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Abstract — A 1D mathematical model for the computation of the temperature on the surface of
cylindrical logs, #,, and the non-stationary temperature distribution along the radiuses of logs
subjected to freezing and subsequent defrosting at convective exponentially changing boundary
conditions has been suggested. The model includes mathematical descriptions of the thermal
conductivity in radial direction, A,, the effective specific heat capacity, c., and the density, p, of the
non-frozen and frozen wood, and also of the heat transfer coefficient between the surrounding air
environment and the radial direction of horizontally situated logs, a,. With the help of the model,
computations have been carried out for the determination of a,, %, Ay, and 1D temperature distribution
along the radiuses of beech logs with diameters of 0.24 m, initial temperature 20 °C, and moisture
content 0.4 kg-kg”, 0.8 kg-kg”, and 1.2 kg-kg ™', during their freezing at —20 °C, and during subsequent
thawing at 20 °C.

heat transfer coefficient / surface temperature / temperature distribution / beech logs / radius

Kivonat — Egydimenziés konvektiv hovezetés modellezése fagyott és normal allapota ronk és
kornyezte kozott. Célunk egy 1D matematikai modell 1étrehozasa volt, amely kiszamitja a hengeres
faronk feliileti hémérsékletét, ¢, €s a ronk sugara menti homérséklet-eloszlast egy olyan hengeres
far6nkon, amelyet lefagyasztottak majd kiolvasztottak exponencidlisan valtozo hoatadasi koriilmények
kozott. A modell magaban foglalja a sugarirany hovezetési tényezo, 1,, az effektiv specifikus fajho c.,
és a strliség p matematikai leirasat nem-fagyott és fagyott allapoti faanyag esetében. Tartalmazza
tovabba az a, radidlis irany hoatadasi tényezot a kornyezo levego €s a vizszintesen fekvo ronk kozott.
A modell segitségével szamitasok torténtek az a,, a f;, €és a Ay, valamint az 1D hémérsékleteloszlas
meghatarozasara 0,24 m atmér6ji biikk ronknél a sugar mentén a kdvetkezo feltételek mellett: kezdeti
hémérséklet 20 °C, a nedvességtartalom értékei 0,4 kg-kg™', 0,8 kg'kg™ és 1,2 kg-kg™', a—20 °C-os
fagyasztas soran ¢és az ezt kovetd felolvasztas folyaman 20°C-ig.

hovezetési egyiitthato / feliileti homérséklet / homérsékleteloszlas / biikk ronk / sugar
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1 INTRODUCTION

Logs prepared for veneer production are subjected to freezing and thawing in natural air
conditions during the winter. The duration time and energy needed for the thermal treatment of
frozen logs with the goal of plasticizing depends greatly on the level of freezing within the logs.
(Sergovsky 1975, Shubin 1990, Trebula — Klement 2002, Videlov 2003, Deliiski 2004, 2009).

In the accessible specialized literature there are very few reports about the temperature
distribution in frozen logs subjected to thawing (Steinhagen 1986, 1991, Steinhagen et al.
1987, Steinhagen — Lee 1988, Khattabi — Steinhagen 1992, 1993, 1995, Deliiski 2005, 2011,
2013b) and there is no information at all about the temperature distribution in logs during
their natural or artificial freezing. That is why the modelling and the multi-parameter study of
the processes of freezing and of the subsequent defrosting (thawing) of logs are of
considerable scientific and practical interest.

The aim of the present work is to suggest a 1D mathematical model for the computation
of the temperature on the surfaces of cylindrical logs, f;, and the non-stationary temperature
distribution along the radiuses of logs subjected to freezing and subsequent defrosting at
convective exponentially changing boundary conditions. To achieve this goal, a base model of
the heating and cooling processes of logs is used, one which has earlier been suggested and
modified by the first co-author (Deliiski 2005, 2011, 2013b).

Symbols:
c = specific heat capacity (J-kg"-K ™)
D =diameter, m

eXp = exponent

= specific heat energy (kWh-m™)
=radial coordinate: 0 < » <R, m;

= radius, m

= temperature (°C): r=T—273.15

= temperature (K): 7=1¢+273.15

= moisture content (kg-kg™): u= W/100
= moisture content (%): W= 100u

= heat transfer coefficient between the logs’ surface and the air environment (W-m > K )
= difference (for the temperature)

= thermal conductivity (W-m K ™)

= density (kg'm ™)

= time (s)

=at

@H'o > >R g: N YR

Subscripts and superscripts:

ad = anatomical direction
b = basic (for density, based on dry mass divided to green volume)
bw = bound water

bwm = maximum possible amount of bound water

c = center (for the temperature or thermal conductivity on the logs’ centers)

dfr = defrosting (for the temperature of the defrosting medium)

e = effective (for the specific heat capacity of the frozen and non-frozen wood)

exp = exponent (for the time constant of the exponentially change in the air temperature)
fr = freezing (for the temperature or for the duration of the freezing process or for the

frozen state of the wood)
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Modelling of the 1D Convective Heat Exchange 79

fsp = fiber saturation point of the wood

fw = free water

m = medium (for the temperature of the freezing or defrosting air environment)

mO = initial (for the medium temperature at the end of the logs freezing or defrosting)

ml = end (for the medium temperature at the end of the logs freezing or defrosting)

nfr = non-frozen (for the state of the wood)

r = radial direction

st = surface on the radial direction

0 = 1initial (for the radial or time coordinates or for the average mass temperature of the
logs at the beginning of the freezing process)

1 = final (for the average temperature of the logs at the end of the defrosting process)

273.15= at273.15K, i.e. at 0 °C (for the wood thermal conductivity)
293.15= at293.15K, i.e. at 20 °C (for the fiber saturation point of the wood)

2  MATERIAL AND METHODS

2.1 Mechanism of the 1D heat distribution in the logs

The mechanism of the heat distribution in logs during their heating or cooling can be
described by the equation of heat conduction (also known as the equation of Fourier-
Kirchhoff). When the length of the logs exceeds their diameter by at least 3 or 4 times, then
the heat transfer through the frontal sides of the logs can be ignored, because it does not
influence the change in temperature of their cross sections which are equally distant from the
frontal sides (Chudinov 1968). In such cases, the following 1D model can be used for the
calculation of the change in T only along the radius of the central cross sections during
freezing and defrosting of the logs (i.e. along the coordinate » of these sections) (Deliiski
2011, 2013b):

2 2
o oT (r,7) vy 0 T(Z,t) +16T(r,r) N 8Xr(r,t)(8T(r,t)j 1)
ot or r or oT or
with an initial condition
7(r,0)=T, ()

and with one and the same boundary condition for the convective heat transfer valid for the
entire surface of the logs:
e during the process of logs freezing:

oT(0,1) o (1)
o Ag(®

T () - T (v)] 3)

e during the process of logs defrosting:

oT(0,7) ol (1)

dfr dfr
= M)[T (-1 (). @)
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It must be noted that the model presented by equations (1) + (4) can also be solved with
different mathematically described boundary conditions and heat transfer coefficients within
them. The difference between the thermo-physical characteristics of the logs’ bark and the
logs’ wood has not been taken into consideration in the model.

2.2 Change in the temperature of the freezing and the defrosting mediums

It is possible to have two cases for freezing of different materials in freezers. The first case is
when the material is put into a working freezer with a constant unchanged temperature in it

and, consequently, the freezing medium temperature 7,,(t) =7,,, = const.

The mathematical model (1) + (4) obtains more complicated boundary conditions in the
second case; in this case the material is put into a freezer before it is switched on. Here, the
temperature of the air environment in the freezer Tn‘? decreases exponentially (Figure 1)
according to the equation

T T T T
=7t +(le0 —Tnfll)exp - (5)
exp

The defrosting of the frozen materials after the freezer’s door is opened is realized at the
exponential increase of the air temperature (Figure 1) according to the equation

Tt = T = (1 =7 Jexp) = | ©)

exp

\
g )eXp[ o J

exp

g1
T

Freezing of the logs Defrosting of the logs

Temperature of the processing medium 7., K

0 Tt Te + Tan
Time T, s

Figure 1. Exponential change in the air medium during the freezing and the defrosting of logs

2.3 Heat transfer coefficient between the air and the logs

It is known that the heating or cooling of logs in a gaseous (air) environment takes place
through a convective heat exchange between the surfaces of the logs and the moving
environment. If the movement is caused by differences in the density of the gas as a
consequence of temperature differences in it, it is acceptable to call the convection free (not
organized, natural).
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Modelling of the 1D Convective Heat Exchange 81

As a rule, the freezing of wood materials at atmospheric conditions or in a freezer takes
place in the conditions of free convection. For the calculation of the heat transfer coefficient
in such conditions of heating or cooling of horizontally situated logs Chudinov (1968)
suggests the following experimentally determined equation:

o, =0.997 4‘/% . (7)

It can be assumed that the heat transfer coefficients during freezing and defrosting of the
materials are not equal to each other. Real free air convection is observed only during the
freezing and defrosting of logs at natural atmospheric conditions or during the defrosting of
frozen materials after the freezer’s door is opened. That is why it can be written as:

fr
ol ~0.997 4/A_RT =0.997 4{/ ! (O’T)R In(® (8)
dfr
ad =0.997 4/% =0.997 4{/ L (T);T @0 ©)

More precise equations for the determination of the heat transfer coefficients between the
surfaces of the logs in radial direction and the freezing or defrosting mediums can be obtained
after suitable experiments have been carried out.

The model presented by equations (1) + (4) can also be solved with different
mathematically described heat transfer coefficients for separate parts of the logs’ surfaces.
The analysis and presentation of such cases are beyond the scope of this article.

2.4 Thermo-physical characteristics of the logs during their freezing and defrosting

The solution of the non-linear 1D mathematical model of the freezing and defrosting
processes of logs, which is presented by the equations (1) = (9), can be realized using the
mathematical descriptions of the effective heat capacity of the frozen and non-frozen wood,
Ce, the thermal conductivity of the wood in radial direction, A, and the density of frozen and
non-frozen wood, p. given in Deliiski (2011, 2013b). With the help of the mathematical
description of A, the current values of the thermal conductivity on the logs’ surfaces in radial
direction A (0,7), which participates in egs. (3) and (4), can also be calculated during the
solution of the model.

The thermal conductivity of the wood can be calculated with the help of the following
equations for AT ,u,pb,ufsp) :

do=Roy31s7[1+B(T -273.15)] (10)

s 1s = K, v[0.165+(1.39+3.81) (3.3-107 p +1.015-107 p, )], (11)
v=0.15-0.07u @ wu<up,+0.1 kg'kg ', (12)
v=0.1284-0013u @ u>u,+0.1kgkg". (13)

Equations for the calculation of the variables y and B in eq. (10) for frozen and non-frozen
wood from different wood species and an algorithm for usage of the mathematical description
of A during the solution of the model are given in Deliiski (2013a).
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The ice in the wood can be formed from the freezing of hygroscopically bound water or
from both the bound and the free water in the wood. It is widely accepted that the phase
transition of water into ice and vice versa can be expressed with the help of the so-called
“latent heat” in the ice of the frozen body. When solving problems connected to transient heat
conduction in frozen wood, it makes sense to include the latent heat in the so-called effective

specific heat capacity ¢, (Chudinov 1966, 1968), which is equal to the sum of the wood’s

own specific heat capacity c¢ and the specific heat capacity of the wood which is frozen only
with bound water or contains both bound and free water within it. As an example, in Figure 1.
the symbols of the thermo-physical characteristics of the frozen and non-frozen wood are
present, which are necessary for the computation of the temperature distribution in the wood
during heating aimed at its defrosting in the respective temperature diapasons and for the
computation of the energy consumption for the heating of the wood.

Heating of the wood until melting | Heating of the wood
of the maximum possible amount | during melting of the
of frozen bound water in it frozen free water in it

bwm _ fw o fw i for  fw fiw
Cr ’ pfr ’ 7\'fr i Cnfr pnfr s 7\'nfr .
| w

Melting of the maximum possible | Melting of the frozen
frozen bound water in the wood free water in the wood

fw fw | fw fw
Chwms P 7\'fr i Ctws Pnfr » ;\dnfr

i Heating of the defrosted wood
| f [
! Chfr W> pnfr w’ }‘*nfr

L

Ty Tye™™™ Tye™ T T

Figure 2. Using different specific heat capacities — c, thermal conductivities — A and densities — p,
for the calculation of the temperature distribution in frozen and non-frozen wood when u > ufsp

A mathematical description of these characteristics is given in Deliiski (2013b). When
modelling processes connected with non-stationary temperature distribution in frozen wood

with u >u, during its defrosting, it is necessary to take into consideration that the effective

specific heat capacity, ¢, , for the separate temperature diapasons on Figure 2 is equal to:

b

=g tCum @ T STSTdbf;Vm, (14)
£

Co = Cppe + Cpy, @ ™ <T < Tdf,}r”, (15)
£ £

Co = Cngr @ T <T<T (16)

During the computations of the freezing and defrosting processes of logs, effective heat
capacities and densities of the wood subjected to thawing have been used and are shown in
the mathematical descriptions of thermal conductivities below Figure 2 (Deliiski 2011,
2013a, 2013b). The small difference (so named hysteresis) between these thermo-physical

characteristics, and also between the temperatures 79" and 7;2™, and between 7" and T/

during the freezing and defrosting of the wood (Chudinov 1966, 1968) needs to be
additionally studied and mathematically described.
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3 RESULTS AND DISCUSSION

The abovementioned mathematical descriptions of 7Y, 7% o and o have been

introduced before by the first co-author who earlier created and later modified a non-
stationary model of the heating and cooling of cylindrical wood materials (Deliiski 2005,
2011, 2013b). This model is presented in common form by the egs. (1) + (4).

The updated model with the descriptions of 7", T, o, and o™ has been solved
with the help of explicit schemes of the finite difference method which, in a way, is analogous
to the one used and described in (Deliiski 2009, 2011) for the solution of a model of the
heating and cooling process of cylindrical wood materials. During the computations, these
schemes allow for the determination of the temperature at each node of the calculation mesh
using the current values of the thermo-physical characteristics of the frozen or non-frozen
wood depending on the momentous aggregate state of the bound and free water in the wood in
separate nodes.

To help with the solutions of the updated model, a software program has been prepared in
the calculation environment of Visual FORTRAN Professional, which is a part of the office-
package of Windows. The program helped carry out computations for the determination of the

1D change of temperature in beech logs (Fagus Silvatica L.) subjected to 50 hours freezing at
tf =-20 °C and a following 50 h defrosting at 25 =20 °C .
The freezing and subsequent defrosting of logs with a diameter of D = 0.24 m (i.e. with a

radius of R=0.12 m), initial wood temperature 7, =20 °C and three values of the wood

moisture content:u =0.4 kg-kg™',u=0.8 kg-kg™', and u=1.2 kg-kg™' have been studied.

The moisture content of the beech logs is usually situated in this range of u, which are used
for the production of veneer. All logs with such u contain a maximum possible quantity of

bound water. Besides this, the logs with u =0.4 kg-kg™' contain a relatively little amount of
free water, the log with u =0-8 kg.kg™' contains a significant quantity of free water and the

log with u =1.2 kg- kg™' contains almost a maximum possible quantity of free water.

The decreasing of ¢I from the value of % =7, =20 °C to ¢ =-20 °C = const and
the following increasing of %" from 1% =-20 °C=const to ¢ =20 °C = const go
exponentially with time constants ’Eirxp = r‘;g, =3600 s. The calculated values according to

dfr
m

egs. (5) and (6) exponential change of trf; and ¢
4

can be seen in the Figure 2 for the curve of

m*
fr _
ml —

The duration of 50 h of the logs freezing at ¢ —20 °C has been proven as being

enough for the reaching of a complete freezing of the free water in the all of the studied logs.
The calculations were done with average values of basic density of beech wood
pp=560 kg'm™ and fiber saturation point at 293.15 K (i.e. at 20 °C) of this wood

ufzs? 13 =0.31 kg'kg ™' (Nikolov — Videlov 1987, Pozgaj et al. 1997). A coefficient K; = Kyq = 1.35

(Deliiski 2003, 2013a) in eq. (11) for the beech wood was used.

Table 1 shows the computed distribution of the temperature in 4 equally distant from
each other nodes of the calculation mesh in the central cross-section of the beech log with
u=0.8kgkg" at every 2 h of the freezing and of the following defrosting processes. The
corresponding input data, which is used for the solution of the 1D model, is underlined in
Table 1. The remaining input data, which is not underlined in this table, relates mainly to the
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parameters of the equipment with which the thermal treatment of the wood materials with the
aim of their freezing or defrosting is carried out. Using this input data, the energy parameters
of the freezing or defrosting process and the efficiency from the usage of the equipment can
be calculated. The fourth column from right to left on Table I shows the calculated values of
o, according to eq. (8) and the last two columns of Table I show the calculated values of the

wood thermal conductivities on the log’s surface, Ay, and in the center of the log, A., during
the freezing and defrosting processes.

In Figure 3 the computed change in the freezing and in the defrosting medium

temperatures, tfl and tglﬁ respectively (both temperatures are shown as ¢, on the figure), in

fr dfr

the surface temperature of the log, 7, and 7, (both of them are shown as f, on the figure)

and also in the temperature in the central points of the log, ¢., during the freezing and

subsequent defrosting, depending on the wood moisture content, u, is shown.
20
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Figure 3. Change in t,, ty, and t. of beech logs with D = 0.24 m and ty = 20 °C
during their 50 h freezing at —20 °C and following 50 h defrosting at 20 °C, depending on u

In Figure 4 the computed change in the heat transfer coefficient between the surfaces of
the logs in radial direction, o, and the freezing and defrosting mediums during the studied
processes, depending on u is shown.

4

- FREEZING DEFROSTING
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Figure 4. Change in o, of beech logs with D = 0.24 m and ty = 20 °C
during their 50 h freezing at —20 °C and following 50 h defrosting at 20 °C, depending on u
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. fi dfi . fi dft
Table 1. Change in T and T,  (third column), T, and T, (fourth column), o, (fourth

column from right), in Ay and A. (second and first column from right), and in t in

4 equally distant from each other characteristic points of the central cross section

of a beech log with D = 0.24 m, ty = 20 °C, and u = 0.8 kg'kg™' during every 2 h of

. . fi . .

its freezing at t" = —20°C and during the subsequent defrosting at 1> = 20 °C

N e DA T A
FREEZING AND DEFROSTING OF A BEECH LOG WITH DIAMETER OF 0,24 m

Kq=11 M= 11 N= 0 KD= 1 Ry=560. Kwr=1.35 Kwpr=1.78 U=0.800 Ufsp293=0.31 D=2.4 L= 9.0
to= 20.0 Tmo= 200 EMFI=-20.0 tmdfr= 20.0 t3= 0.0 td= 0.0 dtm=.001 t0l= 0. dTAU= _ 80
TEr=3600. Tdfr=3600. T3= 0. dT3= 0. dtm3= 0. T4= 0. T5= 0. TAUproc.=360000 —INT= 7200
J5=.008 5i=.10 ROi=120. Ai=.00000022 dFa=0.05 Kk=.2 tcenter=-17.45 dtwc= 0.1 Ts= 0
Pw=.30 Vw=14.39 Va=47.95 tbi= 0. Sim=0.200 Xp=1.00 L-log=0.00 D-log=.24  dx=.01200
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The computed change in the thermal conductivity of the surfaces of the logs in radial
direction, Ay, and of the centres of the logs A., depending on u during the freezing and
defrosting processes is shown in Figure 5.
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Figure 5. Change in Ay and in A of beech logs with D = 0.24 m and ty = 20 °C
during their 50 h freezing at —20 °C and following 50 h defrosting at 20 °C, depending on u

In Deliiski (2009) curves showing the percentage of water being in ice-phase on the
diameter of beech logs subjected to defrosting with 7y = —20 °C as a function of u > ugp and
the relationship t/ D can be seen.

The obtained results lead to the following conclusions:

1. On the curves of characteristic points situated on the logs’ centers in Figure 3. the
specific almost horizontal sections of retention of the temperature #. for a long period of time
in the range from —1 °C to -2 °C can be seen, while in these points a complete freezing of the
free water and after that a complete melting of the ice created by it occurs in the wood
(Chudinov 1966, 1968).

It can be noted that such retention of the temperature on the logs’ axes has been observed
in wide experimental studies during the defrosting process of pine logs containing ice from
the free water (Steinhagen 1986, Khattabi — Steinhagen 1992, 1993).

2. The character of the change in the heat transfer coefficient, o, is almost identical
during the studied freezing and defrosting processes of logs with given value of the wood

moisture content (Figure 4). The reason for this is the equality of the difference 7, — tg during

dfr
m

the freezing with the difference 7. — tgl during the defrosting for one and the same moments

from the beginning of these processes at ) =20 °C, % =-20°C, 1! =20°C, and

ml ml —
’Eirxp = rgi; =3600 s. At other values of these variables, the change in o, during the freezing

and the defrosting would be different.

3. With the increase of the duration of the freezing and the defrosting processes, the
coefficient o, decreases because of the decreasing of the difference AT between the
processing medium temperature and the surface temperature of the logs (see egs. (8) and (9)).

4. The character of the change in the wood thermal conductivity on the logs’ surfaces, A,
and in the logs’ centers, A, is very complex (Figure 5). The current values of Ay and of A,
depend not only on the wood moisture content and on the current temperature in the
respective points on the logs’ radiuses, but also on the momentous aggregate condition of the
water in these points (Deliiski, 2013a). The larger values of Ay, and A, in Figure 5 related to
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the central points or surfaces of the frozen logs, and the lower values of Ay and A, related to
the logs’ points with frozen free water in them at respective moments.

Table 1, Figure 3, and Figure 5 show that the complete freezing of the free water at the
surface and at the center of the beech log with u = 0.8 kg-kg ™' occurs between 4 and 6 h and
between 34 and 36 h respectively, when the temperature in these points becomes lower than —
2 °C. Analogously, the melting of the frozen free water at the surface and at the center of this
log starts between 52 and 54 h and between 66 and 68 h respectively. The complete melting
of the frozen free water at the center of the log occurs between 76 and 78 h, when the
temperature in this point becomes higher than —1 °C.

4 CONCLUSIONS

The present paper describes the 1D mathematical model for the computation of the
temperature on the surfaces of logs suggested by the authors, f#;, and the non-stationary
temperature distribution along the radiuses of logs subjected to freezing and to subsequent
defrosting at convective exponentially changing boundary conditions. As a base model, the
heating and cooling processes of logs is used, which was created and modified earlier by the
first co-author. The mechanism of the heat distribution along the radiuses of the logs during
their freezing and subsequent defrosting is described by the 1D partial differential equation of
heat conduction. For the solution of the model, an explicit form of the finite-difference
method is used, which allows for the exclusion of any simplifications in the model.

For the numerical solution of the model, a software program has been prepared in
FORTRAN, which has been input in the Visual Fortran Professional calculation environment
developed by Microsoft. With the help of the program an example computation has been
carried out for the determination of the 1D change in the temperature along the radiuses of
beech logs with diameter 0.24 m, initial temperature 20 °C and moisture content 0.4 kg-kg ",
0.8 kg'kg"' and 1.2 kg'kg', during 50 hours freezing at exponentially decreasing air
temperature until reaching of —20 °C and during the following 50 h defrosting at exponentially
increasing air temperature until reaching of 20 °C.

The results presented in the figures in this paper show that the procedures for calculation
of the non-stationary 1D temperature change in the prepared software program function well
for the mutually connected processes of the freezing and the defrosting of the logs at
convective boundary conditions.

The obtained results show the complex character of the change in the temperature on the
logs’ surfaces and along the logs’ radiuses, and also of the heat transfer coefficient between
the logs’ surfaces and the processing freezing or defrosting air environment. Also the change
in the wood thermal conductivity on the logs’ surfaces and in the separate points along the
logs’ radiuses, especially strong depending on the aggregate condition of the water in each
point at every moment of the studied processes, has a very complex character.

The presented model, after its update with new experimentally obtained data about the
heat transfer coefficient and with mathematically described hysteresis between the thermo-
physical characteristics of the wood during its freezing and defrosting, can be used for a
science-based determination of the duration of the freezing and defrosting processes of logs at
different initial and boundary conditions.
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