
 91

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 16, No 3

Sofia  2016 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.1515/cait-2016-0036

Isolated Storage of Multi-Tenant Data Based on Shared Schema

Lida Zou, Qingzhong Li, Lanju Kong

School of Computer Science and Technology, Shandong University, Jinan, Shandong, 250101 China

Emails: zoulida@163.com 1qz@sdu.edu.cn k1j@sdu.edu.cn

Abstract: Multi-tenant data management is an important part of supporting

efficient operation of software as a service application. Multi-tenant data use

shared schema to reduce resource usage cost. However, massive data of different

tenants are stored in the same schema, which causes useless data of other tenants to

be read when a tenant just need access its own disk data. In this paper we focus on

disk storage method of multi-tenant data based on shared schema to address the

above low efficiency of data access. According to isolation requirement of multi-

tenant data, we store a tenant’s data in some contiguous disk blocks. The

experimental results illustrate that query efficiency in range query and join query is

1.5-2 times the existing storage method, and no indexing query efficiency improves

10-70 times.

Keywords: Multi-tenant database, disk storage, shared schema, SaaS.

1. Introduction

Along with continuous expansion of Software as a Service (SaaS) [1] application,

multi-tenant database becomes an important foundation for quick development and

efficient operation of SaaS application. Multi-tenant data storage is the base of

multi-tenant data access. As for storage scheme of multi-tenant database,

F r e d e r i c k C h o n g [2] proposes three methods including separate database,

shared database separate schema and Shared Database Shared Schema (SDSS).

With the development of cloud computing, multi-tenant databases are

deployed on many cloud nodes with SDSS [3, 5, 8]. The persistent storage medium

of data processing nodes are mostly low-cost disks. According to characteristics of

disk data access, access efficiency will improve if data in database are stored in

contiguous disk blocks [4, 9]. G r a e f e and S h a p i r o [10] conclude that the more

the valid data in one disk block, the higher the access efficiency, since database

access task can be finished just by inputting/outputting a few disk blocks.

 92

Most of multi-tenant data deployed in the clouds are stored on these low-cost

disks [5]. The storage method of SDSS stores data of all tenants in the same schema

table. When data are persisted to disk, data tables become huge and a disk block

contains multiple tenants’ data. This gives rise to the following problems when

accessing multi-tenant data.

1. Query efficiency is low. Tenant data access has characteristics of isolation,

i.e., tenant just accesses its own data. Since a query needs buffer memory and disk

to swap data, data volume and times of I/O is critical for query performance. Non-

isolated stored data need read more disk blocks to finish one query processing from

a tenant.

2. Query optimization cannot be done for multi-tenant database. To do query

optimization, data volume of each data object and their used number of disk blocks

need counting. However, non-isolated storage schema stores data of different

tenants into the same disk block, which messes up relational algebra logic and

makes it hard to do statistics.

3. Efficiency of data analysis is low. When doing analysis, data filtering by no

indexing attributes often exists and it need traverse the whole data table. Since

multi-tenant table in SDSS is huge, do analysis of multi-tenant data is time-

consuming.

To address the above problems, we present a novel isolated storage method for

multi-tenant data. It makes continuous disk blocks as a storage area and each area is

allocated to data objects of one tenant. This ensures that one disk block just stores

data from one tenant. Since different tenants have different data volume and data

volume increases gradually with time, storage space for each tenant increases

gradually. This way adapts to the demands of different tenants for storage space and

achieves efficient usage of disk space. Last our experiments show that query

efficiency of range query and join query is 1.5-2 times InnoDB storage engine

[6, 7], and no indexing query efficiency improves 10-70 times.

2. Multi-tenant data storage structure

In this section we introduce multi-tenant data storage process in shared schema and

discuss the problems of disk storage for multi-tenant data. For clear description,

some definitions are given as follows:

The organization or user who rents multi-tenant application is called tenant

and whose subscript is denoted as t to distinguish different tenants. A data record

to describe a business object of tenant is called tuple and whose subscript is denoted

as to distinguish different tuples. Data object is a collection of tuples with the same

database schema. A tenant may have many data objects. We use to denote the

subscript of data object belonging to a tenant. The concrete location of disk where a

tuple is stored is called physical address and denoted as p. Multi-tenant database

can directly locate and obtain tuple data by physical address. In operating system,

disk space is used after disk partition. The data in database are stored in one disk

partition. Assume the start address of one disk partition is SA and the relative

 93

address of a tuple in the disk partition is r，the physical address of the tuple is

p = SA + r.

The storage process of multi-tenant data consists of three steps, just as shown

in Fig. 1. We explain it as follows.

1. It uses standard SQL to store tenant data into logical tenant view. Tenants

think they exclusively use storage and processing resources and they access tenant

view just like common database. Thus tenant view has data tables belonging to

different tenants and database schemas of these tables are different.

2. It stores different tables of tenant view into universal table. Tenant identifier

and data object identifier are added in the front of each tuple to mark its belonging

tenant and data object. When querying certain tenant data, query rewriting

technology is used [3, 11], i.e., it first selects the data belonging to target tenant and

target data object and then executes the business query for the data.

3. It stores the tuples in universal table to disk through mapping address. Given

the tuple identifier, it gets physical address of the tuple using address mapping

method and stores it.

Aid Name Hospital Beds

1 Acme S. Mary 135

2 Gump State 1042

Tenant:A Object:a

Aid Name
1 Ball

Tenant:B Object:b
Aid Name Hospital

1 Big 65

Tenant:C Object:a

Tenant Object Col1 Col2

A a 1 Acme
A a 2 Gump

Universal
Col3

S. Mary

State

Col4

135

1042

Col5

Col6

B b 1 Ball
C a 2 Big

65

UID

1

2

3

4

Address mapping
mapping
metadata

Tenant Views

Schema Sharing

Disk Storage

Fig. 1. Multi-tenant data storage process

The tuple data of different tenants are cross-generated. Since multi-tenant data

storage schema based on universal table cannot ensure that the data belonging to

one tenant are stored contiguously, a disk block may store the data belonging to

many tenants. A tenant only accesses its own data, which causes useless data of

other tenants to be read and reduces query efficiency and access efficiency.

An intuitive means is to reserve storage space in universal table for each tenant

in advance and achieve the isolated storage of tenant data. For example, the tuples

marked by [0, 99]  store the data of tenant A and the tuples marked by

[100,199]  store the data of tenant B. Since the isolation is implemented

logically, this method is called Logically Isolated Storage Approach (LISA).

However, the data volumes of different tenants are different and the number of

tenants gradually increases as well. This method of reserving storage space causes

 94

low space usage efficiency. In Section 5, LISA is chosen as one of comparison

objects to help validate our designed storage approach.

From the above, it is urgent to design a disk storage approach of multi-tenant

data based on SDSS to address the problem of low access efficiency caused by non-

isolated storage. The proposed disk storage approach should achieve isolated and

contiguous storage of tenant data to improve both space usage efficiency and data

access efficiency.

3. Isolated storage of multi-tenant data

In this section we store tenant data to disk in isolated way. We design a storage

approach where tenant storage space gradually increase with data volume and each

disk block just stores the tuples of a data object belonging to one tenant. For

convenient description, we first assume that each tenant has only one data object

and then extend to the scenario of multiple data objects.

3.1. Formal definition of storage unit in disk space

Given a disk partition, multi-tenant data are stored in the partition. For the

convenience of managing disk storage space, some definitions on disk storage unit

are given as follows:

Definition 1. The minimum unit of swapping data between buffer memory and

disk is called block. In a disk partition, the storage space consists of several blocks.

The blocks are numbered sequentially. Assuming b is the subscript of block, the

size of the block is denoted as
b

ω .

The time transferring data from a disk block to buffer memory is constant [12].

When executing a query, query efficiency is high if the data stored in a block are all

required. On the contrary, when there are a few related data and massive irrelevant

data in a block, query efficiency reduces largely. For tenant data stored in universal

table, i.e., a block may store data of multiple tenants, since there is no cross-tenant

query, query efficiency will obviously be low.

Fig. 2. Disk storage unit

Definition 2. Several blocks make an extent. The number of blocks in an

extent is denoted k . Each extent has the same size. In Fig. 2, blocks make an

extent. A disk partition has m extents, and then mk blocks. Assuming e is the

subscript of extent, the size of extent is denoted as
e

ω and
e b

ω kω .

 95

The time reading data from disk consists of seek time and data transfer time.

Data access efficiency will increase if once seeking can read more contiguous

blocks [9]. Thus tenant data are stored to an extent, which is composed of

contiguous blocks.

Definition 3. In a disk block, the remaining space except block head is divided

into several smaller storage spaces. These further divided spaces is called slot.

Assume the subscript of slot is denoted as s .

A data tuple of a tenant is stored to a slot. It is different from the disk storage

method of universal table, because universal table has to reserve space for null

value. In the paper we set slot size according to the size of tuple. Assuming that a

block stores data with the same database schema, the size of tuple is the same and

then the size of slot is the same as well. As shown in Fig. 2, the (k – 1)-th and the

(2k – 1)-th block can respectively be divided into three slots and four slots

according to the demands of tenant tuples for storage space. For tenant t, the slot

size of data object o is denoted as
, ,t o s

ω , and the size of block head is denoted

as
h

ω .

3.2. Single data object

To describe conveniently the process of address mapping, we first assume each

tenant in multi-tenant database has single data object and different tenants have

different database schema.

In multi-tenant database, data volumes of different tenants are heterogeneous

and the volume increases gradually. Moreover, the number of tenants ascends

dynamically. Multi-tenant database needs to provide data storage service for newly

arrived tenants. In this case, in order to avoid the waster of storage space, we need

to allocate disk space for tenants according to their data volume.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

ExtentBlock:b

Tenant:A Tenant:B Tenant:C

δ Tuple: c

Fig. 3. Multi-tenant storage space allocation in disk partition

We propose an Isolated Storage Approach (ISA) based on SDSS, which

allocates storage space for tenants in an incremental way. The storage space of a

tenant consists of several contiguous extents. When the storage space of a tenant is

insufficient, other contiguous extents are assigned and the allocated size doubles the

last allocated one. The allocation details are as follows.

1. For a tenant, when it first stores data, a disk extent is assigned.

2. With the increase of tenant data, the storage space is insufficient. The

storage space for the tenant needs to be allocated more space. The number of

 96

allocated extents doubles the last time and the extents are adjacent. The allocated

storage space is called Contiguous Extent Space (CES). When we allocate CES for

the tenant the j-th time, the number of allocated extents is 12 j .

3. The extents are allocated in order. To facilitate the allocation of CES for

newly arrived tenants, the cursor c is used to record next assignable extent. In

Fig. 3, each colour represents a tenant and there are three tenants who are assigned

storage space. The CES allocated to each tenant gradually increases. For example,

blue tenant B is assigned extent three times and the three CESs are extent 1, extents

5, 6, and extents from 9 up to 12. The current c value is 13.

4. In order to compute physical address of a tuple, the starting extent number

of the assigned CES needs recording. All the starting extent numbers of CES

assigned to tenant t are recorded in a collection, which is denoted as

{ | 0,1, 2, , }
t j

x = x j n  , where
j

x is the starting extent number of the j-th time

assigned CES. When a new CES is allocated to tenant t , a new record is added to

the collection tx . For example, the collection
B

x of tenant B is denoted as

{1, 5, 9}Bx .

The time complexity of space allocation is (1)O .

When tenant t has a single data object o , the physical address of its tuple δ is

computed as follows.

Step 1. Compute how many tuples in data object o can each block store, i.e.,

the number of slots that a block is divided into, which is denoted as t,o,b
n . It is

calculated as
t,o,b b h t,o,s

n = (ω ω) / ω . Then the number of slots in an extent is

t,o,e t,o,b
n = kn .

Step 2. Compute the sequence number of CES where tuple δ is stored, i.e.,

, ,
log(/ 1)

t o e
j n    . Then we know tuple δ should be stored in the CES whose

starting number is j
x . In Fig. 3, tuple δ is stored in the third CES of tenant B.

Step 3. Compute block offset in the j-th extent of tuple, i.e., which block of the

extent space with starting number j
x tuple δ should be stored. The block number is

denoted as
, , , ,

((2 1)) /j

t o e t o b
n n      . In Fig. 3, the block offset of block b in

the third blue extent space needs computing for tuple.

Step 4. So far the sequence number of block b for tuple is obtained by

jb x k .

Step 5. Compute slot number where tuple is stored as , ,
%

t o b
s n , where the

sign % denotes the modulus operator and tries to obtain the remainder of integer

division.

Step 6. Thus the physical address of tuple in disk is

(1) SA
b h t,o,s

p = +bω +ω +ω s .

We next give a case study of computing the physical address of tuple 401δ 

for tenant B. Assuming 10k  , 11, 1, 1b h t,o,sω ω ω   ，we get

 97

 , , 11 1 /1 10t o bn    and 10 100t,o,e t,o,bn n  . Go to Step 2 and

log(401/100 1) 2j      stands. From Step 3 we obtain

2(401 (2 1) 100) /10 10        . Seen from Fig. 3 we know 3 9x  ,

and 9 10 10 100b     holds. 401%10 1s   is computed in Step 5.

The start address is set as SA = 10,000, we compute

10,000 100 11 1 1 1 11,102p = + + +   . Therefore, the physical address of tuple

δ is 11,102.

There is no loop during computing the physical address of a tuple, thus its time

complexity is (1)O .

When reading tuple δ , its physical address can easily be obtained. However,

when the newly added tuple δ is stored to disk, it is required to first determine

whether there is free allocated space for current tenant t . If there is no space, a new

extent space needs allocating. Next we give the process of new tuple δ stored to

disk for tenant t .

Step 1. First determine where there is free storage space for current tenant t .

If | |

, ,
2 1tX

t o e
δ n  stands, new storage space needs to be allocated to tenant t; else go

to Step 3.

Step 2. Allocate the (j + 1)-th CES to tenant t. The CES have 2 j extents. The

starting extent address is 1j
x c


 and 1t t j

X X x


 . The cursor c is denoted as

2 jc c  .

Step 3. Obtain the physical address of tuple according to Equation (1) and

store it.

There is no loop in the above steps, therefore the time complexity of storing a

new tuple to disk is (1)O .

For improving query performance, the collection
t

X of tenant resides

constantly in the memory when the tenant is active. The space complexity of
t

X is

()
t

O X , i.e., the used space is logarithmic function of the number of extents

assigned to tenant t. To solve the heterogeneity of data volumes for different

tenants, our isolated storage approach dynamically allocates space in an incremental

way. This method not only improves space usage efficiency for the tenants who

have small amounts of data, but also satisfies the demand for storage space with

fewer allocation times for the tenants who have large data volume.

3.3. Multiple data objects

In multi-tenant database, a tenant often has multiple data objects. If a block stores

data of different data objects, it is inconvenient to do the statistics on database

information such as disk block-level sampling. Moreover, the efficiency of range

query will reduce because of dispersed storage. Thus we intensively store data of

one data object to contiguous disk blocks.

 98

In the scenario of multiple data objects, ISA stores the tuples belonging to a

data object to contiguous disk block through twice mapping process. It consists of

two steps.

Step 1. It builds a contiguous virtual tenant space for each tenant. For a tenant,

tuples of all data objects are mapped to its virtual tenant space.

Step 2. According to the relative location of tuples in virtual tenant space and

the distribution of virtual tenant space in disk, it gets the physical address of tuples.

In Fig. 4, there are four data objects for tenant B. It allocates isolated storage

space for all data objects in virtual tenant space in an incremental way, and then

stores tuples to physical disk partition according to its relative location in virtual

tenant space, which can achieve isolated storage on the granularity of tenant.

0 2 3 4 7

8 13 14 15

Data object:1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0 1 2 3 4 5 6 7 8 9 1
0

1
1

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Data object:2 Data object:3 Data object:4

Virtual Tenant Space for Tenant B

Disk Partition Storage Space

ExtentEDO
Fig. 4. Mapping data objects in disk storage space

Next we give a detailed introduction on the mapping process. In order to map a

tenant’s data objects to a virtual tenant space, each extent is divided into smaller

area, which is called Extent of Data Object (EDO). In Fig. 4, one extent is divided

into four EDOs. A virtual tenant space is composed of several EDOs, and each

EDO stores the tuples belonging to a data object. We use d to denote the subscript

of EDO and its starting number in each virtual tenant space is 0. EDO is also

composed of several blocks. Assuming k  denotes the number of blocks in a EDO

and p is the number of EDOs in an extent, the number of blocks in an extent

k pk  . For a given tenant t and a data object, the number of tuples that a EDO

can store is denoted as , ,t o d
n , and then , , , ,t o d t o b

n k n , where , ,t o d
n is the number of

slots in a block.

In virtual tenant space, the storage space allocating steps for data objects are as

follows.

Step 1. For a data object o , when data are first stored, an EDO is allocated to

store an object data.

Step 2. With the increasing data volume of data object o , storage space needs

reallocating when the space is insufficient for data object o . The number of EDOs

 99

each time allocated is twice the one last time and the allocated space is adjacent and

contiguous EDO space, which is called contiguous EDO space, i.e., when

contiguous EDO space is allocated for the i-th time, the number of EDOs is 2i – 1.

Step 3. EDO is allocated in sequence. To facilitate the allocation of storage

space for subsequent data objects, the starting number of EDO of a contiguous EDO

space needs recording. For tenant t and data object o , the starting numbers of all

the allocated contiguous EDO spaces form a set. The set is denoted as

,
{ | 0,1, 2, , }

t o i
Y y i n  , where

i
y is the starting number of the i-th time allocated

contiguous EDO space. When allocating once contiguous EDO space for data

object, a new record is added to the set
,t o

Y . In Fig. 4, the starting number set of data

object 2 is
,

{1, 4,10, 20}
t o

Y  .

Step 4. If virtual tenant space of tenant t runs out, a new tenant storage space

needs to be allocated in disk partition using the approach in Section 4.2.

The time complexity of allocating storage space for a data object is (1)O .

Then we introduce the computation of physical address for a tuple. For a given

tenant t, data object o and tuple , the general idea is to first compute the relative

block number and slot number of tuple in virtual tenant space, and then compute the

actual block number in disk partition. Next we give the concrete steps.

Step 1. In tenant t’s virtual tenant space, the number of EDO which tuple is

allocated to should be computed, i.e., , ,
log(/ 1)

t o d
i n    .

Step 2. Compute the relative block number in the i th contiguous EDO space

which tuple should be stored in, i.e.,
, , , ,

((2 1)) /i

t o d t o b
n n       .

Step 3. Compute the virtual block number of tuple in virtual tenant space, i.e.,

i
b y k     .

Step 4. Compute the slot number of tuple in the block, i.e.,
, ,

%
t o b

s n .

Step 5. Compute which contiguous extent space of disk partition virtual block

b is mapped to, i.e., , , , ,
log(/ (/) 1)

t o e t o b
j b n n    .

Step 6. Compute the block offset number in the j-th contiguous extent space

virtual block b is mapped to, i.e., (2 1)jb k    .

Step 7. Compute the block number of disk partition the relative block b is

mapped to, i.e., j
b x k   .

Step 8. Thus we get the physical address of tuple in disk, i.e.,

, ,
SA

b h t o s
p b s      .

Taking Fig. 4 as an example, we compute the physical address of tuple

201δ  for data object 2 of tenant B. Assuming 11, 1, 1
b h t,o,s

ω ω ω   , we get

(11 1) 1 10
t,o,b

n = /  . If 2k   and 4p  stand, we obtain 8k pk   and

, ,
2 10 20

t o d
n    . In Step 1 log(201 / 20 1) 3i      is computed. In Step 2

3(201 (2 1) 20) /10 6         is obtained. In Step 3 we get

20 2 6 46
i

b y k         . In Step 4 we know 201%10 1s   . Similarly,

 100

log(46 / (80 /10) 1) 2j      and 246 (2 1) 8 22      are calculated in Step 5

and Step 6, respectively. From the figure we know that 9
j

x  and

9 8 22 94b     holds. Finally, we set the start address as SA = 10,000 and

compute 10,000 94 11 1 1 1 11,036p        .

There is no loop in the above process, thus its time complexity is (1)O .

Our proposed isolated storage approach allocates contiguous storage space for

data object. Its advantages are as follows: 1) each disk block only stores data

belonging to one data object, which improves hit ratio of query and reduce the times

of input/output; 2) based on ISA, we can do the statistics on the distribution of data

records in disk blocks, which can provide quantified information for query

optimization, and then the optimization model can be developed for tenants;

3) reading contiguous blocks from disk is highly efficient; traversal operation of a

data object only need to orderly access several contiguous blocks, which improves

traversal efficiency.

4. Performance evaluation

In this section, we test the proposed ISA of multi-tenant data. To evaluate our ISA,

we use other two approaches as comparison objects. We first introduce their

experimental setup, and then compare their efficiency on equality query, range

query, join query and no indexing query.

4.1. Experimental setup

The experimental environment is 64-bit Ubuntu OS, 4 processors, 8G memory and

7200r disk. Next we introduce the experimental setup of three approaches, i.e.,

sequential storage approach, logically isolated storage approach and ISA.

ISA is developed based on the idea in Section 4.3. We use MySQL5.7 as data

processing engine and develop storage engine based on Linux Kernel 2.6 [13] and

InnoDB. Assuming there are more than 200 tenants and each tenant randomly

generates 510 to 610 tuples, there are about 810 tuples altogether.

Sequential Storage Approach (SSA) is to disorderly store multi-tenant data,

i.e., data of all tenants are cross-stored together. We build a universal table in

MySQL based on SDSS to store multi-tenant data. Each attribute of universal table

is set to VARCHAR type and InnoDB is used as storage engine. All the tuples of

200 tenants are stored to universal table in a random order.

Logically Isolated Storage Approach (LISA) isolates tenant data at the logical

layer of universal table, which is an intuitive isolation. Before inserting data, each

tenant should be allocated a contiguous extent and the values of tuples in the extent

are null. When inserting tuples for data object, the tuples need storing to already

assigned extent in updated way. For example, it pre-assigns tuples [0, 99]  to

store data of tenant A and tuples [100,199]  to store data of tenant B. Thus a

contiguous extent just stores data of a tenant and achieves the isolated storage. To

 101

make sure the tuples are inserted into accurate location, the corresponding relation

between each contiguous extent and tenant data object is recorded.

4.2. Data access performance

In this section, we test the performance on equality query, range query, join query

and no indexing query for three approaches.

4.2.1. Equality query

Equality query is to search the tuples that a certain attribute equals some value from

data object. Since multi-tenant database is tenant-shared, multiple queries will be

processed concurrently. We measure the time cost and throughput when 2-128

tenants concurrently issue an equality query. Its query result is shown in Fig. 5. For

equality query, the time costs have little difference for three approaches, since

equality query just needs accessing a block to finish the query and the time of

reading a block is basically the same. As for throughput, LISA and ISA have higher

throughput when the number of tenants is small. That is because tenant data are

stored mainly in buffer memory, the hit ratio is high, and then the average query

time is short.

4.2.2. Range query and join query

Range query is to obtain a result set given the maximum and minimum of an

attribute. About join query, we focus on equal join query of two data objects.

The time cost and throughput of range query and join query are shown as

Fig. 6 and Fig. 7. ISA has obvious advantages than SSA in time cost. Since data of

a data object is stored to fewer blocks, ISA just needs to read fewer blocks in disk

to finish the query. As for throughput, it is similar to equality query. When the

number of concurrent tenants is small, the hit ratio of buffer memory is high. Thus

ISA has higher throughput for range query and join query. From the figures, we see

that the time cost and throughput is similar for LISA and ISA. However, the time

cost of LISA is still high, because it has low efficiency of storage space.

Fig. 5. The comparison of equality query Fig. 6. The comparison of range query

on time and throughput on time and throughput

 102

Fig.7. The comparison of join query on time and throughput

4.2.3. No indexing query

In data analysis, query will use various attributes to select data and indexes on some

attributes are not built. In the experiment, we measure the performance of three

approaches in the case of no indexes. No indexing query uses the query statement of

equality query but removes the index. To be fair, we build a composite index for

tenant identifier and data object identifier in SSA, which avoids a full table scan.

We respectively generate data of 2, 8, 32 tenants and each tenant has tuples. Each

time it issues a no indexing query. Fig. 8 shows that query efficiency of ISA is

higher than SSA, because the target data object is stored in many contiguous blocks

in ISA, which disk access is efficient.

Fig. 8. The comparison of no indexing query on time cost

5. Conclusions

In the paper we propose an isolated storage approach of multi-tenant data based on

SDSS. It aims to address the problem that disk blocks store massive irrelative data

and tries to adaptively allocate contiguous storage space for tenants. The extensive

experiments demonstrate that ISA performs better on range query, join query and

no indexing scanning operation. It provides an efficient and effective storage means

at the layer of disk for multi-tenant database based on SDSS. Since multi-tenant

data are deployed in cloud computing environment, which is low-cost and easily

extensible, the method could substantially improve query performance in this

scenario.

 103

Acknowledgments: This work is partially supported by the NSFC No 61303085, 61572295;

Innovation Method Fund of China No 2015IM010200; SDNFSC No ZR2013FQ014, ZR2014FM031;

Science and Technology Development Plan Project of Shandong Province No 2014GGX101047;

Shandong Province Independent Innovation Major Special Project No 2015ZDJQ01002,

2015ZDXX0201B03.

R e f e r e n c e s

1. W e i s s m a n, C. The Design of the force.com Multitenant Internet Application Development

Platform. – In: Proc. of SIGMOD-PODS’09, Providence, RI, United States, 2009,

pp. 889-896.

2. C h o n g, F. Multi-Tenant Data Architecture.

http://msdn.microsoft.com/en-us/library/aa479086.aspx, 2015

3. A u l b a c h, S., et al. A Comparison of Flexible Schemas for Software as a Service. – SIGMOD-

PODS’09, United States, 2009, pp. 881-888.

4. G a r c i a-M o l i n a, H. et al. Database System Implementation. NJ, Prentice Hall, Upper Saddle

River, 2000. 654 p.

5. A u l b a c h, S., et al., Multi-Tenant Databases for Software as a Service: Schema-Mapping

Techniques. – SIGMOD’08, Canada, 2008, pp. 1195-1206.

6. B a n n o n, R., J. D. U l m a n, J. W i d o m. Innodb Concrete Architecture. University of Waterloo,

2002.

7. R e i d, M. InnoDB Quick Reference Guide. Packt Publishing, Ltd, 2015.

8. P a t h i r a g e, M., et al. A Multi-Tenant Architecture for Business Process Executions.

pp. 121-128.

9. S i l b e r s c h a t z, A., et al. Database System Concepts. Vol. 4. McGraw-Hill, New York, 1997.

10. G r a e f e, G., L. D. S h a p i r o. Data Compression and Database Performance. – In: Proc. of 1991

Symposium on Applied Computing, 1991, pp. 22-27.

11. N a r a s a y y a, V., et al. Sharing Buffer Pool Memory in Multi-Tenant Relational Database-as-a-

Service. – The Very Large Data Base Endowment, 2015, pp. 726-737.

12. G a i t, J. The Optical File Cabinet: A Random-Access File System for Write-Once Optical Disks.

– Computer, Vol. 21, 1988, pp. 11-22.

13. B o v e t, D. Understanding the Linux Kernel. O’Reilly Media, Inc., 2005.

