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Abstract: Low-dose CT has received increasing attention in
the recent years and is considered a promising method to re-
duce the risk of cancer in patients. However, the reduction of
the dosage leads to quantum noise in the raw data, which is
carried on in the reconstructed images. Two different multi-
layer convolutional neural network (CNN) architectures for
the denoising of CT images are investigated. ResFCN is based
on a fully-convolutional network that consists of three blocks
of 5×5 convolutions filters and a ResUNet that is trained with
10 convolutional blocks that are arranged in a multi-scale fash-
ion. Both architectures feature a residual connection of the in-
put image to ease learning. Training images are based on real-
istic simulations by using the XCAT phantom. The ResUNet
approach shows the most promising results with a peak signal
to noise ratio of 44.00 compared to ResFCN with 41.79.

Keywords: Denoising, Low Dose CT, Phantom Simulation,
Deep Learning, CNN.

1 Motivation and Related Work

In order to reduce the risk of cancer through radiation in CT
imaging, a reduction of the dose is considered [19]. Dose re-
duction is generally achieved by lowering the operating cur-
rent of the X-ray tube. However, the reduced dosage results in
quantum noise due to the limited number of photons that are
collected by the detector. The noise in the measured projection
values thus leads to noise in the reconstructed images [17].
Consequently, the diagnostic value of the images is reduced.

Noise reduction in CT images is a highly active field of
research. In low-dose CT, the insufficient number of photons
in the projection domain causes noise that does not obey a
uniform distribution [10]. Current approaches are based on an
iterative reconstruction scheme, sinogram filtering, or image
processing [11, 12, 16, 20]. Commonly, the limited amount
of data poses an ill-posed problem for denoising algorithms.
The assumption of a certain sparsity in natural and medi-
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Fig. 1: The employed architecture of residual U-Net for CT de-
noising. The network learns a powerful medical image prior
and derives features using three resolution scales: green (high-
resolution, local details), yellow (mid-resolution, regional context),
red (low-resolution, global information). Skip connections and a
residual forward carrying of the input data improves learning and
reconstruction quality.

cal images leads to the use of edge-preserving filtering meth-
ods. Yet, automatically differentiating between small but rel-
evant anatomical structures may lead to insufficient results
in traditional methods that are based on mathematical mod-
els and neighbourhood information. Deep learning has under-
gone enormous development in recent years. In particular, in
the field of image recognition astonishing performance level
that surpasses human raters have been reached using dozens
of learned 3× 3 filter layers interconnected with residual con-
nections [7].

In this work, we explore two convolutional neural network
(CNN) architectures capable of learning a nonlinear mapping
that produces high-quality multi-layer denoising results. The
training is based on very realistic simulations that are per-
formed based on the XCAT phantom [14, 15] with different
photon counts. In contrast to simple additive Gaussian noise
in image space, our approach that disturbs the measurements’
sinograms can be trained to denoise images that are affected
globally. The paper is organised as follows: previous and re-
lated work in the field of image denoising for natural and
medical images is discussed in the next section. In Section
2, we describe our method for generating ground truth train-
ing data based on realistic simulations and the two compared
deep CNN architectures used to learn a denoising filtering al-
gorithm. We compare experimental results for a hold-out val-
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idation set using either a straightforward fully-convolutional
architecture that only performs local 5 × 5 convolutions and
the multi-scale U-Net architecture (see Fig. 1) that has demon-
strated advantages for contextual learning for semantic seg-
mentations [13]. Next, we analyse the influence of residual
connections that have been proposed recently for improved
learning for the related image reconstruction tasks of single-
image superresolution [9].

1.1 Image Denoising

Several algorithms have been proposed in recent years to deal
with problems of noise in image processing. Early approaches
were motivated by a simple yet powerful mathematical model
that penalises strong gradients in the denoised signal by its
squared norm through a diffusion regularisation [6]. In order to
preserve edges, a local or non-local neighbourhood weighting
based on intensity differences can be included. Relying on sin-
gle pixels for estimating regularisation weights is unstable for
strong image noise, newer work employs patch distances, as
e.g. done in [4] and [1], which can already be seen as a precur-
sor to convolution filters. In [3] a nonlinear diffusion model is
proposed that is able to learn all relevant parameters, including
filters and activation functions, directly from training data by
minimising a loss function. Despite following almost all con-
ventions of convolutional neural networks, [3] was not consid-
ered directly as deep learning approach. Zhang et al. [18] con-
sequently presented a deep fully-convolutional network with a
residual connection that will serve as the baseline in our ex-
periments. A similar architecture with additional residual con-
nections and formulated as encoder/decoder architecture has
been used in [2] for the denoising of low-dose CT. Another
approach that is closely related to our work is [8], which use
a similar U-Net architecture for iterative sparse-view recon-
struction.

2 Methods

In the following, we will describe the preparation of training
data, using the XCAT phantom and details on the simulated
noise will be given. Subsequently, we describe the two con-
sidered deep convolutional neural network architectures, their
parameterisation, and the employed training process.

2.1 Anatomical CT Phantom

Four different software phantoms were generated using the
XCAT software [14, 15]. Each phantom consists of 151 slices
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Fig. 2: Line profile through generated forward projection with sim-
ulated acquisitions affected by Poisson noise.

with a slice thickness of 0.2 cm, pixel width of 0.25 cm and
an array size of 256 × 256. The phantoms show the upper ab-
domen of a female body and differ in various anatomical de-
tails such as the size of the heart, the radial scale of the arms,
the size and transversal angle of the breasts and the thick-
ness of the small and large intestine wall. Furthermore, the
thickness of scapula, ribs, humerus, and backbone is varied in
each phantom. The simulated radionuclide energy is equal to
120 keV. In order to gain reasonable ground truth images, a
forward projection of the generated image data is calculated
with 1472 detector elements and 1152 views over 360∘. After-
wards, images were reconstructed using the filtered back pro-
jection and used as ground truth. Ethical approval: The con-
ducted research is not related to either human or animals use.

2.2 Simulated Noise

In order to simulate noise in the CT images, forward projec-
tions (1472 detector elements and 1152 views over 360∘) of
the generated slices are calculated. The resulting projection
values are converted into intensity values according to

𝐼𝐼𝑖𝑖 = 𝑒𝑒−𝑝𝑝𝑖𝑖 , 𝑖𝑖 ∈ ℳ, (1)

where ℳ is the set of projection indices, 𝑝𝑝 is the simulated
projection value and 𝐼𝐼 is the intensity value. Based on the in-
tensity values, Poisson noise is generated and added to the val-
ues. Here, the degree of error is a non-linear function of the
total attenuation 𝑝𝑝 whereas the signal-to-noise ratio (SNR) is
given by [5]

SNR𝐼𝐼 ∼
√
𝐼𝐼𝐼 (2)

The final projection values were generated by calculating the
negative logarithm of the noise affected intensity values. The
resulting values were used in a filtered backprojection in order
to reconstruct the noisy images. An example of the generated
noise profile in comparison to the underlying ground truth data
is shown in Fig. 2.
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2.3 Deep Learning Architectures for CT
Denoising

We implemented two deep CNN architectures with residual
connections for denoising CT scans in image domain.

ResFCN: First, a straightforward fully-convolutional net-
work similar to [18] that consists of three blocks of 32 5 × 5

convolutions filter kernels each, followed by batch normali-
sation and rectified linear unit (ReLU) activations. The final
layer uses a 1 × 1 convolution to map the 32 features to an
output image that is formed in addition to the input (residual
connection). Therefore, the whole network comprises approx.
50’000 trainable parameters.

ResUNet: Second, we explore a more powerful U-Net ar-
chitecture [13] that is designed to contain 10 convolutional
blocks (again including batch norm and ReLU) that are ar-
ranged in a multi-scale fashion as shown in Fig. 1. All con-
volutions are specified as 3 × 3 kernels, except the final one
and the ones in the lowest resolution (red blocks), which are
1 × 1 to reduce the parameter count. Every second convolu-
tional block is followed by a 2×2 average pooling that reduces
the resolution in the contracting part or a bilinear upsampling
operation that doubles the resolution in the expanding path
(none of these layers contain free parameters). We start with
16 feature channels that are doubled in each scale. Detail in-
formation is conserved within the network by connecting the
output of each scale in the left part as concatenation to the cor-
responding block in the right part (shown as arrows in Fig. 1).
At the same time, a large receptive field that processes regional
or even global context can be realised within the red convolu-
tion blocks. Again a residual connection is added to the last
layer to ease learning. In total, our ResUNet contains 150’000
learned parameters.

3 Experiments and Results

We train our model using randomly sampled patches of size
64 × 64 and a batch-size of 32. The input to the network is
based on the simulated noisy slices as detailed in Sec. 2.2. The
output is compared to the corresponding noise-free ground
truth patch using an L1-norm loss that sums the absolute norm
of pixelwise differences. The Adam optimiser with a learn-
ing rate of 0.001 and no weight or rate decay is used for 30
epochs with 256 iterations each. We evaluate the performance
of the model on a hold-out validation set also simulated using
the XCAT phantom software. The results are shown in Table 1
using the average RMSE (root mean squared error) and the
PSNR (peak signal to noise ratio) that is based on the RMSE.
The intensity range of our data that is represented by atten-

Tab. 1: Numerical evaluation on hold-out validation dataset. The
PSNR (peak signal to noise ratio) shows a clear advantage for the
ResUNet architecture.

Method Root Mean Squared Error PSNR

without denoising 4.25 ×10−3 35.03
ResFCN (50k params.) 1.95 ×10−3 41.79
ResUNet (150k params.) 1.52 ×10−3 44.00

GT

Init

FCN

UNet

Fig. 3: Example axial slice of ground truth validation data (GT).
Simulated reconstruction and initial noise level (Init). Denoising
result and removed noise using ResFCN. A visually much better
outcome is achieved using the ResUNet.

uation correction values falls between 0.0 and 0.24, resulting
therefore also in small numerical errors, hence the PSNR may
be more expressive.

Despite containing several thousand adjustable parame-
ters, our convolutional networks can be trained in few min-
utes using less than 500 MBytes of graphics RAM. A full 3D
scan can be processed using the learned model in few second.
When examining the numerical, quantitative results in Table 1
it becomes clear, that the multi-scale ResUNet achieves bet-
ter noise reduction reducing the RMSE to 1.93 ×10−3, more
than 50% less than the simpler fully-convolutional model. The
visual comparison between ResFCN and ResUNet in Fig. 3
shows less noticeable structural information in the difference
image of the latter. At the same time, the ResUNet result is
able to preserve more edge details and small lung vessels.
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4 Conclusion

Two convolutional neural network architectures that are ca-
pable of learning a nonlinear mapping for inverse problems
in CT imaging are investigated. Multi-layer CNN denoising
models are learned from on a set of training images, which
are simulated using the XCAT phantom. In order to simulate
a realistic noise model, Poisson noise is added in the sino-
gram domain. Both implemented architectures, a straightfor-
ward fully-convolutional network ResFCN and a more power-
ful U-Net architecture ResUNet, feature a residual connection
for improved denoising. Results show that ResUNet is able to
outperform ResFCN with a peak signal to noise ratio of 44.00
and 41.79, respectively.
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