7 Uoo = 0, in (19, $oo),
ubs(ro) = 0,

uoo(soo) =0,

hence ([8]) uco(r) = 0 and, from (8) and (11), we get the result. »
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REMARK 3.2.
+too 1—73 435 r2h(r)dr
Soo = Tp = S g(t)dr = 0 3ST2° .
0 To

REMARK 3.3. Taking into account (8) and u(r,t) < 0 we obtain the estimate
(15) s(t) 2 [Q))3, VLT

Now we shall consider briefly the particular case 7y = 0 and since we are
in spherical symmetry, the condition g(¢) = 0 is the most natural one.

The local in time existence and uniqueness of the classical solution for
the case 7y = 0 is given in [9]. The results obtained in this section are in
sequel with those of [9] in order to clarify the behaviour of the solution as a
function of the parameter R, defined below by 19.

We may obtain, as in the proof of Lemma 2.1, the integral representation
(7)-(9) with 79 = 0, g(t) =0,

32(t) -1 1 s(t) t
(16) —_—= S‘rh(r) dr — S ru(r,t)dr — Su(O, T)dT,
2 0 0 0
304y _ 1 s(t)
(17) _s_(_tz__l = Srzh(r) dr — S ru(r, t) dr,
3 0 0
and
34(t) -1 t s(7) 1 s(t)
(18) = 28 S ru(r,7)drdr + S h(r)rd dr — S ru(r,t) dr.
00 0 0

Moreover the result of Lemma 2.3 can be proved in the same way as before.
We may characterize cases (A), (B), (C) in dependence of the constant R
defined by

1
(19) R=1+3{r’n(r)dr.

0

PROPOSITION 3.4. Let h(r) > —hi(1 —r) for v € [0,1). Then we have the
following properties:

(i) Case (B) = R =0,

(i) R =0 and case (A) = limy—,o8(t) =0,
(iii) Case (A) = R >0,
(iv) R < 0 = case (C).
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Proof. We shall only prove (iii). Using (17) and the assumptions on h(r)
(thus u(r,t) > —hi(1 — 7)), we get

s(t) 1 L
(20) -3 S riu(r,t)dr = s3(t) =1 — 3Sr2h(r) dr < -Zl-
0 0
Hence
5(t) 3
(21) - §) ru(r,t)dr < 1—;

Using (18) we have
t 5(7)

(22) 2§) (S) ru(r, T)dT > —% -~ %
If R <0 from (17) we obtain
s(t) s(t) 3
- S ru(r,t)dr > — S riu(r,t) dr = f—ét—) _R >0, Vit>0.
0 0 3

By integrating with respect to ¢ the last inequality we get
t 8(1) R
S S ru(r, 7) drdr < Et’
00

hence a contradiction with (22). »
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