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ON THE LAURICELLA PROBLEM
FOR THE EQUATION Au(X)=f(X,u(X)) IN THE CIRCLE

1. In [1] the Lauricelle problem for the equation Azu(x) =
= f(X) in the circle was solved. ,

In the present paper we shall study the following Lauri-
cella problem,in the c¢ircle K = {X: |X| <R},

(1) 52u(x) = £(X,u(X)) for XekK,
(2) u(X) = £,(X) for Xe K,
(3) ana(x) = £,(X) for- Xe?K,

where f,f1,f2 are given functions, ny denotes the inward nor-
mal to 9K in the point X e 3K,

2. Using the convenient Green function G, we shall replace
the problem (1)-(3) by an integral equation which may be solv-
ed by the Banach method of the contracting mapping.

Let us denots:

(x1,12) is an arbitrary point of X,
= (y1,y2) is an arbitrary point of the plane E,,
(i1,i2) is the symmetric image of X with respect to 9K,

b b4
non

r?(%;7) = (31-x1)2 + (yg-x2)2.

4 = -(28%)71, B(X) = R® - r%(0;X),
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and consider the function G of the form

G(X;Y) = r2(X3Y)g(X;Y) + AB(X)B(Y) for XeK, X # Y,
where
g(%:Y) = 1n[r(0;X)e(E;7) (Re(X57))"Y] for X 4 O,

g(0;Y) = 1or(0;Y) - 1nR for Y £ O.
The function G satisfies the following conditions:

G(X;Y) = 0 for X ¢ 9K,
D, G(XiY) = v2(X;¥)D, g(Xs¥)+a(X;¥)D, P2 (X;7) +
X : X x

+ AB(Y)Dn B(X) = 0 for XelK,
L

because, by [2] Vol.I, p.250, we have g(x3Y) = 0,
r2(X;7)D, &(X;Y) = R7B(X) and 4B(1)D, B(X) = -R~1B(¥) for
X

XGaKo

Moreover
(4) AyG(X;3Y) = 28B2(X)r"2(X;7)  for Y e 2K,
(5) DnyAYG(X;Y) = Hi(X3Y) + Hy(X3Y) for Ye 9K,
where

Hy (1) = 2(R%r2(x51))7'8%(20;5 Bp(xsy) = 2R (xv0) 7182 (x),

3. Now we shall give the theorem concerning the unicity
of the problem (1) - (3). Let us introduce the following two
definitions.

Definition 1. We shall call the class (N)
the set of all functions u e C(K) such that |ul| < (r being
a positive number).

Definition 2, We shall call the class (F)
the set of all functions f(X,u) such that the functions
D&i)f(x,u), i=0,1, are continuous and bounded for (X,u)c D, =
= {(X,u):x:f, ue [-r,r]}.
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Ox the Lauricells problem 3

Theorem 1. Iffe(F),Dl(l”f(X,u)sO for
(X,u) € D,, and the functions u,,u, of class c*(x)  C3(K)
are solutions of the problem (1)~(3), then u1(x) = uz(X)
for Xe K.

Proof. By [2], Vol.II, p.179, we have

-
I

= ﬁ {[olug=uy)] ? = (g=up) [4%(ny-u,)]} oY =
K

- | [(DnY(“1‘“2”A(“1'“2) -
8K

(u1-u2)DnyA(u1-u2)] dsy = P,.
By the formula A2ui = £(X,n;) (i=1,2) and by the mean value
theorem,we obtain

2y = [ {{8ta,-0,)]2 - (1-u,) 20,2 (7, }a¥ > 0,
K

where U

L}

u1+Q(u2—u1), 0<Q <1, therefore ¢ (N}, Similarly
by the boundary conditioms (2), (3), we get P, = 0. Hence
P1 = P2 = 0 implies uy = u,, for XeK.

4. Let the function V denots the solution of the biharmo-
nic equation
(1a) 2%u(X) = 0 for XeK,
satisfying the boundary conditions (2) and {3).

Consider the integral equation
(6) u(X) = S(X;u) + v(x),

where
S(X;3u) = 11(X;u) + Iz(x;u'); V{X) = v1(x) + vz(x)
and

1,(x50) = &, [[ e(xsu(vB0B(DaY,
K
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I,(X;n) = A, ff £(1;n(Y))r?(X;¥)g(X;Y) dY,
K

v, (X) = A, fff.l(Y)DnYAYG(X;Y)dsy;
K

V,(X) = 4, af £,(Y) B 8(X5T)aSy,
K

by = -(4m~", 8, = -(8R)7", the functions Dy AyGs OyG boing
given by formulae (4), {5).

Let ||w-z| = 8u |w(x)-z(x)| = d(W,2) for any functions
W,2 eC(K). By [1], we rave

|v1(x) + vz(x)| <B = ngp |f (x)|

Now we shall give the lemma concerning the estimate of
the Green potentials,
Lemma 1. If fe (F) and M, = sup |f(X;u)|,
(X;u)eD
the following inequalities hold 1

(a) [T ()| < |a |, RS (b) |T,(X;u)| <H(R),
wherse

H(R) = C1R2 [c2+03 lin R| + R204 |in R| + 0532],

C; (i=1,444,5) being a convenient positive constants.

Proof. We omit the simple proof of the inéquality
(a) and we shall prove only (b). Let us write the function T,
in the form

Iz(x,u) = J1(X,u)+J2(x,u)+J3(X,u),
where

J1(x,u) = A _U f(Y,u(Y))rz(x;Y) 1n[r(o,x)r(2;y)] dy

X
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Jy(Xyu) = -4, _U £(Y,u(Y))r?(X;¥)1n R 4,
K
35(%,0) = ff 202,000 12251010 2(x57) .

K

For the function J2 we have the following estimation
|9,] < 4n]a, |MR lin B] = 2a R2|1n R|, where A =2sa, i, R,

Now we shall estimate the function J1. By [2], p.249, we
have the following inequalities

(7) R(R-r(0,X)) € r(0,X)r(X,Y) € R(R+r(0,X)).

We shall consider two cases:

1° r(0,x)> %,

2° r(0,X) = 0 for X = O,
By (7) in the case 1° we have

( - %)st r(0,X)r(X,Y) s(1 + %)Rz, n=1,2,000

and we shall consider two cases:
(a) (1 +1)r2<1, (0 (14 —)R2>1.
ad (a). |91(X,u)| < -24 R21n [ ]

Ad (b). Let M(R) = max( 1n[1 - —Rz] l [ 1)R2]|)
and we have |1n[r(0,X)r(X,¥)]| < M(R). Thus |J1(X,u|
<2A3R2M(R).

Ad 2°, By continuity of the function g(X;Y}, from [2],
Vol.,I, p.250 we have

<

g(03Y) = =1n r(0;Y) + 1n R.

Hence we can write the function J (O,u) in- the form J (O,u) =
=L, {O,u) + L,(0,u), where
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L,(0,u) = A, fff(y,u(y))r2(o;y)1n R dY,
X
L2(0,u) = -4, fff(Y,u(Y))rz(o,Y)ln r{0,Y)dY.

K
For ths integrals L1, L2 we have the following estimations

|1, (0,a)] % A3R2]1n R|; |L,(0,u)| < A1M1R2 I{]ln r{0;Y)] d¥.
K

Por the estimation of the integral L2 we shall distinguish two
cases:

(¢c) RK1, (d) R>1,

4d {(c). Using the polar coordinates we obtein

1, o2 1, 52
|1,(0,0)] < - 5 4;R°1n R + F 44R°.
8 (d). |I,(0,u)} < 3 AB(R21n R - %R+ 1),

Hence
|3, (0,u)] € [1,(0,u)] + |L2(0,u)|<-% A3R2|ln R| -3 A3R21n R +
1

2
+ZA3R

for Rg1,

: | 2 1, (o2 Y
|J1(O,a}|s 5 A5R |in B| + 3 43(R°1n R - 3 R°41) for R>1.

Now we shall estimate the function Jas we have
2 .
|95(X,0)] < 4,4, 4R {f 11n 2(x;1)] e,
K
Applying the polar coordinates

¥4-X, = pcos¢, JI,-X, = psing, O<e¢<2m, 0<p<ple) 2R,
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we obtain
2 1
|J3(x,u)| € A;R°(1-21n2R) for R<3 ,
1 2 ~1p2 1
|J3(x,u)| < A3(5 + 2R°1n2R - (27)7'R°) for R>3 .
By the foregoing irequalities for the functions J1, J2, J3,
we obtain the inequelity (b).

5. Denote FV(X;u) = S(X;u) + V(X),

q= A1 sllp-
(X;u)eD1

~gDu‘f(Y,u)G(X;‘:)dY and M, = (X:EL)IED1 lDuf(X;u)l.

We shall prove the followling lemma,
Lemma 2. If the functions W,Z,u belong to the
class (N) and |V(X)| <(1-q9)r, where q ¢ (0,1), then

1% 5(x;0) = 0.
2% a(s(w),s(z)) <cd(W,z).
3° “FV(W)-FV(Z) <qd(W,z2).
4° ey )] <=
Proof. The assertion 1° is evident.
Ad 2°. We have

a(s(w),s(z)} = |A1|§u§
€

I Tecx,ween)-a0y,2000] e(x;1)av]
K
By the mean value theorem, we obtain

ff (W-Z)Duf(Y,ﬁ}G(x;Y)d‘! <

d(s(W),s(z)) = |a,| (202
K

X;u)eD1

[f o 2ty,ma(x;7)ax|= qa(w,2),

K

<|A1|d(W,Z) sup
(X;u)ed

;
where 0 = W+Q(Z-W), 0 <Q <1, therefore u e (N).
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Remanrk, Indeed g € (0,1) for M, sufficiently small,
because, by Lemma 1, we have

sup
(X,u)eD

D £(Y,u)G(X;7)dY| < D £(X, G(X3Y)|a¥e
_g oF(Y,0)G(X5T) <(D(,§‘)15D1|“( u)l;g}:z gl(;)l

= iy sup [f le(x;0)] ax <y [(2)7 Vo4 ROy + H(R)].
XeK K

The proof of the assertion 3° i1s similar to that of 2°.
Ad 4°. By 1°we have

2y ()] = IIs(x,u) + V(X)| = [ S(X,u)=8(X,0)+V(X) | <
<l s(x,u)-8(x,0)|| +]|v(x)] <qd(u,0) + (1~q)r<

<qr + (1-g)r = r.

By Lemmg 2,the mapping Fv is contracting for the functions of
the class (N) and transforms every function u € (N) into a
function of the class (N).

Lemma 2 and Theorem VIII.2 in [3] imply the following
lemma.

Lemma 3. There exists exactly one function u e (N)
satisfying the integral equation (6).

6. Let Z, = {X: R, <|X| <R}, where 0<R, <R. We shall
prove the following theorem.

Theorem 2, Iffie c? (Z s fye Cc(8K), fe (F),
ue(N), ue c4(K) n C3(K) ana D( )f(X u) €0 for (X,u)e D,
then
19 the function u being the solution of the integral equa-

tion (6) is the solution of the problem (1)-(3),
2% the function u is the unigue solution of .the problem

(1)=(3).

Proof. ad 1°, Let us consider the integrals

132 ¥(x5u) = 4, fff(y,u(Y))DikG(x;y)dY, j=0,1, k=1,2
K
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By [1], the integrals IJ'k, j=0,1, k=1,2, are locally
uniformly convergent at every point X e K, Hence there exist
the derivatives

D’j‘k Hf(r,u(r))c(x;;‘f)dy, k=1,2, j=0,1,
K
and
a0} [[etv,umnexiviay = 105 x), 5=0,1, k1,2,
k g
By the properties of the function G, we obtain
Dixlo’k(X;u)-—» 0 as X—=X e 9K, k=1,2, i=0) 1.
From [1] we have

R100%(x5u) = a4, ff(Y;u(Y))Af(G[x;Y)dY -
K

= 4y ff(Y,u(Y))J(x;Y)dY,
K

10,k

where (X3u) = I1(X;u) + Iz(x;u) and

J(X;Y) = 4g(X;Y) + 2R™2B(Y) -
- 4+ 4272 (X57) (RP43 2432 4a,7 19 o X%y T 4 -EpT o )

By [4], pe303, we obtain

Azlo’k(xlu) = £{X;u(X)} for ZXeX.

From the last formula and the integral squation (6), by the
properties of the function V, we obtain

A%u(x) = 82V(x) + 8210 %(x;3u) = £(X,u(X)) for XeK,
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w(x) = [V(X)+1(X;u)] —>£,(X,) as X —= X e 2K,
anu(x) = [anv(x)+nnx1(x;u)]-—» £,(X)) as X—»X ¢ 0K,

The assertion 2° follows from Theorem 1.

REFERENCES

[1] P Barafaski, J, Musiatek: Ona boun-
dary value problem for the non-homogeneous biharmonic
equation on the circle, Demonstratio Math. 10 (1977)
443-465,

2l M. Krzy 2adski: Partial differential equations
of second order, Vol.I, II, Warszawa 1971, 1972.

[3] K&« Maurin: Analiza I, Warszawa 1971,

[4] Wo. Pogorzelski: Integral equations and their
applications. Pergamon Press, PWN 1966,

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF KRAKGW,
31-155 KRAKOW;

INSTITUTE OF MATHEMATICS, ACADEMY OF MINING AND METALLURGY,
30~059 KRAKOW

Received November 2, 1981.

- 686 -~



