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THE SUPERCOOLED ONE-PHASE STEFAN PROBLEM 
IN SPHERICAL SYMMETRY 

Abstract. The supercooled one-phase Stefan problem in spherical symmetry with 
a heat flux condition at the fixed face is considered. The relation between the heat flux 
and the initial temperature is analysed in order to characterize the cases with a global 
solution (possibility of continuing the solution for arbitrarily large time intervals), a finite 
time extinction and a blow-up at a finite time. 

1. Introduction 
We study a supercooled one-phase Stefan problem in spherical symmetry 

(r G [T*O, 1], 7"o > 0) corresponding to a positive heat flux condition at the 
fixed face and a negative initial temperature. Problems of this kind have been 
studied by other authors in connection with the freezing of a supercooled 
liquid. Several different boundary conditions were analysed in [3], [5], [6], 
[7], [10], [11], [13], for the one-dimensional case, in [1], [2] for cylindrical 
symmetry and in [9] for spherical symmetry. 

In Section 1 we give the preliminaries corresponding to the description 
of the problem and in Section 2 we obtain conditions for data in order to 
characterize the cases with a global solution (possibility of continuing the 
solution for arbitrarily large time intervals), a finite time extinction and a 
blow-up at a finite time. In Section 3 we study the asymptotic behaviour of 
the solution and we give some results concerning the particular case 7*0 = 0 
with null heat flux, which are a sequel to those given in [9]. 

In this paper we study the following problem: 
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PROBLEM I. Find a triple (0(p,t),<t(t),Ti) such that: 
i) > 0 

ii) a(r) € C0([0,T1])nC1((0,r1 , )) , po < a(r) < b, 0 < r < Tu p0 > 0. 
iii) 0(p,r) is a bounded continuous function in po < P < cr(r), 0 < 

t < Ti, 0p(p,T) is continuous in po < p < a(r), 0 < r < T\, 0pp,0T are 
continuous in po < p < <r(r), 0 < r < 

iv) a(r) and 0(p, r) obey the conditions: 

0T = a(OPP + , Po<P< <r(r), 0 < r < TU 

a(0 ) = 
e(p,0) = h(p), p0<p<b, 

0P(po,T) = g(T), 0 <t<TU 

E{A{R),T) = 0, 0 < T < T\, 

ac0p(a(r),T) — —A<J(T), 0 < r < Ti. 

The nomenclature is the following: 
a material thermal diffusivity, 
c specific heat, 
A latent heat of melting, 
0 temperature, 
a free boundary, 
p radial coordinate variable, 
T time. 
The adimensional problem corresponding to Problem I is obtained by 

the following transforms: 

r = — t — —t rn — — < 1 T = ^ V b' tf ' b ' 62 ' 

u(r,t) = j6(ptr), s(t) = ^ l , 

. . . c~ . . . ci> / a 
Hr) = jh(P), 9(t) = 

Then the variables (T, u, s) satisfy the problem 
PROBLEM II . Find a triple (T, s,u) such that: 

i) T > 0. 
ii) s(t) 6 C([0,T]), s € C 1 ( ( 0 , r ) ) , T-o < s(t) < 1, for 0 < t < T and 

r0 > 0. 
iii) u(r, t) is a bounded function, continuous in ro < r < s(t), 0 < t < T, 

ur(r,t) is continuous in ro < r < s(t), 0 < t <T, urr, ut are continuous in 
r 0 < r < s( t) , 0 <t<T. 
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iv) The following conditions are satisfied: 
2 

(1) ut = urr + -ur, in DT = {(r, t): r0 < r < s(t), 0 < t < T } , 

(2) 8(0) = 1, 

(3) u(r, 0 ) = h(r), r0 < r < 1, 

(4 ) ur(rQ,t) = g(t), 0 <t <T, 

(5) u(s(t),t) = 0, 0 < < < T , 

(6) ur(s(t),t) = -s(t), 0 <t<T, 

where we impose, from now on, the following assumptions: 
(Ai) h(r) < 0 , ro < r < 1, h(r) is a continuous function, 
(A2) g(t) > 0 , 0 < t < T, g(t) is a piecewise continuous function. 

(Whenever we consider the derivatives of h and g we suppose further regu-
larity of these functions). 

Three cases can occur ([4], [5], [12]): 

(A) The problem has a solution with arbitrarily large T (global solution), 
(B) There exists a constant Tb > 0 such that limt_>T-s(t) = r0 (exctin-

tion time), 
(C) There exists a constant Tc > 0 such that lim t_>T-s(i) > tq and 

lim i_>T-s(i) = —00 (blow-up). 
As we shall see, any of these cases can actually occur with an appropriate 
choice of the functions h(r),g(t) in (3), (4). 

2. Study of the three cases 
In order to characterize the three cases we obtain some preliminary prop-

erties. 

LEMMA 2.1 . If (T,s,u) solves problem, (l)-(6) then 

B (t) 
(7) 

(8) 

(9) 

s2(t) 1 1 s ( ) * 
~ 2 + J r h ^ d r ~ \ r u(r> d r ~ \(u(r0>T) + r0 s( T ) ) dr, 

ro r0 0 

s3(t) 1 1 s ( i ) 1 

- T - = 3 + 1 r2fl(r) d r - J r2 u ( r , t) dr - rg j g(r) dr, 
ro ro 0 

s 2(i'\ 1 1 4 ^ ( S 2 ( i ) + 2vl) = ±(1 + 2To2) + J (r02 + r2)rh(r) dr -4 v- v-/ • - « / 4 ro 
t »(0 

-27*0 j g(r) dr + 2\\r u(r, r ) drdr - j (r2 + r%)r u(r, t) dr. 
o Dt r0 
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P r o o f . Consider Green's identity 
\\{vLz — zL*v)dr dT = j (zrv — zvT) dr + vzdr, 
Dt dDt 

where L denotes the heat operator and L* its adjoint, with z = ru(r,t). If 
v = 1 and v = r we get respectively (7) and (8). (9) follows adding to (7) 
the integral representation obtained with v = r2, taking into account the 
condition (4). • 
LEMMA 2.2. If assumptions ( A i ) and (A2) hold, we have: 

i) u{r, t) < 0, in DT, 
ii) s(t) < 0 , V i e (0, T), 

iii) If h'(r) > 0, then ur(r,t) > 0 in DT, 
iv) If h(r) > -hi(l - r), hi > 0 and 0 < g(t) < hi, then u(r,t) > 

—hi(l — r) in DT-

P r o o f , i), iii) iv) follow from the maximum principle applied respectively 
to u, ur, and u + hi(l — r). 

ii) is a consequence of i) and (6). • 
Now, we shall prove a result which gives us a bound from below for s; 

that is we avoid the occurrence of case (C)(for the planar case see ([5])). 
LEMMA 2.3. Let (T,s,u) be a solution of ( l ) - ( 6 ) . If h(r) > -hi(l - r), 
0 < r < 1 and if there exist two constants d € (0, s t — tq), zq G (0,1) with 
ST = infte[o,T] s(i) > ro such that u(s(t) — d, t) > —ZQ, hid < zo> V t € (0, T) 
then 
(10) s(t) > ^ log(l - zo), v t e (0,T). 

P r o o f . Fix e > 0 and define a — a(e) — —infte(o,T-e)K^) > w(r,t) = 

Prom the maximum principle, w(r, t) < u(r, t) in i2e = {(r, t) : s(t) — d< 
r < s(t), 0 < t < T — e}. It follows that ur(s(t),t) < wr(s(t),t), hence from 
the definition of a and assumptions on hi, ZQ and d, we get (10). • 

Under assumptions (Ai) and (A2), we proceed now to characterize, cases 
(A), (B) and (C) in dependence on the value Q(t), where 

1 t 
(11) Q(t) = 1 + 3 \ r2h{r) dr - 3r§ \ g(r)dr. 

ro 0 

We remark that Q(t) < 0, V t e [0,T]. 
PROPOSITION 2.4. Under assumptions (Ai), (A2) and h(r) > —hi(l — r), 
for r € [0,1] and 0 < g(t) < hi for t > 0, then 
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case (B) Q(TB) = rg. 
Proof. Performing the limit t —* Tb in (11) and taking into account that 
u(r,t) is bounded in Dt, from (8) we get the result. • 
REMARK 2.5. We consider the case g(t) = g, where g is a positive constant. 
Prom (11), we have 

Q(Ti) = rg <=» Ti = 
l - r g + 3 £0r2h(r)dr 

Therefore, we obtain 

If h(r) > -h^l - r), 0 < ht < 1 , , then Tx > 0. 1 - rg(4 - 3r0) 
PROPOSITION 2.6. Lei fc(r) > -hi(l - r), 0 < g(t) < hi, hi < 1. If there 
exists a T\ such that Q{T\) = rg then case (B) occurs with Tb = T\. 

Proof. From the assumptions and iv) of Lemma 1.2 we have that u(r, t) > 
- A i ( l - r ) . 

Prom (8) we have 
s(Ti) »{Ti) 

S3(TI) = rg - 3 \ r2u(r, Ti) dr < rg + 3hi j r2(l - r) dr 
ro ro 

Hence 

= rg + M * m ) 3 - ô3) - 7 h M T i ) 4 - ro). 

(s(Ti)3 - rg)(fci - 1) - f M'CTi)4 - r0
4) > 0, 

and, if hi < 1 this implies s(Ti) = ro- • 
PROPOSITION 2.7 . If the assumptions of Lemma (2.3) hold and h'(r) > 0, 
then 

case (C) Q(TC) < rg. 
Proof . If case (C) occurs, from Lemma 2.3 the isotherm u(r, t) = —1 exists 
and reaches the free boundary at t = Tq-

Moreover, from the assumptions and from Lemma 2.2, we have 
Ur(r,t) > 0. Hence u(r,Tc) < -1 , V r € [r0,s(Tc)] and from (8) and 
(11) we get 

s(Tc) 
S 3 ( T C ) = Q(Tc) — 3 j r2u(r, t) dr 

ro 
S(.TC) 

>Q(TC) + 3 J r2 dr = Q{Tc) + (s3(Tc) — rg). • 
ro 
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COROLLARY 2.8. Let the assumptions of Proposition 2.6 and Proposition 2.7 
hold. 
Case (C) ==» Q(TC) < rg . 

Proof . Easily follows from Proposition 2.6 and Proposition 2.7. • 
+oo 

PROPOSITION 2.9. If ||G||I = $ g(t)dt < + o o , then 
o 

case (A) Q(t) > rjj, V t > 0. 

Proof . Suppose that there exists a To > 0 such that Q(Tq) < Tq. Since 
Q(t) < 0, for all t > 0, we get 

Q(t) < Q(T0) <r3
0, V t > T0. 

Prom (8) and (11), we have 

"fr^tr Mr - Q ® ~ ^ <T Q ^ ~ ^ ) r u{r, t) dr = < 
ro 

V t > To, o 
then 
(12) ro^rudrdr<rQ j j rudrdr 

Dt DTq, t 

< \ dr ' ( f r2u(r, r) dr < - ^ ~ ^ (t - T0). 
T0 r0 

Prom (9), 

(13) 2 J J ru(r, r ) drdr = ^ ( s 2 ( t ) + 2r2
0) + 2r2

0) 
Dt 4 4 

1 t 
~ \ (ro + r2)rh(r) dr + 2rjj \ g(r)dT 

TO 0 
S(t) 

+ J (r2 + ro)ru{r, t) dr 
ro 

> r l ( 3 r 2 ) - \ ( l + 2r2) + 2r2
0\\g\\1 

s(t) 
+ ( l + r 0 ) \ r2u(r, t) dr. 

ro 
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Prom (8) 
s(t) i 
\ r2u(r,t)dr> \r2h(r)dr-rl\\g\\1>C, Vi> 0 

t"O ro 
where C is a suitable constant. 

Hence (13) becomes 

2 j j ru(r, T) drdr >C, Vi > 0 
Dt 

where C is a suitable constant, on the contrary to (12). • 
COROLLARY 2 . 1 0 . Let the assumptions of Proposition 2 .6 and Proposi-
tion 2.9 hold. Then 

Case (A) =» Q(t) > rjj, V t > 0. 
P r o o f . Easily follows from Proposition 2.6 and Proposition 2.9. • 
COROLLARY 2 . 1 1 . Let the assumptions of Proposition 2 . 4 and Proposi-
tion 2.7 hold. Then 

Q(t) > r0
3, V t > 0 = » case (A). 

P r o o f . It is obtained excluding the other cases. • 

3. Asymptotic behaviour of the solution 
PROPOSITION 3.1. Let (T,s,u) be a solution of (l)-(6) of case (A) under 
assumptions of Corollary 2.10 and let there exist limt_>+oo g(t). We denote 
by Qoo = linit—+oo<5(i) and s<x> = lim(_>+00s(£). Then 

( 1 4 ) Soo = ( Q o o ) 1 / 3 > ro 

b 
where Q^ = 1 + 3 J r2h(r)dr - 3rg||s||i. 

ro 

P r o o f . Prom the assumptions we obtain that 
lim g(t) = 0. t->+oo v ' 

Moreover if u^r) = lim u(r,t), Uoo(r) satisfies t—>+oo 
2 

u'U + ~u'oo = °> i n (ro, «oo), r 
A u'oo(ro) = 0, 

.Uoo(Soo) = 0, 
hence ([8]) u^r) = 0 and, from (8) and (11), we get the result. • 
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REMARK 3.2. 

+00 l-rZ + 3\l r2h(r)dr 
Soo = r0 \g(r)dr = 

o 3 ro 

REMARK 3.3. Taking into account (8) and u(r,t) < 0 we obtain the estimate 

(15) s(t) > [Q(t)]1/3, Vi < T. 

Now we shall consider briefly the particular case TQ — 0 and since we are 
in spherical symmetry, the condition g(t) = 0 is the most natural one. 

The local in time existence and uniqueness of the classical solution for 
the case rg = 0 is given in [9]. The results obtained in this section are in 
sequel with those of [9] in order to clarify the behaviour of the solution as a 
function of the parameter R, defined below by 19. 

We may obtain, as in the proof of Lemma 2.1, the integral representation 
(7)-(9) with r0 = 0, g(t) = 0, 

(16) 

s4(t) -1 * s(t) 1 s{t) 

— ^ = 2 \ \ ru(r, t ) drdr + \ h(r)r3 dr - \ r3u(r, t) dr. 

s2(t) -1 ] T ? — = yrh(r)dr— ] ru(r,t) dr — jti(0,r)dr, 

o o o 
_ i 1 

(17) V ) =\r2h(r)dr- J r2u(r,t)dr, 
3 o o 

and 

(18) 
** 0 0 0 0 

Moreover the result of Lemma 2.3 can be proved in the same way as before. 
We may characterize cases (A), (B), (C) in dependence of the constant R 
defined by 

l 
(19) R = 1 + 3 \ r2h(r) dr. 

o 

PROPOSITION 3.4. Let h(r) > -hi(l - r) for r e [0,1]. Then we have the 
following properties: 

(i) Case (B)=> R = 0, 
(ii) R = 0 and case (A) = > limt-^oos(i) = 0, 

(iii) Case (A) R > 0, 
(iv) R < 0 = • case (C). 
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P r o o f . W e shall only prove (iii). Using (17) and the assumptions on h(r) 
(thus u(r,t) > -h\(l - r ) ) , we get 

s(t) 1 h 

(20) - 3 j r2u(r, t) dr = s3(t) - 1 - 3 J r2h(r) dr < - j . 
o o 

Hence 
S(t) 

( 2 1 ) - \ r3u(r,t)dr< - i . 
6 1 2 

Using (18) we have 

t s(r) 1 h 

(22) 2j \ ru(r,r)dr 
0 0 4 IZ 

If R < 0 from (17) we obtain 

s(t) s{t) s3(t) R 
- \ ru(r, t)dr > — \ r2u(r,t) dr = — - — > 0, V t > 0. 

o o 3 3 

By integrating with respect to t the last inequality we get 

t S{r) ^ 

j j ru(r, T) drdr < —t, 
o o 

hence a contradiction with (22) . • 

A c k n o w l e d g e m e n t s . T h e authors wish to thank Prof . Pedro Marangunic 
for helpful discussions. 
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