DEMONSTRATIO MATHEMATICA Vol. XXXII No 1 1999

Paola Mannucci, Domingo Alberto Tarzia

THE SUPERCOOLED ONE-PHASE STEFAN PROBLEM IN SPHERICAL SYMMETRY

Abstract. The supercooled one-phase Stefan problem in spherical symmetry with a heat flux condition at the fixed face is considered. The relation between the heat flux and the initial temperature is analysed in order to characterize the cases with a global solution (possibility of continuing the solution for arbitrarily large time intervals), a finite time extinction and a blow-up at a finite time.

1. Introduction

We study a supercooled one-phase Stefan problem in spherical symmetry $(r \in [r_0, 1], r_0 > 0)$ corresponding to a positive heat flux condition at the fixed face and a negative initial temperature. Problems of this kind have been studied by other authors in connection with the freezing of a supercooled liquid. Several different boundary conditions were analysed in [3], [5], [6], [7], [10], [11], [13], for the one-dimensional case, in [1], [2] for cylindrical symmetry and in [9] for spherical symmetry.

In Section 1 we give the preliminaries corresponding to the description of the problem and in Section 2 we obtain conditions for data in order to characterize the cases with a global solution (possibility of continuing the solution for arbitrarily large time intervals), a finite time extinction and a blow-up at a finite time. In Section 3 we study the asymptotic behaviour of the solution and we give some results concerning the particular case $r_0 = 0$ with null heat flux, which are a sequel to those given in [9].

In this paper we study the following problem:

The first author is partially supported by the Italian M.U.R.S.T. National Project "Problemi non lineari..."

Key words:One-phase Stefan problem, phase-change problem, parabolic free boundary problem.

AMS Subject classifications: 35R35, 80A22, 35B40, 35K05.

PROBLEM I. Find a triple $(\theta(\rho, \tau), \sigma(\tau), T_1)$ such that:

i) $T_1 > 0$

ii) $\sigma(\tau) \in C^0([0, T_1]) \cap C^1((0, T_1,)), \ \rho_0 < \sigma(\tau) < b, \ 0 < \tau < T_1, \ \rho_0 > 0.$ iii) $\theta(\rho, \tau)$ is a bounded continuous function in $\rho_0 \leq \rho \leq \sigma(\tau), \ 0 \leq \tau \leq T_1, \ \theta_\rho(\rho, \tau)$ is continuous in $\rho_0 \leq \rho \leq \sigma(\tau), \ 0 < \tau < T_1, \ \theta_{\rho\rho}, \theta_{\tau}$ are continuous in $\rho_0 < \rho < \sigma(\tau), \ 0 < \tau < T_1.$

iv) $\sigma(\tau)$ and $\theta(\rho, \tau)$ obey the conditions:

$$\begin{split} \theta_{\tau} &= \alpha \bigg(\theta_{\rho\rho} + \frac{2\theta_{\rho}}{\rho} \bigg), \qquad \rho_0 < \rho < \sigma(\tau), \ 0 < \tau < T_1, \\ \sigma(0) &= b, \\ \theta(\rho, 0) &= \tilde{h}(\rho), \qquad \rho_0 < \rho < b, \\ \theta_{\rho}(\rho_0, \tau) &= \tilde{g}(\tau), \qquad 0 < \tau < T_1, \\ \theta(\sigma(\tau), \tau) &= 0, \qquad 0 < \tau < T_1, \\ \alpha c \theta_{\rho}(\sigma(\tau), \tau) &= -\Lambda \dot{\sigma}(\tau), \qquad 0 < \tau < T_1. \end{split}$$

The nomenclature is the following:

 α material thermal diffusivity,

c specific heat,

 Λ latent heat of melting,

 θ temperature,

 σ free boundary,

 ρ radial coordinate variable,

au time.

The adimensional problem corresponding to Problem I is obtained by the following transforms:

$$\begin{split} r &= \frac{\rho}{b}, \quad t = \frac{\alpha}{b^2} \tau, r_0 = \frac{\rho_0}{b} < 1, \quad T = \frac{T_1 \alpha}{b^2}, \\ u(r,t) &= \frac{c}{\Lambda} \theta(\rho,\tau), \quad s(t) = \frac{\sigma(\tau)}{b}, \\ h(r) &= \frac{c}{\Lambda} \tilde{h}(\rho), \quad g(t) = \frac{cb}{\Lambda} \tilde{g}\left(\frac{\alpha}{b^2} \tau\right). \end{split}$$

Then the variables (T, u, s) satisfy the problem PROBLEM II. Find a triple (T, s, u) such that:

i) T > 0.

ii) $s(t) \in C([0,T]), s \in C^1((0,T)), r_0 < s(t) < 1$, for 0 < t < T and $r_0 > 0$.

iii) u(r,t) is a bounded function, continuous in $r_0 \le r \le s(t), 0 \le t < T$, $u_r(r,t)$ is continuous in $r_0 \le r \le s(t), 0 < t < T, u_{rr}, u_t$ are continuous in $r_0 < r < s(t), 0 < t < T$.

iv) The following conditions are satisfied:

(1)
$$u_t = u_{rr} + \frac{2}{r}u_r$$
, in $D_T = \{(r,t) : r_0 < r < s(t), 0 < t < T\},$

$$\begin{array}{ll} (2) & s(0) = 1, \\ (3) & u(r,0) = h(r), & r_0 < r < 1, \\ (4) & u_r(r_0,t) = g(t), & 0 < t < T, \\ (5) & u(s(t),t) = 0, & 0 < t < T, \\ (6) & u_r(s(t),t) = -\dot{s}(t), & 0 < t < T, \end{array}$$

where we impose, from now on, the following assumptions:

(A₁) $h(r) \leq 0, r_0 < r < 1, h(r)$ is a continuous function,

(A₂) $g(t) \ge 0$, 0 < t < T, g(t) is a piecewise continuous function.

(Whenever we consider the derivatives of h and g we suppose further regularity of these functions).

Three cases can occur ([4], [5], [12]):

(A) The problem has a solution with arbitrarily large T (global solution),

(B) There exists a constant $T_B > 0$ such that $\lim_{t \to T_B^-} s(t) = r_0$ (exctintion time),

(C) There exists a constant $T_C > 0$ such that $\lim_{t\to T_C^-} s(t) > r_0$ and $\lim_{t\to T_C^-} \dot{s}(t) = -\infty$ (blow-up).

As we shall see, any of these cases can actually occur with an appropriate choice of the functions h(r), g(t) in (3), (4).

2. Study of the three cases

In order to characterize the three cases we obtain some preliminary properties.

LEMMA 2.1. If (T, s, u) solves problem (1)-(6) then

(7)
$$\frac{s^2(t)}{2} = \frac{1}{2} + \int_{r_0}^1 rh(r) \, dr - \int_{r_0}^{s(t)} r\, u(r,t) \, dr - \int_0^t (u(r_0,\tau) + r_0 \, g(\tau)) \, d\tau,$$

(8)
$$\frac{s^3(t)}{3} = \frac{1}{3} + \int_{r_0}^1 r^2 h(r) \, dr - \int_{r_0}^{s(t)} r^2 u(r,t) \, dr - r_0^2 \int_0^t g(\tau) \, d\tau,$$

(9)
$$\frac{s^2(t)}{4}(s^2(t)+2r_0^2) = \frac{1}{4}(1+2r_0^2) + \int_{r_0}^{1} (r_0^2+r^2)rh(r)\,dr - \int_{r_0}^{s(t)} s(t)\,dr$$

$$-2r_0^3 \int_0^t g(\tau) \, d\tau + 2 \iint_{D_t} r \, u(r,\tau) \, dr \, d\tau - \int_{r_0}^{s(t)} (r^2 + r_0^2) r \, u(r,t) \, dr$$

Proof. Consider Green's identity

$$\iint_{D_t} (vLz - zL^*v) \, dr \, d\tau = \int_{\partial D_t} (z_r v - zv_r) \, d\tau + vz \, dr,$$

where L denotes the heat operator and L^* its adjoint, with z = ru(r, t). If v = 1 and v = r we get respectively (7) and (8). (9) follows adding to (7) the integral representation obtained with $v = r^2$, taking into account the condition (4).

LEMMA 2.2. If assumptions (A_1) and (A_2) hold, we have:

i) $u(r,t) \leq 0$, in D_T , ii) $\dot{s}(t) < 0$, $\forall t \in (0,T)$, iii) If $h'(r) \geq 0$, then $u_r(r,t) \geq 0$ in D_T , iv) If $h(r) \geq -h_1(1-r)$, $h_1 > 0$ and $0 < g(t) \leq h_1$, then $u(r,t) \geq -h_1(1-r)$ in D_T .

Proof. i), iii) iv) follow from the maximum principle applied respectively to u, u_r , and $u + h_1(1-r)$.

ii) is a consequence of i) and (6). \blacksquare

Now, we shall prove a result which gives us a bound from below for \dot{s} ; that is we avoid the occurrence of case (C)(for the planar case see ([5])).

LEMMA 2.3. Let (T, s, u) be a solution of (1)-(6). If $h(r) \ge -h_1(1-r)$, $0 \le r \le 1$ and if there exist two constants $d \in (0, s_T - r_0)$, $z_0 \in (0, 1)$ with $s_T = \inf_{t \in [0,T]} s(t) > r_0$ such that $u(s(t) - d, t) \ge -z_0$, $h_1 d < z_0$, $\forall t \in (0,T)$ then

(10)
$$\dot{s}(t) \ge \frac{1}{d} \log(1-z_0), \quad \forall t \in (0,T).$$

Proof. Fix $\epsilon > 0$ and define $a = a(\epsilon) = -\inf_{t \in (0, T-\epsilon)} \dot{s}(t) > 0$, $w(r, t) = \frac{-z_0}{1 - e^{-ad}} (1 - e^{a(r-s(t))}) \le 0$.

From the maximum principle, $w(r,t) \leq u(r,t)$ in $\Omega_{\epsilon} = \{(r,t) : s(t) - d \leq r \leq s(t), 0 \leq t \leq T - \epsilon\}$. It follows that $u_r(s(t),t) \leq w_r(s(t),t)$, hence from the definition of a and assumptions on h_1 , z_0 and d, we get (10).

Under assumptions (A_1) and (A_2) , we proceed now to characterize, cases (A), (B) and (C) in dependence on the value Q(t), where

(11)
$$Q(t) = 1 + 3 \int_{r_0}^1 r^2 h(r) \, dr - 3r_0^2 \int_0^t g(\tau) d\tau$$

We remark that $\dot{Q}(t) \leq 0, \forall t \in [0, T].$

PROPOSITION 2.4. Under assumptions (A_1) , (A_2) and $h(r) \ge -h_1(1-r)$, for $r \in [0, 1]$ and $0 < g(t) \le h_1$ for t > 0, then

$$case (B) \Longrightarrow Q(T_B) = r_0^3.$$

Proof. Performing the limit $t \to T_B$ in (11) and taking into account that u(r,t) is bounded in D_T , from (8) we get the result.

REMARK 2.5. We consider the case $g(t) \equiv g$, where g is a positive constant. From (11), we have

$$Q(T_1) = r_0^3 \iff T_1 = \frac{1 - r_0^3 + 3 \int_{r_0}^1 r^2 h(r) \, dr}{3r_0^2 g}.$$

Therefore, we obtain

If
$$h(r) \ge -h_1(1-r), \ 0 < h_1 < \frac{4(1-r_0^3)}{1-r_0^3(4-3r_0)}, \ \text{then} \ T_1 > 0.$$

PROPOSITION 2.6. Let $h(r) \ge -h_1(1-r)$, $0 < g(t) \le h_1$, $h_1 \le 1$. If there exists a T_1 such that $Q(T_1) = r_0^3$ then case (B) occurs with $T_B = T_1$.

Proof. From the assumptions and iv) of Lemma 1.2 we have that $u(r,t) \ge -h_1(1-r)$.

From (8) we have

$$s^{3}(T_{1}) = r_{0}^{3} - 3 \int_{r_{0}}^{s(T_{1})} r^{2} u(r, T_{1}) dr \le r_{0}^{3} + 3h_{1} \int_{r_{0}}^{s(T_{1})} r^{2} (1 - r) dr$$
$$= r_{0}^{3} + h_{1}(s(T_{1})^{3} - r_{0}^{3}) - \frac{3}{4}h_{1}(s(T_{1})^{4} - r_{0}^{4}).$$

Hence

$$(s(T_1)^3 - r_0^3)(h_1 - 1) - \frac{3}{4}h_1(s(T_1)^4 - r_0^4) \ge 0,$$

and, if $h_1 \leq 1$ this implies $s(T_1) = r_0$.

PROPOSITION 2.7. If the assumptions of Lemma (2.3) hold and $h'(r) \ge 0$, then

case (C)
$$\implies Q(T_C) \leq r_0^3$$
.

Proof. If case (C) occurs, from Lemma 2.3 the isotherm u(r,t) = -1 exists and reaches the free boundary at $t = T_C$.

Moreover, from the assumptions and from Lemma 2.2, we have $u_r(r,t) \geq 0$. Hence $u(r,T_C) \leq -1$, $\forall r \in [r_0, s(T_C)]$ and from (8) and (11) we get

$$s^{3}(T_{C}) = Q(T_{C}) - 3 \int_{r_{0}}^{s(T_{C})} r^{2}u(r,t) dr$$

$$\geq Q(T_{C}) + 3 \int_{r_{0}}^{s(T_{C})} r^{2} dr = Q(T_{C}) + (s^{3}(T_{C}) - r_{0}^{3}). \blacksquare$$

COROLLARY 2.8. Let the assumptions of Proposition 2.6 and Proposition 2.7 hold.

Case (C) $\implies Q(T_C) < r_0^3$.

Proof. Easily follows from Proposition 2.6 and Proposition 2.7.

PROPOSITION 2.9. If
$$||g||_1 = \int_0^{+\infty} g(t)dt < +\infty$$
, then
 $case (A) \implies Q(t) \ge r_0^3, \ \forall \ t > 0.$

Proof. Suppose that there exists a $T_0 > 0$ such that $Q(T_0) < r_0^3$. Since $\dot{Q}(t) < 0$, for all t > 0, we get

$$Q(t) \le Q(T_0) < r_0^3, \qquad \forall \ t \ge T_0.$$

From (8) and (11), we have

$$\int_{r_0}^{s(t)} r^2 u(r,t) dr = \frac{Q(t) - s^3(t)}{3} < \frac{Q(T_0) - s^3(t)}{3}$$
$$\leq -\frac{r_0^3 - Q(T_0)}{3} < 0, \qquad \forall \ t \ge T_0,$$

then

(12)
$$r_{0} \iint_{D_{t}} ru \, dr d\tau \leq r_{0} \iint_{D_{T_{0},t}} ru \, dr d\tau$$
$$\leq \int_{T_{0}}^{t} d\tau \int_{r_{0}}^{s(\tau)} r^{2} u(r,\tau) \, dr \leq -\frac{r_{0}^{3} - Q(T_{0})}{3} (t - T_{0}).$$

From (9),

$$(13) \qquad 2 \iint_{D_{t}} ru(r,\tau) \, dr d\tau = \frac{s^{2}(t)}{4} (s^{2}(t) + 2r_{0}^{2}) - \frac{1}{4} (1 + 2r_{0}^{2}) \\ - \int_{r_{0}}^{1} (r_{0}^{2} + r^{2}) rh(r) \, dr + 2r_{0}^{3} \int_{0}^{t} g(\tau) d\tau \\ + \int_{r_{0}}^{s(t)} (r^{2} + r_{0}^{2}) ru(r,t) \, dr \\ \ge \frac{r_{0}^{2}}{4} (3r_{0}^{2}) - \frac{1}{4} (1 + 2r_{0}^{2}) + 2r_{0}^{3} ||g||_{1} \\ + (1 + r_{0}) \int_{r_{0}}^{s(t)} r^{2} u(r,t) \, dr.$$

From (8)

$$\int_{r_0}^{s(t)} r^2 u(r,t) \, dr \ge \int_{r_0}^1 r^2 h(r) \, dr - r_0^2 \|g\|_1 \ge C, \quad \forall \ t > 0$$

where C is a suitable constant.

Hence (13) becomes

$$2 \iint_{D_t} ru(r,\tau) \, dr d\tau \geq \tilde{C}, \, \forall \, t > 0$$

where \tilde{C} is a suitable constant, on the contrary to (12).

COROLLARY 2.10. Let the assumptions of Proposition 2.6 and Proposition 2.9 hold. Then

Case (A)
$$\implies Q(t) > r_0^3, \ \forall \ t > 0.$$

Proof. Easily follows from Proposition 2.6 and Proposition 2.9.

COROLLARY 2.11. Let the assumptions of Proposition 2.4 and Proposition 2.7 hold. Then

$$Q(t) > r_0^3, \ \forall \ t > 0 \implies case \ (A).$$

Proof. It is obtained excluding the other cases.

3. Asymptotic behaviour of the solution

PROPOSITION 3.1. Let (T, s, u) be a solution of (1)-(6) of case (A) under assumptions of Corollary 2.10 and let there exist $\lim_{t\to+\infty} g(t)$. We denote by $Q_{\infty} = \lim_{t\to+\infty} Q(t)$ and $s_{\infty} = \lim_{t\to+\infty} s(t)$. Then

$$(14) s_{\infty} = (Q_{\infty})^{1/3} \ge r_0$$

where $Q_{\infty} = 1 + 3 \int_{r_0}^{b} r^2 h(r) dr - 3r_0^2 \|g\|_1$.

Proof. From the assumptions we obtain that

$$\lim_{t\to+\infty}g(t)=0.$$

Moreover if $u_{\infty}(r) \equiv \lim_{t \to +\infty} u(r, t)$, $u_{\infty}(r)$ satisfies

$$\begin{cases} u_{\infty}'' + \frac{2}{r}u_{\infty}' = 0, & \text{ in } (r_0, s_{\infty}), \\ u_{\infty}'(r_0) = 0, \\ u_{\infty}(s_{\infty}) = 0, \end{cases}$$

hence ([8]) $u_{\infty}(r) \equiv 0$ and, from (8) and (11), we get the result.

Remark 3.2.

$$s_{\infty} = r_0 \iff \int_{0}^{+\infty} g(\tau) d\tau = \frac{1 - r_0^3 + 3 \int_{r_0}^{1} r^2 h(r) dr}{3r_0^2}$$

REMARK 3.3. Taking into account (8) and $u(r, t) \leq 0$ we obtain the estimate

(15)
$$s(t) \ge [Q(t)]^{1/3}, \quad \forall t \le T.$$

Now we shall consider briefly the particular case $r_0 = 0$ and since we are in spherical symmetry, the condition $g(t) \equiv 0$ is the most natural one.

The local in time existence and uniqueness of the classical solution for the case $r_0 = 0$ is given in [9]. The results obtained in this section are in sequel with those of [9] in order to clarify the behaviour of the solution as a function of the parameter R, defined below by 19.

We may obtain, as in the proof of Lemma 2.1, the integral representation (7)-(9) with $r_0 = 0$, $g(t) \equiv 0$,

(16)
$$\frac{s^2(t)-1}{2} = \int_0^1 rh(r) \, dr - \int_0^{s(t)} ru(r,t) \, dr - \int_0^t u(0,\tau) d\tau,$$

(17)
$$\frac{s^3(t)-1}{3} = \int_0^1 r^2 h(r) \, dr - \int_0^{s(t)} r^2 u(r,t) \, dr,$$

 and

(18)
$$\frac{s^4(t)-1}{4} = 2\int_0^t \int_0^{s(\tau)} r u(r,\tau) \, dr d\tau + \int_0^1 h(r) r^3 \, dr - \int_0^{s(t)} r^3 u(r,t) \, dr d\tau$$

Moreover the result of Lemma 2.3 can be proved in the same way as before. We may characterize cases (A), (B), (C) in dependence of the constant R defined by

(19)
$$R = 1 + 3 \int_{0}^{1} r^{2} h(r) dr$$

PROPOSITION 3.4. Let $h(r) \ge -h_1(1-r)$ for $r \in [0,1]$. Then we have the following properties:

- (i) Case $(B) \implies R = 0$, (ii) R = 0 and case $(A) \implies \lim_{t\to\infty} s(t) = 0$, (iii) Case $(A) \implies R \ge 0$,
- (iv) $R < 0 \Longrightarrow \text{case}$ (C).

74

Proof. We shall only prove (iii). Using (17) and the assumptions on h(r) (thus $u(r,t) \ge -h_1(1-r)$), we get

(20)
$$-3\int_{0}^{s(t)}r^{2}u(r,t)\,dr=s^{3}(t)-1-3\int_{0}^{1}r^{2}h(r)\,dr\leq\frac{h_{1}}{4}.$$

7.5

Hence

(21)
$$-\int_{0}^{s(t)} r^{3} u(r,t) dr \leq \frac{h_{1}}{12}$$

Using (18) we have

(22)
$$2\int_{0}^{t}\int_{0}^{s(\tau)}ru(r,\tau)d\tau \geq -\frac{1}{4} - \frac{h_{1}}{12}$$

If R < 0 from (17) we obtain

$$-\int_{0}^{s(t)} ru(r,t) dr \ge -\int_{0}^{s(t)} r^{2}u(r,t) dr = \frac{s^{3}(t)}{3} - \frac{R}{3} > 0, \quad \forall t > 0.$$

By integrating with respect to t the last inequality we get

$$\int_{0}^{t}\int_{0}^{s(\tau)}ru(r,\tau)\,drd\tau\leq\frac{R}{3}t,$$

hence a contradiction with (22).

Acknowledgements. The authors wish to thank Prof. Pedro Marangunic for helpful discussions.

References

- D. Andreucci, Continuation of the solution of a free boundary problem in cylindrical symmetry, Meccanica 19 (1984), 91-97.
- [2] D. Andreucci, A. Fasano and M. Primicerio, On the occurrence of singularities in axisymmetrical problems of Hele-Shaw type, Int. Series Numer. Math. 106 (1992), 23-38.
- [3] E. Comparini, R. Ricci and D. A. Tarzia, Remarks on a one-dimensional Stefan problem related to the diffusion-consumption model, ZAMM 64 12 (1984), 543-550.
- [4] A. Fasano and M. Primicerio, General free-boundary problems for the heat equation, J. Math. Anal. Appl. 57 (1977), 694-723.
- [5] A. Fasano and M. Primicerio, New results on some classical parabolic free-boundary problems, Quart. Appl. Math. 38 (1980), 439-460.
- [6] A. Fasano and M. Primicerio, A critical case for the solvability of Stefan-like problems, Math. Meth. Appl. Sci. 5 (1983), 84-96.
- [7] A. Fasano, M. Primicerio, S. D. Howison and J. R. Ockendon, Some remarks on the regularization of supercooled one-phase Stefan problems in one dimension, Quart. Appl. Math. 47 (1990), 153-168.

P. Mannucci, D. A. Tarzia

- [8] A. Friedman, Partial differential equations of parabolic type, Prentice Hall, Englewood Cliff (1964).
- [9] A. M. Meirmanov, The Stefan problem with surface tension in the three dimensional case with spherical symmetry: nonexistence of a classical solution, European J. Appl. Math. 5 (1994), 1-19.
- [10] A. G. Petrova, D. A. Tarzia and C. V. Turner, The one-phase supercooled Stefan problem with temperature boundary condition, Adv. Math. Sci. Appl. 4 (1994), 35-50.
- [11] M. Primicerio, The occurrence of pathologies in some Stefan-like problems, in: Numerical Treatment of Free Boundary Value Problems, J. Albrecht-L. Collatz-K.H. Hoffmann (Eds.), ISNM 58, Birkhauser Verlag, Basel (1982), 233-244.
- [12] B. Sherman, A general one-phase Stefan problem, Quart. Appl. Math. 28 (1970), 377-382.
- [13] D. A. Tarzia and C. V. Turner, The one-phase supercooled Stefan problem with a convective boundary condition, Quart. Appl. Math., 55 (1997), 41-50.

Paola Mannucci DIPARTIMENTO DI MATEMATICA PURA ED APPLICATA UNIVERSITÀ DEGLI STUDI DI PADOVA Via Belzoni, 7 PADOVA, ITALY E-mail: mannucci@math.unipd.it

Domingo Alberto Tarzia DEPTO MATEMATICA FCE UNIVERSIDAD AUSTRAL Paraguay 1950, 2000-ROSARIO, ARGENTINA E-mail: tarzia@uaufce.edu.ar

Received June 8, 1998.