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Abstract – A 1D mathematical model for the computation of the temperature on the surface of
cylindrical logs, tsr, and the non-stationary temperature distribution along the radiuses of logs
subjected to freezing and subsequent defrosting at convective exponentially changing boundary
conditions has been suggested. The model includes mathematical descriptions of the thermal
conductivity in radial direction, r, the effective specific heat capacity, ce, and the density, ρ, of the
non-frozen and frozen wood, and also of the heat transfer coefficient between the surrounding air
environment and the radial direction of horizontally situated logs, αr. With the help of the model,
computations have been carried out for the determination of αr, tsr, sr, and 1D temperature distribution
along the radiuses of beech logs with diameters of 0.24 m, initial temperature 20 oC, and moisture
content 0.4 kg·kg-1, 0.8 kg·kg–1, and 1.2 kg·kg–1, during their freezing at –20 oC, and during subsequent
thawing at 20 oC.

heat transfer coefficient / surface temperature / temperature distribution / beech logs / radius

Kivonat – Egydimenziós konvektív hővezetés modellezése fagyott és normál állapotú rönk és
környezte között. Célunk egy 1D matematikai modell létrehozása volt, amely kiszámítja a hengeres
farönk felületi hőmérsékletét, tsr, és a rönk sugara menti hőmérséklet-eloszlást egy olyan hengeres
farönkön, amelyet lefagyasztottak majd kiolvasztottak exponenciálisan változó hőátadási körülmények
között. A modell magában foglalja a sugárirányú hővezetési tényező, lr, az effektiv specifikus fajhő ce,
és a sűrűség ρ matematikai leírását nem-fagyott és fagyott állapotú faanyag esetében. Tartalmazza
továbbá az αr radiális irányú hőátadási tényezőt a környező levegő és a vízszintesen fekvő rönk között.
A modell segítségével számítások történtek az α r, a tsr, és a sr, valamint az 1D hőmérsékleteloszlás
meghatározására 0,24 m átmérőjű bükk rönknél a sugár mentén a következő feltételek mellett: kezdeti
hőmérséklet 20 oC, a nedvességtartalom értékei 0,4 kg·kg–1, 0,8 kg·kg–1 és 1,2 kg·kg–1, a–20 oC-os
fagyasztás során és az ezt követő felolvasztás folyamán 20oC-ig.
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1 INTRODUCTION

Logs prepared for veneer production are subjected to freezing and thawing in natural air
conditions during the winter.  The duration time and energy needed for the thermal treatment of
frozen logs with the goal of plasticizing depends greatly on the level of freezing within the logs.
(Sergovsky 1975, Shubin 1990, Trebula – Klement 2002, Videlov 2003, Deliiski 2004, 2009).

In the accessible specialized literature there are very few reports about the temperature
distribution in frozen logs subjected to thawing (Steinhagen 1986, 1991, Steinhagen et al.
1987, Steinhagen – Lee 1988, Khattabi – Steinhagen 1992, 1993, 1995, Deliiski 2005, 2011,
2013b) and there is no information at all about the temperature distribution in logs during
their natural or artificial freezing. That is why the modelling and the multi-parameter study of
the processes of freezing and of the subsequent defrosting (thawing) of logs are of
considerable scientific and practical interest.

The aim of the present work is to suggest a 1D mathematical model for the computation
of the temperature on the surfaces of cylindrical logs, tsr, and the non-stationary temperature
distribution along the radiuses of logs subjected to freezing and subsequent defrosting at
convective exponentially changing boundary conditions. To achieve this goal, a base model of
the heating and cooling processes of logs is used, one which has earlier been suggested and
modified by the first co-author (Deliiski 2005, 2011, 2013b).

Symbols:
c = specific heat capacity (J·kg–1·K–1)
D = diameter, m
exp = exponent
q = specific heat energy (kWh·m–3)
r = radial coordinate: 0  r  R, m;
R = radius, m
t = temperature (oC): t = T – 273.15
T = temperature (K): T = t + 273.15
u = moisture content (kg·kg–1): u = W/100
W = moisture content (%): W = 100u
α = heat transfer coefficient between the logs’ surface and the air environment (W·m–2·K–1)
Δ = difference (for the temperature)
 = thermal conductivity (W·m–1·K–1)
 = density (kg·m–3)
τ = time (s)
@ = at

Subscripts and superscripts:
ad = anatomical direction
b = basic (for density, based on dry mass divided to green volume)
bw = bound water
bwm = maximum possible amount of bound water
c = center (for the temperature or thermal conductivity on the logs’ centers)
dfr = defrosting (for the temperature of the defrosting medium)
e = effective (for the specific heat capacity of the frozen and non-frozen wood)
exp = exponent (for the time constant of the exponentially change in the air temperature)
fr = freezing (for the temperature or for the duration of the freezing process or for the

frozen state of the wood)
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fsp = fiber saturation point of the wood
fw = free water
m = medium (for the temperature of the freezing or defrosting air environment)
m0 = initial (for the medium temperature at the end of the logs freezing or defrosting)
m1 = end (for the medium temperature at the end of the logs freezing or defrosting)
nfr = non-frozen (for the state of the wood)
r = radial direction
sr = surface on the radial direction
0 = initial (for the radial or time coordinates or for the average mass temperature of the

logs at the beginning of the freezing process)
1 = final (for the average temperature of the logs at the end of the defrosting process)
273.15 = at 273.15 K, i.e. at 0 oC (for the wood thermal conductivity)
293.15 = at 293.15 K, i.e. at 20 oC (for the fiber saturation point of the wood)

2 MATERIAL AND METHODS

2.1 Mechanism of the 1D heat distribution in the logs
The mechanism of the heat distribution in logs during their heating or cooling can be
described by the equation of heat conduction (also known as the equation of Fourier-
Kirchhoff). When the length of the logs exceeds their diameter by at least 3 or 4 times, then
the heat transfer through the frontal sides of the logs can be ignored, because it does not
influence the change in temperature of their cross sections which are equally distant from the
frontal sides (Chudinov 1968). In such cases, the following 1D model can be used for the
calculation of the change in T only along the radius of the central cross sections during
freezing and defrosting of the logs (i.e. along the coordinate r of these sections) (Deliiski
2011, 2013b):
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and with one and the same boundary condition for the convective heat transfer valid for the
entire surface of the logs:
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It must be noted that the model presented by equations (1) ÷ (4) can also be solved with
different mathematically described boundary conditions and heat transfer coefficients within
them. The difference between the thermo-physical characteristics of the logs’ bark and the
logs’ wood has not been taken into consideration in the model.

2.2 Change in the temperature of the freezing and the defrosting mediums
It is possible to have two cases for freezing of different materials in freezers. The first case is
when the material is put into a working freezer with a constant unchanged temperature in it
and, consequently, the freezing medium temperature .const)( 0mm  TT

The mathematical model (1) ÷ (4) obtains more complicated boundary conditions in the
second case; in this case the material is put into a freezer before it is switched on. Here, the
temperature of the air environment in the freezer fr

mT decreases exponentially (Figure 1)
according to the equation
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The defrosting of the frozen materials after the freezer’s door is opened is realized at the
exponential increase of the air temperature (Figure 1) according to the equation
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Figure 1. Exponential change in the air medium during the freezing and the defrosting of logs

2.3 Heat transfer coefficient between the air and the logs
It is known that the heating or cooling of logs in a gaseous (air) environment takes place
through a convective heat exchange between the surfaces of the logs and the moving
environment. If the movement is caused by differences in the density of the gas as a
consequence of temperature differences in it, it is acceptable to call the convection free (not
organized, natural).
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As a rule, the freezing of wood materials at atmospheric conditions or in a freezer takes
place in the conditions of free convection. For the calculation of the heat transfer coefficient
in such conditions of heating or cooling of horizontally situated logs Chudinov (1968)
suggests the following experimentally determined equation:

4r 997.0
R
T

 . (7)

It can be assumed that the heat transfer coefficients during freezing and defrosting of the
materials are not equal to each other. Real free air convection is observed only during the
freezing and defrosting of logs at natural atmospheric conditions or during the defrosting of
frozen materials after the freezer’s door is opened. That is why it can be written as:
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More precise equations for the determination of the heat transfer coefficients between the
surfaces of the logs in radial direction and the freezing or defrosting mediums can be obtained
after suitable experiments have been carried out.

The model presented by equations (1) ÷ (4) can also be solved with different
mathematically described heat transfer coefficients for separate parts of the logs’ surfaces.
The analysis and presentation of such cases are beyond the scope of this article.

2.4 Thermo-physical characteristics of the logs during their freezing and defrosting
The solution of the non-linear 1D mathematical model of the freezing and defrosting
processes of logs, which is presented by the equations (1) ÷ (9), can be realized using the
mathematical descriptions of the effective heat capacity of the frozen and non-frozen wood,
ce, the thermal conductivity of the wood in radial direction, r, and the density of frozen and
non-frozen wood, ρ. given in Deliiski (2011, 2013b). With the help of the mathematical
description of r, the current values of the thermal conductivity on the logs’ surfaces in radial
direction ),0(sr  , which participates in eqs. (3) and (4), can also be calculated during the
solution of the model.

The thermal conductivity of the wood can be calculated with the help of the following
equations for ),,,( fspb uuT  :

 )15.273(115.273  T , (10)

   ]10015.1103.38.339.1165.0[ b
32

b
7

ad15.273    uK , (11)

uv 07.015.0  @ 1.0fsp  uu kg·kg–1, (12)

uv 013.01284.0  @ 1.0fsp  uu kg·kg–1. (13)

Equations for the calculation of the variables γ and β in eq. (10) for frozen and non-frozen
wood from different wood species and an algorithm for usage of the mathematical description
of λ during the solution of the model are given in Deliiski (2013a).
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The ice in the wood can be formed from the freezing of hygroscopically bound water or
from both the bound and the free water in the wood. It is widely accepted that the phase
transition of water into ice and vice versa can be expressed with the help of the so-called
“latent heat” in the ice of the frozen body. When solving problems connected to transient heat
conduction in frozen wood, it makes sense to include the latent heat in the so-called effective
specific heat capacity ec (Chudinov 1966, 1968), which is equal to the sum of the wood’s
own specific heat capacity с and the specific heat capacity of the wood which is frozen only
with bound water or contains both bound and free water within it. As an example, in Figure 1.
the symbols of the thermo-physical characteristics of the frozen and non-frozen wood are
present, which are necessary for the computation of the temperature distribution in the wood
during heating aimed at its defrosting in the respective temperature diapasons and for the
computation of the energy consumption for the heating of the wood.

Figure 2. Using different specific heat capacities – c, thermal conductivities – λ and densities – ρ,
for the calculation of the temperature distribution in frozen and non-frozen wood when u > ufsp

A mathematical description of these characteristics is given in Deliiski (2013b). When
modelling processes connected with non-stationary temperature distribution in frozen wood
with fspuu  during its defrosting, it is necessary to take into consideration that the effective

specific heat capacity, ec , for the separate temperature diapasons on Figure 2 is equal to:
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During the computations of the freezing and defrosting processes of logs, effective heat
capacities and densities of the wood subjected to thawing have been used and are shown in
the mathematical descriptions of thermal conductivities below Figure 2 (Deliiski 2011,
2013a, 2013b). The small difference (so named hysteresis) between these thermo-physical
characteristics, and also between the temperatures bwm

frT and bwm
dfrT , and between fw

frT and fw
dfrT

during the freezing and defrosting of the wood (Chudinov 1966, 1968) needs to be
additionally studied and mathematically described.
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3 RESULTS AND DISCUSSION

The abovementioned mathematical descriptions of fr
mT , dfr

mT , fr
r and dfr

r have been
introduced before by the first co-author who earlier created and later modified a non-
stationary model of the heating and cooling of cylindrical wood materials (Deliiski 2005,
2011, 2013b). This model is presented in common form by the eqs. (1) ÷ (4).

The updated model with the descriptions of fr
mT , dfr

mT , fr
r , and dfr

r has been solved
with the help of explicit schemes of the finite difference method which, in a way, is analogous
to the one used and described in (Deliiski 2009, 2011) for the solution of a model of the
heating and cooling process of cylindrical wood materials. During the computations, these
schemes allow for the determination of the temperature at each node of the calculation mesh
using the current values of the thermo-physical characteristics of the frozen or non-frozen
wood depending on the momentous aggregate state of the bound and free water in the wood in
separate nodes.

To help with the solutions of the updated model, a software program has been prepared in
the calculation environment of Visual FORTRAN Professional, which is a part of the office-
package of Windows. The program helped carry out computations for the determination of the
1D change of temperature in beech logs (Fagus Silvatica L.) subjected to 50 hours freezing at

C20 ofr
m1 t and a following 50 h defrosting at C20 odfr

m2 t .
The freezing and subsequent defrosting of logs with a diameter of D = 0.24 m (i.e. with a

radius of m12.0R ), initial wood temperature C20 o
0 t and three values of the wood

moisture content: 1kgkg4.0 u , 1kgkg8.0 u , and 1kgkg2.1 u have been studied.
The moisture content of the beech logs is usually situated in this range of u, which are used
for the production of veneer.  All logs with such u contain a maximum possible quantity of
bound water. Besides this, the logs with 1kgkg4.0 u contain a relatively little amount of

free water, the log with 1kg.kg80 u contains a significant quantity of free water and the

log with 1kgkg2.1 u contains almost a maximum possible quantity of free water.

The decreasing of fr
mt from the value of C20 o

0
fr
m0  tt to constC20 ofr

m1 t and

the following increasing of dfr
mt from constC20 ofr

m1 t to constC20 odfr
m1 t go

exponentially with time constants s3600dfr
exp

fr
exp  . The calculated values according to

eqs. (5) and (6) exponential change of fr
mt and dfr

mt can be seen in the Figure 2 for the curve of

mt .

The duration of 50 h of the logs freezing at C20 ofr
m1 t has been proven as being

enough for the reaching of a complete freezing of the free water in the all of the studied logs.
The calculations were done with average values of basic density of beech wood
b = 560 kg·m–3 and fiber saturation point at 293.15 K (i.e. at 20 oC) of this wood

15.293
fspu = 0.31 kg·kg–1 (Nikolov – Videlov 1987, Pozgaj et al. 1997). A coefficient Kr = Kad = 1.35

(Deliiski 2003, 2013a) in eq. (11) for the beech wood was used.
Table 1 shows the computed distribution of the temperature in 4 equally distant from

each other nodes of the calculation mesh in the central cross-section of the beech log with
u = 0.8 kg·kg–1 at every 2 h of the freezing and of the following defrosting processes. The
corresponding input data, which is used for the solution of the 1D model, is underlined in
Table 1. The remaining input data, which is not underlined in this table, relates mainly to the
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parameters of the equipment with which the thermal treatment of the wood materials with the
aim of their freezing or defrosting is carried out. Using this input data, the energy parameters
of the freezing or defrosting process and the efficiency from the usage of the equipment can
be calculated. The fourth column from right to left on Table 1 shows the calculated values of

r according to eq. (8) and the last two columns of Table 1 show the calculated values of the
wood thermal conductivities on the log’s surface, λsr , and in the center of the log, λc, during
the freezing and defrosting processes.

In Figure 3 the computed change in the freezing and in the defrosting medium
temperatures, fr

mt and dfr
mt respectively (both temperatures are shown as mt on the figure), in

the surface temperature of the log, fr
srt and dfr

srt (both of them are shown as srt on the figure)
and also in the temperature in the central points of the log, ct , during the freezing and
subsequent defrosting, depending on the wood moisture content, u, is shown.

Figure 3. Change in tm, tsr, and tc of beech logs with D = 0.24 m and t0 = 20 oC
during their 50 h freezing at −20 oC and following 50 h defrosting at 20 oC, depending on u

In Figure 4 the computed change in the heat transfer coefficient between the surfaces of
the logs in radial direction, r, and the freezing and defrosting mediums during the studied
processes, depending on u is shown.

Figure 4. Change in αr of beech logs with D = 0.24 m and t0 = 20 oC
during their 50 h freezing at −20 oC and following 50 h defrosting at 20 oC, depending on u
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Table 1. Change in fr
mT and dfr

mT (third column), fr
srT and dfr

srT (fourth column), r (fourth
column from right), in λsr and λc (second and first column from right), and in t in
4 equally distant from each other characteristic points of the central cross section
of a beech log with D = 0.24 m, t0 = 20 oC, and u = 0.8 kg·kg–1 during every 2 h of
its freezing at fr

m1t = –20 oC and during the subsequent defrosting at dfr
m1t = 20 oC
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The computed change in the thermal conductivity of the surfaces of the logs in radial
direction, sr, and of the centres of the logs c, depending on u during the freezing and
defrosting processes is shown in Figure 5.

Figure 5. Change in λsr and in λc of beech logs with D = 0.24 m and t0 = 20 oC
during their 50 h freezing at −20 oC and following 50 h defrosting at 20 oC, depending on u

In Deliiski (2009) curves showing the percentage of water being in ice-phase on the
diameter of beech logs subjected to defrosting with t0 = –20 oC as a function of u > ufsp and
the relationship τ / D can be seen.

The obtained results lead to the following conclusions:
1. On the curves of characteristic points situated on the logs’ centers in Figure 3. the

specific almost horizontal sections of retention of the temperature tc for a long period of time
in the range from –1 oС to –2 oС can be seen, while in these points a complete freezing of the
free water and after that a complete melting of the ice created by it occurs in the wood
(Chudinov 1966, 1968).

It can be noted that such retention of the temperature on the logs’ axes has been observed
in wide experimental studies during the defrosting process of pine logs containing ice from
the free water (Steinhagen 1986, Khattabi – Steinhagen 1992, 1993).

2. The character of the change in the heat transfer coefficient, αr, is almost identical
during the studied freezing and defrosting processes of logs with given value of the wood
moisture content (Figure 4). The reason for this is the equality of the difference fr

m0 tt  during

the freezing with the difference fr
m1

dfr
m tt  during the defrosting for one and the same moments

from the beginning of these processes at C20 ofr
m0 t , C20 ofr

m1 t , C20 odfr
m1 t , and

s3600dfr
exp

fr
exp  . At other values of these variables, the change in αr during the freezing

and the defrosting would be different.
3. With the increase of the duration of the freezing and the defrosting processes, the

coefficient αr decreases because of the decreasing of the difference T between the
processing medium temperature and the surface temperature of the logs (see eqs. (8) and (9)).

4. The character of the change in the wood thermal conductivity on the logs’ surfaces, λsr ,
and in the logs’ centers, λc , is very complex (Figure 5). The current values of λsr and of λc
depend not only on the wood moisture content and on the current temperature in the
respective points on the logs’ radiuses, but also on the momentous aggregate condition of the
water in these points (Deliiski, 2013a). The larger values of λsr and λc in Figure 5 related to
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the central points or surfaces of the frozen logs, and the lower values of λsr and λc related to
the logs’ points with frozen free water in them at respective moments.

Table 1, Figure 3, and Figure 5 show that the complete freezing of the free water at the
surface and at the center of the beech log with u = 0.8 kg·kg–1 occurs between 4 and 6 h and
between 34 and 36 h respectively, when the temperature in these points becomes lower than –
2 oC. Analogously, the melting of the frozen free water at the surface and at the center of this
log starts between 52 and 54 h and between 66 and 68 h respectively. The complete melting
of the frozen free water at the center of the log occurs between 76 and 78 h, when the
temperature in this point becomes higher than –1 oC.

4 CONCLUSIONS

The present paper describes the 1D mathematical model for the computation of the
temperature on the surfaces of logs suggested by the authors, tsr, and the non-stationary
temperature distribution along the radiuses of logs subjected to freezing and to subsequent
defrosting at convective exponentially changing boundary conditions. As a base model, the
heating and cooling processes of logs is used, which was created and modified earlier by the
first co-author. The mechanism of the heat distribution along the radiuses of the logs during
their freezing and subsequent defrosting is described by the 1D partial differential equation of
heat conduction. For the solution of the model, an explicit form of the finite-difference
method is used, which allows for the exclusion of any simplifications in the model.

For the numerical solution of the model, a software program has been prepared in
FORTRAN, which has been input in the Visual Fortran Professional calculation environment
developed by Microsoft. With the help of the program an example computation has been
carried out for the determination of the 1D change in the temperature along the radiuses of
beech logs with diameter 0.24 m, initial temperature 20 oC and moisture content 0.4 kg·kg–1,
0.8 kg·kg–1 and 1.2 kg·kg–1, during 50 hours freezing at exponentially decreasing air
temperature until reaching of –20 oC and during the following 50 h defrosting at exponentially
increasing air temperature until reaching of 20 oC.

The results presented in the figures in this paper show that the procedures for calculation
of the non-stationary 1D temperature change in the prepared software program function well
for the mutually connected processes of the freezing and the defrosting of the logs at
convective boundary conditions.

The obtained results show the complex character of the change in the temperature on the
logs’ surfaces and along the logs’ radiuses, and also of the heat transfer coefficient between
the logs’ surfaces and the processing freezing or defrosting air environment. Also the change
in the wood thermal conductivity on the logs’ surfaces and in the separate points along the
logs’ radiuses, especially strong depending on the aggregate condition of the water in each
point at every moment of the studied processes, has a very complex character.

The presented model, after its update with new experimentally obtained data about the
heat transfer coefficient and with mathematically described hysteresis between the thermo-
physical characteristics of the wood during its freezing and defrosting, can be used for a
science-based determination of the duration of the freezing and defrosting processes of logs at
different initial and boundary conditions.
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