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Abstract: Multi-tenant data management is an important part of supporting 

efficient operation of software as a service application. Multi-tenant data use 

shared schema to reduce resource usage cost. However, massive data of different 

tenants are stored in the same schema, which causes useless data of other tenants to 

be read when a tenant just need access its own disk data. In this paper we focus on 

disk storage method of multi-tenant data based on shared schema to address the 

above low efficiency of data access. According to isolation requirement of multi-

tenant data, we store a tenant’s data in some contiguous disk blocks. The 

experimental results illustrate that query efficiency in range query and join query is 

1.5-2 times the existing storage method, and no indexing query efficiency improves 

10-70 times. 
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1. Introduction 

Along with continuous expansion of Software as a Service (SaaS) [1] application, 

multi-tenant database becomes an important foundation for quick development and 

efficient operation of SaaS application. Multi-tenant data storage is the base of 

multi-tenant data access. As for storage scheme of multi-tenant database, 

F r e d e r i c k  C h o n g  [2] proposes three methods including separate database, 

shared database separate schema and Shared Database Shared Schema (SDSS).  

With the development of cloud computing, multi-tenant databases are 

deployed on many cloud nodes with SDSS [3, 5, 8]. The persistent storage medium 

of data processing nodes are mostly low-cost disks. According to characteristics of 

disk data access, access efficiency will improve if data in database are stored in 

contiguous disk blocks [4, 9]. G r a e f e  and S h a p i r o [10] conclude that the more 

the valid data in one disk block, the higher the access efficiency, since database 

access task can be finished just by inputting/outputting a few disk blocks.  
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Most of multi-tenant data deployed in the clouds are stored on these low-cost 

disks [5]. The storage method of SDSS stores data of all tenants in the same schema 

table. When data are persisted to disk, data tables become huge and a disk block 

contains multiple tenants’ data. This gives rise to the following problems when 

accessing multi-tenant data.  

1. Query efficiency is low. Tenant data access has characteristics of isolation, 

i.e., tenant just accesses its own data. Since a query needs buffer memory and disk 

to swap data, data volume and times of I/O is critical for query performance. Non-

isolated stored data need read more disk blocks to finish one query processing from 

a tenant.  

2. Query optimization cannot be done for multi-tenant database. To do query 

optimization, data volume of each data object and their used number of disk blocks 

need counting. However, non-isolated storage schema stores data of different 

tenants into the same disk block, which messes up relational algebra logic and 

makes it hard to do statistics.  

3. Efficiency of data analysis is low. When doing analysis, data filtering by no 

indexing attributes often exists and it need traverse the whole data table. Since 

multi-tenant table in SDSS is huge, do analysis of multi-tenant data is time-

consuming. 

To address the above problems, we present a novel isolated storage method for 

multi-tenant data. It makes continuous disk blocks as a storage area and each area is 

allocated to data objects of one tenant. This ensures that one disk block just stores 

data from one tenant. Since different tenants have different data volume and data 

volume increases gradually with time, storage space for each tenant increases 

gradually. This way adapts to the demands of different tenants for storage space and 

achieves efficient usage of disk space. Last our experiments show that query 

efficiency of range query and join query is 1.5-2 times InnoDB storage engine  

[6, 7], and no indexing query efficiency improves 10-70 times. 

2. Multi-tenant data storage structure 

In this section we introduce multi-tenant data storage process in shared schema and 

discuss the problems of disk storage for multi-tenant data. For clear description, 

some definitions are given as follows: 

The organization or user who rents multi-tenant application is called tenant 

and whose subscript is denoted as t  to distinguish different tenants. A data record 

to describe a business object of tenant is called tuple and whose subscript is denoted 

as to distinguish different tuples. Data object is a collection of tuples with the same 

database schema. A tenant may have many data objects. We use to denote the 

subscript of data object belonging to a tenant. The concrete location of disk where a 

tuple is stored is called physical address and denoted as p. Multi-tenant database 

can directly locate and obtain tuple data by physical address. In operating system, 

disk space is used after disk partition. The data in database are stored in one disk 

partition. Assume the start address of one disk partition is SA and the relative 
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address of a tuple in the disk partition is r，the physical address of the tuple is  

p = SA + r. 

The storage process of multi-tenant data consists of three steps, just as shown 

in Fig. 1. We explain it as follows.  

1. It uses standard SQL to store tenant data into logical tenant view. Tenants 

think they exclusively use storage and processing resources and they access tenant 

view just like common database. Thus tenant view has data tables belonging to 

different tenants and database schemas of these tables are different.  

2. It stores different tables of tenant view into universal table. Tenant identifier 

and data object identifier are added in the front of each tuple to mark its belonging 

tenant and data object. When querying certain tenant data, query rewriting 

technology is used [3, 11], i.e., it first selects the data belonging to target tenant and 

target data object and then executes the business query for the data.  

3. It stores the tuples in universal table to disk through mapping address. Given 

the tuple identifier, it gets physical address of the tuple using address mapping 

method and stores it. 
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Fig. 1.  Multi-tenant data storage process 

The tuple data of different tenants are cross-generated. Since multi-tenant data 

storage schema based on universal table cannot ensure that the data belonging to 

one tenant are stored contiguously, a disk block may store the data belonging to 

many tenants. A tenant only accesses its own data, which causes useless data of 

other tenants to be read and reduces query efficiency and access efficiency. 

An intuitive means is to reserve storage space in universal table for each tenant 

in advance and achieve the isolated storage of tenant data. For example, the tuples 

marked by [0, 99]   store the data of tenant A and the tuples marked by

[100,199]   store the data of tenant B. Since the isolation is implemented 

logically, this method is called Logically Isolated Storage Approach (LISA). 

However, the data volumes of different tenants are different and the number of 

tenants gradually increases as well. This method of reserving storage space causes 
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low space usage efficiency. In Section 5, LISA is chosen as one of comparison 

objects to help validate our designed storage approach. 

From the above, it is urgent to design a disk storage approach of multi-tenant 

data based on SDSS to address the problem of low access efficiency caused by non-

isolated storage. The proposed disk storage approach should achieve isolated and 

contiguous storage of tenant data to improve both space usage efficiency and data 

access efficiency. 

3. Isolated storage of multi-tenant data 

In this section we store tenant data to disk in isolated way. We design a storage 

approach where tenant storage space gradually increase with data volume and each 

disk block just stores the tuples of a data object belonging to one tenant. For 

convenient description, we first assume that each tenant has only one data object 

and then extend to the scenario of multiple data objects. 

3.1. Formal definition of storage unit in disk space 

Given a disk partition, multi-tenant data are stored in the partition. For the 

convenience of managing disk storage space, some definitions on disk storage unit 

are given as follows:  

Definition 1. The minimum unit of swapping data between buffer memory and 

disk is called block. In a disk partition, the storage space consists of several blocks. 

The blocks are numbered sequentially. Assuming b  is the subscript of block, the 

size of the block is denoted as 
b

ω . 

The time transferring data from a disk block to buffer memory is constant [12]. 

When executing a query, query efficiency is high if the data stored in a block are all 

required. On the contrary, when there are a few related data and massive irrelevant 

data in a block, query efficiency reduces largely. For tenant data stored in universal 

table, i.e., a block may store data of multiple tenants, since there is no cross-tenant 

query, query efficiency will obviously be low. 

 
Fig. 2. Disk storage unit 

Definition 2. Several blocks make an extent. The number of blocks in an 

extent is denoted k . Each extent has the same size. In Fig. 2, blocks make an 

extent. A disk partition has m extents, and then mk blocks. Assuming e is the 

subscript of extent, the size of extent is denoted as 
e

ω  and 
e b

ω kω . 
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The time reading data from disk consists of seek time and data transfer time. 

Data access efficiency will increase if once seeking can read more contiguous 

blocks [9]. Thus tenant data are stored to an extent, which is composed of 

contiguous blocks.  

Definition 3. In a disk block, the remaining space except block head is divided 

into several smaller storage spaces. These further divided spaces is called slot. 

Assume the subscript of slot is denoted as s . 

A data tuple of a tenant is stored to a slot. It is different from the disk storage 

method of universal table, because universal table has to reserve space for null 

value. In the paper we set slot size according to the size of tuple. Assuming that a 

block stores data with the same database schema, the size of tuple is the same and 

then the size of slot is the same as well. As shown in Fig. 2, the (k – 1)-th and the 

(2k – 1)-th block can respectively be divided into three slots and four slots 

according to the demands of tenant tuples for storage space. For tenant t, the slot 

size of data object o  is denoted as 
, ,t o s

ω , and the size of block head is denoted  

as 
h

ω . 

3.2. Single data object 

To describe conveniently the process of address mapping, we first assume each 

tenant in multi-tenant database has single data object and different tenants have 

different database schema. 

In multi-tenant database, data volumes of different tenants are heterogeneous 

and the volume increases gradually. Moreover, the number of tenants ascends 

dynamically. Multi-tenant database needs to provide data storage service for newly 

arrived tenants. In this case, in order to avoid the waster of storage space, we need 

to allocate disk space for tenants according to their data volume. 

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

ExtentBlock:b

Tenant:A Tenant:B Tenant:C

δ Tuple: c
 

Fig. 3. Multi-tenant storage space allocation in disk partition 

We propose an Isolated Storage Approach (ISA) based on SDSS, which 

allocates storage space for tenants in an incremental way. The storage space of a 

tenant consists of several contiguous extents. When the storage space of a tenant is 

insufficient, other contiguous extents are assigned and the allocated size doubles the 

last allocated one. The allocation details are as follows.  

1. For a tenant, when it first stores data, a disk extent is assigned.  

2. With the increase of tenant data, the storage space is insufficient. The 

storage space for the tenant needs to be allocated more space. The number of 
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allocated extents doubles the last time and the extents are adjacent. The allocated 

storage space is called Contiguous Extent Space (CES). When we allocate CES for 

the tenant the j-th time, the number of allocated extents is 12 j .  

3. The extents are allocated in order. To facilitate the allocation of CES for 

newly arrived tenants, the cursor c  is used to record next assignable extent. In  

Fig. 3, each colour represents a tenant and there are three tenants who are assigned 

storage space. The CES allocated to each tenant gradually increases. For example, 

blue tenant B is assigned extent three times and the three CESs are extent 1, extents 

5, 6, and extents from 9 up to 12. The current c  value is 13.  

4. In order to compute physical address of a tuple, the starting extent number 

of the assigned CES needs recording. All the starting extent numbers of CES 

assigned to tenant t  are recorded in a collection, which is denoted as 

{ | 0,1, 2, , }
t j

x = x  j n  , where 
j

x  is the starting extent number of the j-th time 

assigned CES. When a new CES is allocated to tenant t , a new record is added to 

the collection tx . For example, the collection 
B

x  of tenant B is denoted as 

{1, 5, 9}Bx . 

The time complexity of space allocation is (1)O . 

When tenant t  has a single data object o , the physical address of its tuple δ  is 

computed as follows.  

Step 1. Compute how many tuples in data object o  can each block store, i.e., 

the number of slots that a block is divided into, which is denoted as t,o,b
n . It is 

calculated as 
t,o,b b h t,o,s

n = (ω ω ) / ω . Then the number of slots in an extent is

t,o,e t,o,b
n = kn .  

Step 2. Compute the sequence number of CES where tuple δ  is stored, i.e., 

, ,
log( / 1)

t o e
j n    . Then we know tuple δ  should be stored in the CES whose 

starting number is j
x . In Fig. 3, tuple δ  is stored in the third CES of tenant B.  

Step 3. Compute block offset in the j-th extent of tuple, i.e., which block of the 

extent space with starting number j
x  tuple δ  should be stored. The block number is 

denoted as 
, , , ,

( (2 1) ) /j

t o e t o b
n n      . In Fig. 3, the block offset of block b  in 

the third blue extent space needs computing for tuple.  

Step 4. So far the sequence number of block b  for tuple is obtained by 

jb x k .  

Step 5. Compute slot number where tuple is stored as , ,
%

t o b
s n , where the 

sign % denotes the modulus operator and tries to obtain the remainder of integer 

division. 

Step 6. Thus the physical address of tuple in disk is 

(1)   SA
b h t,o,s

p = +bω +ω +ω s . 

We next give a case study of computing the physical address of tuple 401δ   

for tenant B. Assuming 10k  , 11, 1, 1b h t,o,sω ω ω   ，we get 
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 , , 11 1 /1 10t o bn     and 10 100t,o,e t,o,bn n  . Go to Step 2 and 

log(401/100 1) 2j       stands. From Step 3 we obtain 

2(401 (2 1) 100) /10 10        . Seen from Fig. 3 we know 3 9x  ,  

and 9 10 10 100b      holds. 401%10 1s    is computed in Step 5.  

The start address is set as SA = 10,000, we compute 

10,000 100 11 1 1 1 11,102p = + + +   . Therefore, the physical address of tuple 

δ  is 11,102. 

There is no loop during computing the physical address of a tuple, thus its time 

complexity is (1)O . 

When reading tuple δ , its physical address can easily be obtained. However, 

when the newly added tuple δ  is stored to disk, it is required to first determine 

whether there is free allocated space for current tenant t . If there is no space, a new 

extent space needs allocating. Next we give the process of new tuple δ  stored to 

disk for tenant t .  

Step 1. First determine where there is free storage space for current tenant t . 

If | |

, ,
2 1tX

t o e
δ n   stands, new storage space needs to be allocated to tenant t; else go 

to Step 3.  

Step 2. Allocate the (j + 1)-th CES to tenant t. The CES have 2 j  extents. The 

starting extent address is 1j
x c


  and 1t t j

X X x


 . The cursor c is denoted as 

2 jc c  .  

Step 3. Obtain the physical address of tuple according to Equation (1) and 

store it. 

There is no loop in the above steps, therefore the time complexity of storing a 

new tuple to disk is (1)O . 

For improving query performance, the collection 
t

X  of tenant resides 

constantly in the memory when the tenant is active. The space complexity of 
t

X  is 

( )
t

O X , i.e., the used space is logarithmic function of the number of extents 

assigned to tenant t. To solve the heterogeneity of data volumes for different 

tenants, our isolated storage approach dynamically allocates space in an incremental 

way. This method not only improves space usage efficiency for the tenants who 

have small amounts of data, but also satisfies the demand for storage space with 

fewer allocation times for the tenants who have large data volume. 

3.3. Multiple data objects 

In multi-tenant database, a tenant often has multiple data objects. If a block stores 

data of different data objects, it is inconvenient to do the statistics on database 

information such as disk block-level sampling. Moreover, the efficiency of range 

query will reduce because of dispersed storage. Thus we intensively store data of 

one data object to contiguous disk blocks. 
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In the scenario of multiple data objects, ISA stores the tuples belonging to a 

data object to contiguous disk block through twice mapping process. It consists of 

two steps.  

Step 1. It builds a contiguous virtual tenant space for each tenant. For a tenant, 

tuples of all data objects are mapped to its virtual tenant space.  

Step 2. According to the relative location of tuples in virtual tenant space and 

the distribution of virtual tenant space in disk, it gets the physical address of tuples. 

In Fig. 4, there are four data objects for tenant B. It allocates isolated storage 

space for all data objects in virtual tenant space in an incremental way, and then 

stores tuples to physical disk partition according to its relative location in virtual 

tenant space, which can achieve isolated storage on the granularity of tenant. 

 

0 2 3 4 7

8 13 14 15

Data object:1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0 1 2 3 4 5 6 7 8 9 1
0

1
1

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Data object:2 Data object:3 Data object:4

Virtual Tenant Space for Tenant B

Disk Partition Storage Space

ExtentEDO  
Fig. 4. Mapping data objects in disk storage space 

Next we give a detailed introduction on the mapping process. In order to map a 

tenant’s data objects to a virtual tenant space, each extent is divided into smaller 

area, which is called Extent of Data Object (EDO). In Fig. 4, one extent is divided 

into four EDOs. A virtual tenant space is composed of several EDOs, and each 

EDO stores the tuples belonging to a data object. We use d to denote the subscript 

of EDO and its starting number in each virtual tenant space is 0. EDO is also 

composed of several blocks. Assuming k   denotes the number of blocks in a EDO 

and p  is the number of EDOs in an extent, the number of blocks in an extent 

k pk  . For a given tenant t  and a data object, the number of tuples that a EDO 

can store is denoted as , ,t o d
n , and then , , , ,t o d t o b

n k n , where , ,t o d
n  is the number of 

slots in a block. 

In virtual tenant space, the storage space allocating steps for data objects are as 

follows.  

Step 1. For a data object o , when data are first stored, an EDO is allocated to 

store an object data.  

Step 2. With the increasing data volume of data object o , storage space needs 

reallocating when the space is insufficient for data object o . The number of EDOs 
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each time allocated is twice the one last time and the allocated space is adjacent and 

contiguous EDO space, which is called contiguous EDO space, i.e., when 

contiguous EDO space is allocated for the i-th time, the number of EDOs is 2i – 1.  

Step 3. EDO is allocated in sequence. To facilitate the allocation of storage 

space for subsequent data objects, the starting number of EDO of a contiguous EDO 

space needs recording. For tenant t and data object o , the starting numbers of all 

the allocated contiguous EDO spaces form a set. The set is denoted as 

,
{ | 0,1, 2, , }

t o i
Y y i n  , where

i
y  is the starting number of the i-th time allocated 

contiguous EDO space. When allocating once contiguous EDO space for data 

object, a new record is added to the set 
,t o

Y . In Fig. 4, the starting number set of data 

object 2 is 
,

{1, 4,10, 20}
t o

Y  .  

Step 4. If virtual tenant space of tenant t runs out, a new tenant storage space 

needs to be allocated in disk partition using the approach in Section 4.2. 

The time complexity of allocating storage space for a data object is (1)O . 

Then we introduce the computation of physical address for a tuple. For a given 

tenant t, data object o  and tuple , the general idea is to first compute the relative 

block number and slot number of tuple in virtual tenant space, and then compute the 

actual block number in disk partition. Next we give the concrete steps.  

Step 1. In tenant t’s virtual tenant space, the number of EDO which tuple is 

allocated to should be computed, i.e., , ,
log( / 1)

t o d
i n    .  

Step 2. Compute the relative block number in the i th contiguous EDO space 

which tuple should be stored in, i.e., 
, , , ,

( (2 1) ) /i

t o d t o b
n n       .  

Step 3. Compute the virtual block number of tuple in virtual tenant space, i.e., 

i
b y k     .  

Step 4. Compute the slot number of tuple in the block, i.e., 
, ,

%
t o b

s n .  

Step 5. Compute which contiguous extent space of disk partition virtual block 

b  is mapped to, i.e., , , , ,
log( / ( / ) 1)

t o e t o b
j b n n    .  

Step 6. Compute the block offset number in the j-th contiguous extent space 

virtual block b  is mapped to, i.e., (2 1)jb k    .  

Step 7. Compute the block number of disk partition the relative block b  is 

mapped to, i.e., j
b x k   .  

Step 8. Thus we get the physical address of tuple in disk, i.e., 

, ,
SA

b h t o s
p b s      . 

Taking Fig. 4 as an example, we compute the physical address of tuple 

201δ   for data object 2 of tenant B. Assuming 11, 1, 1
b h t,o,s

ω ω ω   , we get 

(11 1) 1 10
t,o,b

n = /  . If 2k   and 4p  stand, we obtain 8k pk    and 

, ,
2 10 20

t o d
n    . In Step 1 log(201 / 20 1) 3i       is computed. In Step 2 

3(201 (2 1) 20) /10 6          is obtained. In Step 3 we get 

20 2 6 46
i

b y k         . In Step 4 we know 201%10 1s   . Similarly, 
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log(46 / (80 /10) 1) 2j       and 246 (2 1) 8 22       are calculated in Step 5 

and Step 6, respectively. From the figure we know that 9
j

x   and 

9 8 22 94b      holds. Finally, we set the start address as SA = 10,000 and  

compute 10,000 94 11 1 1 1 11,036p        . 

There is no loop in the above process, thus its time complexity is (1)O . 

Our proposed isolated storage approach allocates contiguous storage space for 

data object. Its advantages are as follows: 1) each disk block only stores data 

belonging to one data object, which improves hit ratio of query and reduce the times 

of input/output; 2) based on ISA, we can do the statistics on the distribution of data 

records in disk blocks, which can provide quantified information for query 

optimization, and then the optimization model can be developed for tenants;  

3) reading contiguous blocks from disk is highly efficient; traversal operation of a 

data object only need to orderly access several contiguous blocks, which improves 

traversal efficiency. 

4. Performance evaluation 

In this section, we test the proposed ISA of multi-tenant data. To evaluate our ISA, 

we use other two approaches as comparison objects. We first introduce their 

experimental setup, and then compare their efficiency on equality query, range 

query, join query and no indexing query. 

4.1. Experimental setup 

The experimental environment is 64-bit Ubuntu OS, 4 processors, 8G memory and 

7200r disk. Next we introduce the experimental setup of three approaches, i.e., 

sequential storage approach, logically isolated storage approach and ISA. 

ISA is developed based on the idea in Section 4.3. We use MySQL5.7 as data 

processing engine and develop storage engine based on Linux Kernel 2.6 [13] and 

InnoDB. Assuming there are more than 200 tenants and each tenant randomly 

generates 510  to 610  tuples, there are about 810  tuples altogether. 

Sequential Storage Approach (SSA) is to disorderly store multi-tenant data, 

i.e., data of all tenants are cross-stored together. We build a universal table in 

MySQL based on SDSS to store multi-tenant data. Each attribute of universal table 

is set to VARCHAR type and InnoDB is used as storage engine. All the tuples of 

200 tenants are stored to universal table in a random order. 

Logically Isolated Storage Approach (LISA) isolates tenant data at the logical 

layer of universal table, which is an intuitive isolation. Before inserting data, each 

tenant should be allocated a contiguous extent and the values of tuples in the extent 

are null. When inserting tuples for data object, the tuples need storing to already 

assigned extent in updated way. For example, it pre-assigns tuples [0, 99]   to 

store data of tenant A and tuples [100,199]   to store data of tenant B. Thus a 

contiguous extent just stores data of a tenant and achieves the isolated storage. To 
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make sure the tuples are inserted into accurate location, the corresponding relation 

between each contiguous extent and tenant data object is recorded. 

4.2. Data access performance 

In this section, we test the performance on equality query, range query, join query 

and no indexing query for three approaches. 

4.2.1. Equality query 

Equality query is to search the tuples that a certain attribute equals some value from 

data object. Since multi-tenant database is tenant-shared, multiple queries will be 

processed concurrently. We measure the time cost and throughput when 2-128 

tenants concurrently issue an equality query. Its query result is shown in Fig. 5. For 

equality query, the time costs have little difference for three approaches, since 

equality query just needs accessing a block to finish the query and the time of 

reading a block is basically the same. As for throughput, LISA and ISA have higher 

throughput when the number of tenants is small. That is because tenant data are 

stored mainly in buffer memory, the hit ratio is high, and then the average query 

time is short. 

4.2.2. Range query and join query 

Range query is to obtain a result set given the maximum and minimum of an 

attribute. About join query, we focus on equal join query of two data objects.  

The time cost and throughput of range query and join query are shown as  

Fig. 6 and Fig. 7. ISA has obvious advantages than SSA in time cost. Since data of 

a data object is stored to fewer blocks, ISA just needs to read fewer blocks in disk 

to finish the query. As for throughput, it is similar to equality query. When the 

number of concurrent tenants is small, the hit ratio of buffer memory is high. Thus 

ISA has higher throughput for range query and join query. From the figures, we see 

that the time cost and throughput is similar for LISA and ISA. However, the time 

cost of LISA is still high, because it has low efficiency of storage space. 

    

Fig. 5. The comparison of equality query     Fig. 6. The comparison of range query  

on time and throughput                              on time and throughput 
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Fig.7. The comparison of join query on time and throughput 

4.2.3. No indexing query 

In data analysis, query will use various attributes to select data and indexes on some 

attributes are not built. In the experiment, we measure the performance of three 

approaches in the case of no indexes. No indexing query uses the query statement of 

equality query but removes the index. To be fair, we build a composite index for 

tenant identifier and data object identifier in SSA, which avoids a full table scan. 

We respectively generate data of 2, 8, 32 tenants and each tenant has tuples. Each 

time it issues a no indexing query. Fig. 8 shows that query efficiency of ISA is 

higher than SSA, because the target data object is stored in many contiguous blocks 

in ISA, which disk access is efficient. 

 

Fig. 8. The comparison of no indexing query on time cost 

5. Conclusions 

In the paper we propose an isolated storage approach of multi-tenant data based on 

SDSS. It aims to address the problem that disk blocks store massive irrelative data 

and tries to adaptively allocate contiguous storage space for tenants. The extensive 

experiments demonstrate that ISA performs better on range query, join query and 

no indexing scanning operation. It provides an efficient and effective storage means 

at the layer of disk for multi-tenant database based on SDSS. Since multi-tenant 

data are deployed in cloud computing environment, which is low-cost and easily 

extensible, the method could substantially improve query performance in this 

scenario. 
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