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Abstract: This paper studies the orbital dynamics of the potential of asteroid 22 Kalliope using observational data of the
irregular shape. The zero-velocity surface are calculated and showed with different Jacobian values. All five equilibrium
points are found, four of them are outside and unstable, and the other one is inside and linearly stable. The movement
and bifurcations of equilibrium points during the variety of rotation speed and density of the body are investigated. The
Hopf bifurcations occurs during the variety of rotational speed from ω=1.0ω0 to 0.5ω0, and the Saddle-Node bifurcation
occurs during the variety of rotational speed from ω=1.0ω0 to 2.0ω0. Both unstable and stable resonant periodic orbits
around Kalliope are coexisting. The perturbation of an unstable periodic orbit shows that the gravitational field of
Kalliope is strongly perturbed.
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1 Introduction
The exploration of asteroids in our Solar System make the
study of the orbital environment around asteroids to be sig-
nificant (Marchis et al. 2012). Several papers have already
been interested in these problems (Jain and Sinha 2014;
Aljbaae et al. 2017). Scheeres et al. (1996) presented the
Jacobi integral for particles orbiting around asteroid. Using
the Jacobi integral, it is possible to determine zero-velocity
surfaces for the possible motion of a particle. Werner and
Scheeres (1997) presented the polyhedral model method to
calculate the gravitation of the irregular-shaped asteroids.
Yu and Baoyin (2012a) used the Jacobi integral presented in
Scheeres et al. (1996) and discussed zero-velocity surfaces
in detail. Yu and Baoyin (2012b) presented a hierarchical
grid searching method to calculate periodic orbits in the
potential of asteroids; the gravitational field model of as-
teroids is built using the polyhedral model method. Jiang
et al. (2014) derived the linearised equations and charac-
teristic equations for the motion of particles relative to the
equilibrium point around asteroids. Using the characteris-
tic equations, eigenvalues, topological cases, and stability
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of equilibrium points can be calculated. Yang et al. (2018)
expanded the linearized equations to artificial equilibrium
points.

Considering a simplifiedmodel of the asteroid, one can
study the dynamics of either a gyrostat orbiting in the re-
stricted three-body problem or the rotating mass dipole to
help understand the complicated dynamical behaviors in
the potential of asteroids. Vera (2009) studied the rotational
Poisson dynamics of a gyrostat around an Eulerian equilib-
riumpoint and presented the nonlinear stability of the equi-
librium point in the three-body problem. Guirao and Vera
(2010) presented the linear stability of Lagrangian equilib-
rium points in the three-body problem. These literatures
use geometric-mechanic methods to establish the Hamilto-
nian, total angular momentum, Poisson tensor, vectorial
equations of the motion, as well as the condition of relative
equilibria of the system. Wang and Xu (2014) used the sec-
ond degree harmonic coefficients tomodel the gravitational
field of asteroids, and the geometric-mechanic methods to
analyze the nonlinear stability of a spacecraft placed at rel-
ative equilibria of the gravitational field of second-degree
spheric harmonics functions. Zhang and Zhao (2015) used
the same model of Wang and Xu (2014), i.e. the second-
degree spheric harmonics function, and discussed the at-
titude stability of a dual-spin spacecraft placed at relative
equilibria of the gravitational field. Yang et al. (2015) and
Zeng et al. (2016) applied the linearised equations and char-
acteristic equations from Jiang et al. (2014) to the rotating
mass dipole. Yang et al. (2015) calculated stable regions of
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equilibrium points around the rotating mass dipole. Zeng
et al. (2018) used a dipole segment model to simulate the
gravitational field of (8567) 1996 HW1.

However, the simplified model cannot model the dy-
namical behaviors caused by the irregular shape of aster-
oids. The polyhedralmodelmethod canbeused to calculate
the irregular shape and gravitation of asteroids. Chanut et
al. (2015) used the polyhedral model method (Werner and
Scheeres 1997) and the characteristic equations (Jiang et al.
2014) to calculate the eigenvalues and stability of equilib-
rium points around asteroid 216 Kleopatra. They conclude
that among three inner equilibrium points of 216 Kleopatra,
one is unstable, and the other two are linearly stable. Jiang
et al. (2015) found collision and annihilation of equilibrium
points as well as saddle–node bifurcations and saddle–
saddle bifurcations for the relative equilibria around as-
teroids while the rotation speed varies. Yang et al. (2018)
expanded the results of collision and annihilation to arti-
ficial equilibrium points. Scheeres et al. (2016) calculated
dynamical structures and equilibrium points for asteroid
101955 Bennu with different density values; however, this
literature didn’t analyze the bifurcations of the equilibrium
points.

The asteroid 22 Kalliope-Linus is one of the biggest
main belt binary asteroid systems. The primary Kalliope
was discovered in 1852, the secondary Linuswas discovered
in 2001 (Merline et al. 2001; Marchis et al. 2003). The mean
diameter of the primary and the secondary are 166.2±2.8
km and 28±2 km, respectively (Descamps et al. 2008). The
dynamics in the vicinity of Kalliope is important for the fol-
lowing reasons: first, 22 Kalliope-Linus is one of the biggest
binary asteroidal systems in the Solar system; second, it is
a large-size-ratio binary asteroidal system, which means
the study of dynamics around Kalliope is useful for the un-
derstanding of the complicated dynamical behaviours of
Linus relative to Kalliope.

This paper is organized as follows. In Section 2 we dis-
cussed the general properties of Kalliope, including the
moments of inertia, zero-velocity surfaces, and equilibrium
points. In Section 3, the movement of equilibrium points
has been presented to clarify the variety of locations, topo-
logical cases, and number of equilibrium points. The Hopf
bifurcation, which is related to the appearance or the disap-
pearance of one or more periodic orbit families, has been
found during the variety of rotational speed from ω=1.0ω0
to 0.5ω0. The Saddle-Node bifurcation, which is related to
the appearance or the disappearance equilibrium points,
has been found during the variety of rotational speed from
ω=1.0ω0 to 2.0ω0. Section 4 deals with the stability and
resonance of orbits around Kalliope. The perturbed non-

periodic orbit which is generated by a 2:1 resonant periodic
orbit, is found to be also 2:1 resonant.

2 Gravitational Field and
Equilibrium Points around
Kalliope

In this section, we investigate the gravitational field, irregu-
lar shape, motion equations, zero-velocity surfaces, as well
as equilibrium points around Kalliope. The gravitational
force, zero-velocity surfaces, and equilibrium points are
computed by integrating the irregular shape of the aster-
oid.

2.1 Calculate Parameters from the Shape
Model of Kalliope

The bulk density of Kalliope is estimated to be
3.35±0.33g·cm−3 (Descamps et al. 2008), and the rotation
period is 4.148 h (Laver et al. 2009; Johnston 2014; Sokova
et al. 2014). We use the polyhedral model method (Werner
and Scheeres 1997; Khushalani 2000) to calculate: the
moments of inertia, the total mass, the asteroid’s irregular
shape and the gravitational potential of asteroid Kalliope.
The gravitational potential and gravitational force are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U = −1
2Gσ

∑︀
e∈edges

re · Ee · re · Le

+1
2Gσ

∑︀
f∈faces

rf · F f · rf · ωf

∇U = Gσ
∑︀

e∈edges
Ee · re · Le

−Gσ
∑︀

f∈faces
F f · rf · ωf

, (1)

where G = 6.67 × 10−11 m3kg−1s−2 is the gravitational con-
stant, σ represents the bulk density of the polyhedron body;
re and rf represent vectors fromfixedpoints to points on the
edge e and face f, respectively; Ee and Ff represent geomet-
ric parameters of edges and faces, respectively; Le means
the integration factor of the particle, and ωf means the
signed solid angle of the face. Figure 1 shows the 3D ployhe-
dron model of asteroid Kalliope. Based on the calculation,
the size of the body is 191.94×152.55×127.50km. The total
mass is 5.1292×1018kg. The moments of inertia are

Ixx = 0.82245 × 1013 kg · km2,
Iyy = 1.2486 × 1013 kg · km2,

and Izz = 1.4371 × 1013 kg · km2.
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Figure 1. 3D ployhedron model of asteroid Kalliope, The shape was
built by 2038 faces and 1021 vertexes.

2.2 Equations of Motion

For a test particle or satellite orbiting around an asteroid,
the motion equations respect to the body-fixed frame can
be stated as

r̈ + 2ω × ṙ + ω× (ω × r) + ∂U (r)
∂r = 0, (2)

where r is the radius vector of the particle, the derivatives
of r are with respect to the body-fixed frame, ω is the aster-
oid’s rotational angular velocity relative to inertial space,
and U (r) is the asteroid’s gravitational potential.

The Jacobi integral H (Scheeres et al. 1996), the me-
chanical energy E (Jiang and Baoyin 2014), and the effective
potential V (Yu and Baoyin 2012a,b) can be written as

H = 1
2 ṙ · ṙ −

1
2 (ω × r) · (ω × r) + U (r) , (3)

E = 1
2 vI · vI + U (r) , (4)

V (r) = −12 (ω × r) · (ω × r) + U (r) . (5)

where vI = ṙ + ω × r is the particle velocity in the inertial
space.

Figure 2 demonstrates the zero-velocity surfaces
around Kalliope calculated by different values of Jacobi

(a) 0.0038

(b) 0.0041

(c) 0.0044

Figure 2. Zero-velocity surfaces with different Jacobi integral values
(km2·s−2), figure bar represents the location value of the point on z
axis: (a) 0.0038; (b) 0.0041; (c) 0.0044.
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w=w/1.0

Figure 3. Zero-velocity curves and projections of equilibrium points
in the equatorial plane (z=0).

Table 1. Positions of the equilibrium points around 22 Kalliope

Equilibrium
Points

x (m) y (m) z (m) Effective
Potential
(m2s−2)

E1 133.617 −2.27372 0.945615 0.00431891
E2 −2.68949 122.435 0.454720 0.00407598
E3 −132.809 1.88359 1.30748 0.00430499
E4 1.44546 −123.804 0.471773 0.00409724
E5 −1.05405 0.661290 −0.746006 0.00702688

integral. The sawtooth shape of the boundary in Figure 2 ap-
pears because we use discrete grids to calculate the values
on the zero-velocity surfaces. Figure 3 illustrates the zero-
velocity curves and projections of equilibrium points in the
equatorial plane of rotating Kalliope. From Figure 2, one
can see that the zero-velocity surfaces with different values
of Jacobi integral are different. The zero-velocity surfaces
have two branches, north branch and south branch. From
Figure 3, we know that there are five equilibrium points in
the potential of Kalliope.

When the Jacobi integral isH=0.0038, the north branch
and south branch are non-intersecting. When the Jacobi
integral increases toH=0.0041, the north branch and south
branch are intersected; the intersection region of the north
branch and south branch are near the equilibrium points
E2 and E4; the intersection region of the north branch and
south branch can be seen in Figure 3; from Figure 3, we
can see that there are two intersection regions, one region

surrounds equilibrium point E2, the other one surrounds
equilibrium point E4. When the Jacobi integral increases
to H=0.0044, the north branch and south branch are also
intersect; there are two intersection regions, the inner one
surrounds equilibrium point E5 and the projection of the
irregular body onto the equatorial plane, the outer one
surrounds all of the five equilibrium points.

The locations of equilibrium points can be obtained by
solving the following equation and are presented in Table 1.

∇V (r) = 0. (6)

The equilibrium points are static relative to the body fixed
frame of Kalliope, in other words, the equilibrium points
are stationary orbits in the inertial reference frame. From
Table 1, one can see that the equilibrium points are not in
the equatorial plane, because Kalliope is not North-South
symmetric. The values of effective potential at these five
equilibrium points are different. The effective potential at
E5 is the biggest, while at E2 is the smallest.

The eigenvalues of the equilibrium points (Jiang et al.
2014) can be obtained by solving the following equation

λ6 +
(︁
Vxx + Vyy + Vzz + 4ω2

)︁
λ4+ (7)(︁

VxxVyy + VyyVzz + VzzVxx − V2
xy − V2

yz − V2
xz + 4ω2Vzz

)︁
λ2

+
(︁
VxxVyyVzz + 2VxyVyzVxz − VxxV2

yz − VyyV2
xz − VzzV2

xy

)︁
= 0

where Vrr
∆=

⎛⎜⎝Vxx Vxy Vxz
Vxy Vyy Vyz
Vxz Vyz Vzz

⎞⎟⎠
L

represents the Hessian

matrix of V (r), λ is the eigenvalues, and ω = |ω|.
Table 2 presented the eigenvalues of the equilibrium

points around asteroid Kalliope. From the distribution of
eigenvalues, one can confirm the stability of equilibrium
points. Equilibrium points E1 and E3 possess a pair of real
eigenvalues, one is positive and the other one is negative,
which is in the form of ±α (α ∈ R, α > 0). While equilibrium
points E2 and E4 possess a pair of complex eigenvalues,
which is in the form of ±σ ± iτ (σ, τ ∈ R;σ, τ > 0). In ad-
dition, equilibrium points E1 and E3 possess two pairs
of purely imaginary eigenvalues, which is in the form of
±iβj

(︀
βj ∈ R, βj > 0; j = 1, 2

)︀
; while equilibrium points E2

and E4 possess a pair of purely imaginary eigenvalues,
which is in the form of ±iβj

(︀
βj ∈ R, βj > 0; j = 1

)︀
. Equilib-

rium point E5 only has purely imaginary eigenvalues, i.e.
three pairs of purely imaginary eigenvalues, which is in
the form of ±iβj

(︀
βj ∈ R, βj > 0; j = 1, 2, 3

)︀
. According to

the values of eigenvalues, one can conclude that all the
outside equilibrium points, i.e. E1-E4, are unstable. The
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Table 2. Eigenvalues of the equilibrium points around 22 Kalliope

Equilibrium Points(×10−3s−1) λ1 λ2 λ3 λ4 λ5 λ6
E1 0.483306i −0.483306i 0.467954i −0.467954i 0.313817 −0.313817
E2 0.431302i −0.431302i 0.129738

+0.317589i
0.129738
−0.317589i

−0.129738
+0.317589i

−0.129738
−0.317589i

E3 0.474876i −0.474876i 0.464768i −0.464768i 0.295689 −0.295689
E4 0.445327i −0.445327i 0.118383

+0.303148i
0.118383
−0.303148i

−0.118383
+0.303148i

−0.118383
−0.303148i

E5 1.31735i −1.31735i 1.10542i −1.10542i 0.454310i −0.454310i

inner equilibrium point E5 is linearly stable. The value of
effective potential can help to understand the stability of
equilibrium point. The inner equilibrium point E5 has the
biggest value of effective potential, i.e. 0.00702688. Using
the value of effective potential to list the equilibrium point
from large to small, we get E5, E1, E3, E4, as well as E2. Thus
one can conclude that E2 is the most unstable equilibrium
points.

3 Movement of Equilibrium Points
during the Variety of Parameters

When the parameters of the asteroid vary, the gravitational
field and dynamical environment vary. For the equilibrium
points, bifurcationsmay occur (Jiang et al. 2015, 2016;Wang
et al. 2016). The Hopf bifurcation of equilibrium points oc-
curs when the purely imaginary eigenvalues of the equi-
librium points produce or disappear (see Figure 4). In Fig-
ure 4, before the Hopf bifurcation, there are three families
of periodic orbits around the equilibrium points; after the
Hopf bifurcation, there is only one family of periodic orbits
around the equilibrium points. The Hopf bifurcation of the
equilibrium points is related to the appearance or the dis-
appearance of one or more periodic orbit families. More
detailed contents of Hopf bifurcations about equilibrium
points around asteroids can be seen in Jiang et al. (2016).
Yang et al. (2018) expanded the theory of Hopf bifurcation
for asteroidal equilibrium points in Jiang et al. (2016) to
artificial equilibrium points of asteroids.

Figure 4. The Hopf bifurcation of equilibrium points

The Hopf bifurcation of the equilibrium points has no
relationship with the appearance or the disappearance
equilibrium points. Another kind of bifurcation, which is
named as Saddle-Node bifurcation, is related to the ap-
pearance or the disappearance equilibrium points. For the
Saddle-Node bifurcation, the number of non-degenerate
equilibrium points will change during the variety of the pa-
rameters of the asteroids. Two different equilibrium points
corresponding to Case 1 and Case 2 collide and vanish
during the parameter variety. Case 1 represents the distri-
bution of eigenvalues are ±iβj

(︀
βj ∈ R, βj > 0; j = 1, 2, 3

)︀
,

Case 2 represents the distribution of eigenvalues are
±αj

(︀
αj ∈ R, αj > 0, j = 1

)︀
and ±iβj

(︀
βj ∈ R, βj > 0; j = 1, 2

)︀
,

Case 5 represents the distribution of eigenvalues are
±iβj

(︀
βj ∈ R, βj > 0, j = 1

)︀
and ±σ ± iτ (σ, τ ∈ R;σ, τ > 0).

First, we consider the movement of equilibrium points
during the variety of rotation speed. Figure 5 shows the
locations of projections of equilibrium points in the equa-
torial plane during the variety of rotation speed. Let ω0 be
the rotation speed of Kalliope, i.e. ω0 = 2π

4.148h
−1. When

ω=0.5ω0, there are five equilibrium points, the locations
of the equilibrium points are different from the locations
when ω=1.0ω0. When ω=2.0ω0, there are only three equi-
librium points left. Searching from ω=0.5ω0 to ω=2.0ω0,
we find that when ω=1.908ω0, two equilibrium points col-
lide with each other. After that, if ω>1.908ω0, these two
equilibrium points annihilate and only three equilibrium
points left.

Now, we consider the movement of equilibrium points
during the variety of density. Figure 6 illustrates the loca-
tions of projections of equilibrium points in the equato-
rial plane during the variety of density. In Figure 6, two

cases are plotted, one is
{︃
ω = 1.0ω0

ρ = 1.1ρ0
, the other one is{︃

ω = 1.0ω0

ρ = 0.9ρ0
. For both of these two cases, the locations

of equilibrium points has not somuch change with the case

of
{︃
ω = 1.0ω0

ρ = 1.0ρ0
. Table 3 presents the topological cases
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(a) (b)

(c)

Figure 5. The locations of projections of equilibrium points in the equatorial plane during the variety of rotation speed. (a) ω=0.5ω0,
ρ=1.0ρ0; (b) ω=2.0ω0, ρ=1.0ρ0; (c) ω=1.908ω0, ρ=1.0ρ0

Table 3. Topological cases of the equilibrium points around 22 Kalliope with different parameters

Equilibrium Points ω=1.0ω0, ρ=1.0ρ0 ω=0.5ω0, ρ=1.0ρ0 ω=1.0ω0, ρ=0.9ρ0 ω=1.0ω0, ρ=1.1ρ0
E1 Case 2 Case 2 Case 2 Case 2
E2 Case 5 Case 1 Case 5 Case 5
E3 Case 2 Case 2 Case 2 Case 2
E4 Case 5 Case 1 Case 5 Case 5
E5 Case 1 Case 1 Case 1 Case 1

of the equilibrium points around Kalliope with different
parameters. From Table 3, one can see that the two cases of
density variety have no influence on the topological cases of
the equilibrium points. In Table 3, there are three different

topological cases, more detailed topological cases about
minor celestial bodies can be found in Wang et al. (2014).
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When
{︃
ω = 1.0ω0

ρ = 1.0ρ0
, the topological cases for E1-E5 are

Case 2, Case 5, Case 2, Case 5, and Case 1 by turn. When{︃
ω = 1.0ω0

ρ = 1.1ρ0
and

{︃
ω = 1.0ω0

ρ = 0.9ρ0
, the number of equilib-

rium points is also five, and the topological cases for E1-

E5 have no change with the parameters of
{︃
ω = 1.0ω0

ρ = 1.0ρ0
.

However, when
{︃
ω = 1.908ω0

ρ = 1.0ρ0
, two equilibrium points,

E3 and E5 collide; when
{︃
ω > 1.908ω0

ρ = 1.0ρ0
, E3 and E5 are

annihilated, and there are only three equilibrium points
left, which are E1, E2, and E4. Let ρ = 1.0ρ0, and ω change
from ω = 1.0ω0 to ω = 2.0ω0, then the topological cases
of equilibrium points remains no changed, only the num-
ber of equilibrium points changed from 5 to 3. Before the
collision of E3 and E5, E3 belongs to Case 2 while E5 belongs
to Case 1, which means the Saddle-Node bifurcation occurs
during the collision.

Let ρ = 1.0ρ0, and ω changes from ω = 1.0ω0 to
0.5ω0, then the number of equilibrium points remains
unchanged, but the topological cases of two equilibrium
points changed. The topological cases of E2 and E4 change
from Case 5 to Case 1, which mean that the Hopf bifurca-
tions occurs during the variety from ω = 1.0ω0 to 0.5ω0.

4 Orbits in the Potential of Kalliope
To study the orbit stability, we calculated several periodic
orbits with different shape and stability. We chose one un-
stable periodic orbit, and gave a small perturbation to get
a new orbit; then we integrated the orbit, and showed the
orbit relative to the body-fixed frame and inertia system to
help understand the stability mechanism of orbits around
Kalliope.

4.1 Periodic Orbits

The dynamical equation can be expressed in the form of

Ẋ = f (X) , (8)

where X represents the position and velocity of a particle
in the body-fixed frame of the asteroid. Let∇f := ∂f (z)

∂z , p
is a periodic orbit, then the state transition matrix of the

(a)

(b)

Figure 6. The locations of projections of equilibrium points in the
equatorial plane during the variety of density. (a) ω=1.0ω0, ρ=1.1ρ0;
(b) ω=1.0ω0, ρ=0.9ρ0

periodic orbit can be written as

Φ (t) =
t∫︁

0

∂f
∂z (p (τ)) dτ, (9)

and the monodromy matrix of the periodic orbit reads

M = Φ (T) . (10)
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Table 4. The initial positions and velocities of periodic orbits in the body-fixed frame of Kalliope

Periodic Orbits Positions Velocities Periods
1 −0.756782677849E+00

−0.293991497801E+00
−0.246728394912E−01

−0.288331158837E+01
0.601757700255E+01
0.375001934784E+01

2.01130

2 −0.867816335357E+00
0.439533548181E+00
0.251267167656E+00

0.218894918579E+01
0.613667996010E+01
−0.320140007283E+01

2.00324

3 0.774918083694E-02
−0.783732336822E+00
−0.540864433670E-01

−0.657493241866E+01
0.714382217819E+00
−0.375947419773E+01

2.01795

Table 5. Floquet multipliers of periodic orbits in the potential of Kalliope

Orbits λ1, λ2 λ3, λ4 λ5, λ6
1 0.97928002656787± 0.20251805762761i 1.51531143129183, 0.65993028255734 1, 1
2 0.82144085002134± 0.57029328425729i 1.42824105924636, 0.70016180059605 1, 1
3 0.02010082348863±0.99979858341518i 1, 1 1, 1

Eigenvalues of the matrix M, which are also the Floquet
multipliers of the periodic orbit p, can determine the stabil-
ity of this orbit (Ni et al. 2016). The periodic orbit p has 6
Floquet multipliers, at least two of them are equal to 1.

The hierarchical grid searching method can be applied
to calculate periodic orbits around asteroids (Yu andBaoyin
2012b). The method defines a section plane, which is per-
pendicular with the periodic orbit, to help to search the
periodic orbit. The periodic orbits are calculated through
five parameters, including the Jacobian constant J, the lo-
cation (u, v) of the periodic orbit intersects at the section
plane, as well as the azimuthal angle(α, β) of the section
plane in the body-fixed frame. With this method, we cal-
culated three 2:1 resonant periodic orbits. The 2:1 resonant
means that the ratio of the period of the periodic orbit and
the rotation period of the asteroid is 2:1. Figure 6 shows
these three periodic orbits in the potential of the asteroid
Kalliope. Define the length unit for motion around Kalliope
to be 191.942955 km, and the time unit to be 4.148 h. Table 4
gives the initial positions and velocities of these periodic
orbits in the body-fixed frame of Kalliope. The time unit to
be 4.148 h, thus the period of periodic orbit 1 in Table 4 is
4.148h×2.01130=8.3428724h. Table 5 presents Floquet mul-
tipliers of these periodic orbits.

FromTable 5 and the distribution of Floquetmultipliers
showed in Figure 7, one can see that the third periodic orbit
has 4 Floquet multipliers equal to 1, there are other two
Floquet multipliers in the unit circle. Although the geomet-
rical shapes of the first and second periodic orbits are dif-
ferent, the distributions of Floquet multipliers of them are
the same. Both of them have two Floquet multipliers in the
unit circle, and two Floquet multipliers in the x axis. From

the distribution of Floquet multipliers, we know that the
periodic orbits in Figure 7(a) and 7(b) are unstable, while
the periodic orbit in Figure 7(c) is stable. Thus, one can con-
clude that the unstable resonant periodic orbits and stable
resonant periodic orbits are coexisting in the potential of
Kalliope.

4.2 Perturbation of the Periodic Orbit

In this section, we consider the perturbation of the periodic
orbit. We choose the first periodic orbit in the above section
to study. The perturbation of this unstable periodic orbit in
the potential of the asteroid Kalliope is shown in Figure 8.

The initial position and velocity of the particle is set to
be ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R = [−0.75674687339285
−0.29397758864848
−0.02467167218436]T

V = [−2.88317517483105
6.01729230249248
3.74984192913419]T

.

The initial position and velocity of the particle is gen-
erated by the periodic orbit 1 in Table 4. We first generate
a uniformly distributed random number in [-1, 1]. Denote
the random number as Rand (k), where k represents the
k-th generation. Then we use the following equations to
generate the initial position and velocity of a new orbit.{︃

R (k) = R (k) · (1.0 + 0.001 · Rand (k))
V (k) = V (k) · (1.0 + 0.001 · Rand (k + 3))

. (11)
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(a)

(b)

(c)

Figure 7. Periodic orbits in the potential of the asteroid Kalliope in the body-fixed frame. (a) 3D plot of the first unstable periodic orbit with
2:1 resonance and the distribution of Floquet multipliers; (b) 3D plot of the second unstable periodic orbit with 2:1 resonance and the
distribution of Floquet multipliers; (c) 3D plot of a stable periodic orbit with 2:1 resonance and the distribution of Floquet multipliers
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(a) (b)

(c) (d)

Figure 8. Perturbation of a periodic orbit in the potential of the asteroid Kalliope. (a) 3D plot of the orbit in the body-fixed frame. (b) 3D plot
of the orbit in the inertia system. (c) Mechanical energy of a particle in the periodic orbit. (d) Jacobian of a particle in the periodic orbit. The
unit of time axis is rotation period of the asteroid

The totally integral time of the orbit we calculated is
746640s, which equals 25 times of the orbit period of the
periodic orbit 1. FromFigure 8, one can see that the shape of
the orbit in the body-fixed frame is different from the shape
of it in the inertia system. From the 3D plot of the orbit in the
inertial system, we know the orbit is in a strong perturbed
environment. The mechanical energy has quasi-periodic
variety, while the Jacobian is conservative. Compared Fig-
ure 8(a) with Figure 7(a), one can see that the approximate
shape of these two orbits looks like when the integration
time is small. This is because the orbit in Figure 8(a) is gen-
erated by a small error of initial values from the orbit in Fig-
ure 7(a). However, the orbit variety in Figure 8(a) increases

fast, this indicates that the orbit is unstable, which also
illustrates the instability of the periodic orbit in Figure 7(a)
in a new point of view.

From Figure 8(c), one can see that the mechanical en-
ergy changes suddenly when the time goes through an or-
bit period of periodic orbit 1. Thus, the mechanical energy
has 25 sudden changes. Between the adjacent two sudden
changes of themechanical energy, the time continues about
8.3h, which is about 2 times of the rotation period of the
asteroid. This implies the perturbed orbit is also a 2:1 reso-
nant orbit, although it is not a periodic orbit. In addition,
to consider the value of the mechanical energy, one can see
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that the mechanical energy has five periods, each period
equal about 10 times of the rotation period of the asteroid.

5 Conclusions
In this paper, we stated the moments of inertia, zero-
velocity surfaces, equilibrium points of Kalliope. Resonant
periodic orbits and perturbations of the periodic orbit in
the potential of Kalliope are also investigated. There are
five equilibrium points around Kalliope, four of them are
outside and unstable, the other one is inside and linearly
stable. By changing the rotation speed and density of the
body, we studied the movement of equilibrium points.

Let the density unchanged, and the rotation speed vary
change from ω = 1.0ω0 to 2.0ω0, then two equilibrium
points E3 and E5 will collide and annihilate when the rota-
tion speedω = 1.908ω0. The number of equilibriumpoints
change from five to three. The Saddle-Node bifurcation oc-
curs during the collision of E3 and E5. Let ω change from
ω = 1.0ω0 to 0.5ω0, then the Hopf bifurcations of equilib-
rium points E2 and E4 occurs, and the topological cases of
E2 and E4 change from Case 5 to Case 1. Let the rotation
speed unchanged, and the density vary from ρ = 0.9ρ0 to
ρ = 1.1ρ0; then the number and topological cases of equi-
librium points remains unchanged; however, the locations
of equilibrium points vary.

Three resonant periodic orbits are calculated around
Kalliope. The unstable resonant periodic orbits and stable
resonant periodic orbits are coexisting in the potential of
Kalliope. We choose an unstable resonant periodic orbit to
study the motion of the orbit with perturbation. The orbit
with a small perturbation is no longer a periodic orbit. It is
not a closed orbit, but also a 2:1 resonant orbit. The figure
of the orbit indicates that the gravitational field of Kalliope
is strongly perturbed. The Jacobian of the orbit has a small
variation relative to a constant while themechanical energy
of the orbit varies quasi-periodic.
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