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Abstract: In this paper we construct a large family of examples of subsets of Euclidean space that support a
1-Poincaré inequality yet have empty interior. These examples are formed from an iterative process that in-
volves removing well-behaved domains, or more precisely, domains whose complements are uniform in the
sense of Martio and Sarvas.
While existing arguments rely on explicit constructions of Semmes families of curves, we include a new way
of obtaining Poincaré inequalities through the use of relative isoperimetric inequalities, after Korte and Lahti.
To do so, we further introduce the notion of of isoperimetric inequalities at given density levels and a way to
iterate such inequalities. These tools are presented and apply to general metric measure measures.
Our examples subsume the previous results of Mackay, Tyson, and Wildrick regarding non-self similar Sier-
piński carpets, and extend them to many more general shapes as well as higher dimensions.
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1 Introduction
A p-Poincaré inequality, in the sense of [11], captures the notion of possessing many (rectifiable) curves in a
space that connect prescribed pairs of points – an idea made precise in [12, 18] for example. A smaller expo-
nent p for a p-Poincaré inequality indicates a richer supply of curves, and our focus will be on the borderline
case — that is, the 1-Poincaré inequality.

Alternatively, such inequalities are related to how easy it is to separate the space by “small” sets – i.e.
the role of isoperimetry. Specifically, we consider the notion for relative isoperimetry, and how boundaries
separate a set from its complement; for a precise formulation of these notions, see Section 3. Our context will
mainly be Euclidean spaces in all dimensions d ≥ 2, thoughmany techniques on isoperimetry are completely
general and apply to the metric space setting.

In passing from a given space to a subset of that space, the number of curves decreases and it (often)
becomes easier to separate the subset (as a space, in its own right). By such reasoning, a subset A ⊂ Rd often
will not support a Poincaré inequality. This does not always hold, however, since also the functions and
sets become more restricted as well. If, however, one removes a collection of sufficiently “sparse” obstacles
from the underlying space, then intuitively the Poincaré inequality could be preserved for the subset. It is a
subtle issue, however, of “how sparse” these obstacles can be. Our main result, Theorem 1.3, gives a general
sufficient condition for a 1-Poincaré inequality to hold for subsets ofRd arising from such a removal process.
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In the case of R2, it was shown in [14, Theorems 1.5–1.6] that a certain family of positive (Lebesgue)
measured subsets satisfy p-Poincaré inequalities, despite having empty interior. Their results are remarkable,
in that they give sharp characterizations of the range of exponents p for which the p-Poincaré inequality
holds. Ourwork here employs substantially different techniques, and yields amore general class of examples
for the exponent p = 1. See Appendix A for a more detailed discussion.

An earlier work by the authors [9] studied the case of exponents p > 1 separately and uses completely
different techniques, both fromhere and from [14]. In a similar theme, however, our results here hinge on new
sufficient conditions for a 1-Poincaré inequality. Together, they form a complete generalization of the main
result of [14].

In our main theorem, we make a step towards understanding which removal processes are permitted,
when forming these subsets. To that end, we adopt a new perspective on isoperimetric inequalities. Instead
of testing isoperimetry for all sets, we first require the inequality to hold only for sufficiently “dense” sets, as
measured by a density parameter τ. The new notion of a (τ, C)-isoperimetric inequality allows the flexibility
of proving “sufficiently good” estimates at every scale, which when iterated, leads to isoperimetry for all sets
and at all densities. Indeed, this added flexibility allows us to consider each scale independent of others, and
is the crucial tool in our proof.

The (τ, C)-isoperimetric inequality can be further thought of as a scale-invariant weak estimate that im-
proves itself. This idea of self-improvement is frequent in harmonic analysis and geometric analysis and has
appeared, for example, in the following classical contexts. The results often involvemild topological assump-
tions and to obtain them, one iterates the relevant estimate in an appropriate case-dependent way.

1. Muckenhoupt (ϵ, δ)-conditions improve to Ap-type conditions [20, Proposition V.4].
2. Weak quasisymmetries are quasisymmetries [22, Lemma 6.5].
3. A “balled” Loewner condition improves to a Loewner condition [4, Proposition 3.1].
4. The Loewner condition improves to a more quantitative estimate [11, Theorem 3.6].
5. “Weak”-type Poincaré conditions at a given level, improve to true p-Poincaré inequalities for some p > 1

[8, Theorems 1.2 and 1.8]. See also [9, Theorem 2.19] for a more quantitative version.

1.1 Subsets arising from removing obstacles

The sets S = Sn we consider arise by removing “obstacles” R from a set Ω, and thus are of the form

Sn := Ω \
⋃
k∈N

⋃
R∈Rn,k

R,

where Ω is a so-called “uniform” domain inRd and eachRn,k is a collection of “co-uniform” domains R; that
is, each Rd \ R is uniform and ∂R is connected.

For the precise notion of a uniform domain, see Definition 2.7; for the moment, however, we note that
these include convex sets with bounded eccentricity, or regions without cusps. In particular, planar domains
whose boundaries are quasicircles are also uniform, see [9, Remark 4.16] for the definitions of a quasicircle,
some references on such examples. (As a technical point, in this paperwe allowuniformdomains to be closed
sets.)

The notion of a uniformly sparse collection of co-uniform domains was introduced in [9, Definition 4.21]
and forms the starting point for our analysis. Below, for sets K and K′wedenote their “distance” by d(K, K′) :=
inf{d(x, x′) : x ∈ K, x′ ∈ K′}.

Definition 1.1. LetΩ be anon-empty compact subset ofRd. Letn = {nk}∞k=1 bea sequence of positive integers,
and consider scales s0 = diam(Ω) and

sk =
1
nk

sk−1

for k ∈ N. A sequence of collections of domains {Rn,k}∞k=1 in Ω ⊂ Rd forms a uniformly (n-)sparse collec-
tion of co-uniform domains in Ω if there are constants δ ∈ (0, 1) and L, A > 0 so that for each R ∈ Rn,k:
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1. R ⊂ Ω;
2. R is A-co-uniform and Ω is A-uniform;
3. diam(R) ≤ Lsk;
4. d(R, Ωc) ≥ δsk−1;
5. for each R′ ∈ Rn,k′ with k ≥ k′, then d(R, R′) ≥ δsk−1;

Moreover, call {Rn,k} dense in Ω whenever⋃k∈N
⋃

R∈Rn,k
R is a dense subset of Ω.

We note that versions of these conditions also appear in the context of uniformization of metric carpets,
see e.g. [3].

Uniform sparseness by itself does not ensure a Poincaré inequality, and one needs to impose a condition
onn = {nk}∞k=1, the sequence of ratios between scales. In [9], it suffices to assume that {n−1k }∞k=1 ∈ ℓd to obtain
a p-Poincaré inequality for all p > 1.

In the p = 1 case, however, we will also consider the projections of such collections onto subspaces.
Below, let π1, . . . , πd be any collection of linearly independent projections ofRd onto subspaces of codimen-
sion one, that is, the collection of the normal vectors of hyperplanes πi(Rd) form a linearly independent set
in Rd. Up to a coordinate change, we will often assume that the πi are coordinate projections.

Definition 1.2. A uniformly (n-)sparse collection of co-uniform domains {Rn,k}∞k=1 is said to have small
projections if, with the same constant L > 0 as before,

(6) For k ∈ N, if r ≥ sk−1 then for each x ∈ Ω and i = 1, . . . , d it holds that

Hd−1
(
πi
(
B(x, r) ∩

⋃
R∈Rn,k

R
))

≤ Lrd−1

nd−1k
.

With this notion, we now formulate our main result.

Theorem 1.3. Fix constants L, A ≥ 1, δ > 0 as in Definition 1.1. Suppose Ω ⊂ Rd is a compact uniform domain
and that {Rn,k}∞k=1 is a uniformly n-sparse collection of co-uniform domains in Ω that has small projections.
The set

Sn := Ω \
⋃
k∈N

⋃
R∈Rn,k

R.

has positive Lebesguemeasure and satisfies a 1-Poincaré inequality (with respect to the restrictedmeasure and
metric from Rd) if

∞∑
k=1

1
nd−1k

< ∞. (1.4)

Note that the summability condition in equation (1.4) implies that the set Sn haspositivemeasure. Indeed,
this will be shown in Lemma 2.22.

Remark 1.5 (Previous results). As a special case of Theorem 1.3, we obtain immediately a new proof that cer-
tain “non-self similar Sierpiński carpets” satisfy a 1-Poincaré inequality, as first shown in [14]. In particular,
the removed obstacles R there are coordinate squares and the uniformly sparse collections of squares have
small coordinate projections. (For this specific construction and other similar ones, see Appendix A.)

In contrast to [14], whose results apply only to a construction involving d-dimensional cubes with d = 2,
our result applies immediately in all dimensions simultaneously andallows formanyvariations. For instance,
one could imagine sets Sn where the sets R, Ω in Definition 1.1 are all circles, or as in Figure 1, where they are
all triangles. One could even go so far as to choose randomly-sided polyhedra with the number of sides,
though uniformly bounded, varying with each scale sk! This way, our result and proof give a flexible way to
approach such results without overly restricting the geometry.

We refer to [9] for a more expansive discussion on the relevance of these results.



376 | Sylvester Eriksson-Bique and Jasun Gong

(a) Step one: Removal of the central white triangle (rela-
tive to height) with n1 = 5.

(b) Three steps: Domain is in black, and removed trian-
gles in white. We used n1 = 5, n2 = 7, n3 = 11.

Figure 1: Construction of a non-self-similar triangular version of a Sierpiński carpet.

Remark 1.6 (Necessity of conditions). Note that the conditions given in Definitions 1.1 and 1.2 are close to
necessary when d = 2. Indeed, in the planar case, versions of conditions (1)-(5) are necessary (see [9, The-
orem 4.40]) while without (6) and the summability condition (1.4) one may construct counterexamples [14,
Proposition 4.1].

In the case of specific constructions, such as [14] and the one in Figure 1, condition (6) is sharp. In cases
lacking sufficient symmetry, however, there is a subtlety regarding the precise placement of obstacles. In a
similar spirit as say, the quasiconformal Jacobian problem, it appears very difficult to formulate a completely
sharp result; see e.g. [19] for further discussion on similar characterization problems.

In any event, some minimal assumption, say the weaker condition that (n−1k )∞k=1 ∈ ℓd, is needed for the
set to have positive Lebesgue measure and guarantee the validity of some Poincaré inequality.

In order to obtain Theorem 3.5, we need a flexible way to prove such inequalities, and a condition which
handles such inequalities at fixed scales. This involves a new notion of isoperimetry which applies to all met-
ric measure spaces, not just Euclidean ones. Indeed, the only place where the Euclidean structure is used is
in using projections and a projected isoperimetric inequality, see Lemma 3.11. It is conceivable that analo-
gous structures exist in other settings. For example, the Heisenberg group has a natural collection of vertical
projections [6, Definition 2.2], and one may push our main result to such settings. We leave this for future
exploration.

1.2 Iterating Isoperimetry

The case of p = 1 is a borderline case for the Poincaré inequality and an inherently geometric one. Consider,
for example, thewell-known correspondence between the Sobolev embedding theoremand the isoperimetric
inequality.

Related to this, we will employ the characterization of Lahti and Korte [13] which asserts that the validity
of a 1-Poincaré inequality is equivalent to a so-called “relative isoperimetric inequality”, see Theorem 3.5.
Since, this fact andmany of the following results hold true in generalmetricmeasure spaces, the forthcoming
discussion will also be formulated in the context of metric measure spaces.
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The isoperimetric inequality is easier to establish for “larger” sets in the sense of density, as defined
below.

Definition 1.7. Let (X, µ) be ameasure space and let E, F bemeasurable subsets of Xwith µ(F) > 0.We define
the density of E relative to F (or just relative density for short) as

Θµ(E, F) := min{µ(E ∩ F), µ(F \ E)}
µ(F) .

Note that the relative density is symmetric for E and its complement Ec. We are interested in those sets E
with Θµ(E, F) ≥ τ for a given τ > 0 – i.e. the ones that are neither empty nor full, quantitatively. In our proof
of Theorem 1.3, for these sets we can throw away and control a junk-set coming from conditions (5) and (6)
in Definitions 1.1 and 1.2. Interestingly enough, to prove isoperimetry it suffices to consider such sets. More
precisely, we prove the following fact, which applies to all metric measure spaces andmay be of independent
interest. Here, as in Definition 3.7, a (τ, C)-isoperimetric inequality is one that only holds for sets E ⊂ B =
B(x, r) with Θµ(E, B) ≥ τ, where C is a multiplicative constant.

Theorem 1.8. Let (X, d, µ) be D-doubling with D ≥ 2, and let τ ∈ (0, 1
D3 ]. If X satisfies a (τ, C)-isoperimetric

inequality with inflation factor Λ, then X satisfies the relative isoperimetric inequality with constants CS =
CS(D, Λ) = D7+log2(Λ)C and ΛS = ΛS(Λ) = 2Λ.

The proof of this theorem involves “iterating” an estimate at appropriate scales. This method of relative
isoperimetry via iteration is new. To the authors’ knowledge, this is the first instance where it is used to verify
a previously-conjectured Poincaré inequality. This method has the advantage that it allows to throw away
small sets (such as those arising from condition (6) in Definition 1.2). It further allows to focus on a single
scale at a time.

1.3 Outline

The remainder of the paper is organised as follows. In Section §2 we discuss preliminaries on measure and
uniformity and state crucial lemmas. Section §3 is devoted to facts about isoperimetry and stating the isoperi-
metric inequality. In that section we also prove Theorem 1.8 and give the projected isoperimetric inequality
in Rd in Lemma 3.11.

The proof of the main result (Theorem 1.3) is then left to Section §4. This rests on establishing the (τ, C)-
isoperimetric inequality for subsets E ⊂ B(x, r) ∩ Sn. First, we reduce to the case of the sum in Equation
(1.2) being small. This is done by localizing the argument. Following this, one replaces B(x, r) by a better
ball, which does not intersect too large obstacles. To this ball one applied first Lemma 3.11 to obtain some
Euclidean boundary. The restriction on projections, and the large enough density of E and its complement,
means that some of this boundary must lie in the original carpet. A precise quantitative bound yields the
result.

In Appendix A we give the explicit example of a non-self similar Sierpiński sponge similar to [14], and
show how the higher dimensional generalization of their result follows from Theorem 1.3.

2 Preliminaries
Notational convention: There are many constants to keep track of in our proof. In doing so, we shall use the
notation C = C(A, B, . . . ) to indicate when a constant C in a statement depends on other constants A, B in
the same statement.
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2.1 Measure theoretic preliminaries

For the interest of generality,many of the statements in this preliminary sectionwill be formulated for general
metric measure spaces, while our main result (Theorem 1.3) is formulated only for X = Sn ⊂ Rd, where we
employ the restricted measure µ = λ|Sn , with λ the usual Lebesgue measure on Rd.

To this end, open balls in a metric space are denoted B = B(x, r), and their dilations by CB = B(x, Cr),
despite the ambiguity that balls may not be uniquely defined by their radii. Where necessary, we will include
subscripts to indicate the ambient space in which the balls are located. Thus if X ⊂ Rd, then with center
x ∈ X and radius r > 0, the ball inRd is B(x, r) = BRd (x, r)while the ball in X is BX(x, r) = B(x, r)∩ X. We also
apply this subscript notation for relative boundaries, i.e. ∂XE refers to the boundary of E, when E is treated
as a subset of X.

Throughout this paper we will consider only measures µ whose support is all of the underlying metric
space X, i.e. supp(µ) = X and that µ(B(x, r)) ∈ (0,∞) for all balls in the metric space.

The volume of any unit ball B(x, 1) in Rd is ωd = π
d
2

Γ( d2 +1)
, where Γ(x) is the standard Gamma function.

Definition 2.1. Ametricmeasure space (X, d, µ)with aRadonmeasure µ is said to beD-(measure) doubling
if for all r ∈ (0, diam(X)) and any x ∈ X we have

0 < µ(B(x, 2r)) ≤ Dµ(B(x, r)) (2.2)

and (X, d, µ) is said to be Ahlfors Q-regular (with constant CAR > 0) if for all r ∈ (0, diam(X)) and any
x ∈ X we have

1
CAR

rQ ≤ µ(B(x, r)) ≤ CARrQ . (2.3)

It is easy to see that the doubling condition (2.2) forces D ≥ 1 and that every Ahlfors Q-regular space is 2QC2AR-
doubling.

Further, every D-doubling space is metrically doubling, in the following sense: a metric space X is N-
metrically doubling if there is a constant N ∈ N so that for every ball B(x, r) ⊂ X, there are centers
x1, x2, . . . , xN (possibly not distinct) so that

B(x, r) ⊂
N⋃
i=1

B(xi , r/2).

The metric doubling constant N of a D-doubling space can be chosen as N = N(D) = D4. This is really an
upper bound, as often N can be chosen smaller in specific spaces. See [10] for further details about metrically
and measure doubling spaces.

Occasionally, we will assume that X is geodesic, that is between any pair of points x, y ∈ X there is a
rectifiable curve γ : I → X that connects them and with length d(x, y). This is automatically true for our
main space of interest, X = Rd. For metric measure spaces in general, it ensures that µ(∂B(x, r)) = 0, for any
ball B(x, r) ⊂ X, in which case the map (x, r) → µ(B(x, r)) then becomes continuous. See, for example, [5,
Corollary 2.2].

For any subset E ⊂ X and x ∈ X, we denote the distance to the set E by

d(x, E) = inf
y∈E

d(x, y).

(For empty sets E, we interpret the infimum and hence the distance as infinite.)
If E ⊂ X is a µ-measurable set, then x ∈ X is called a point of density of E if

lim
r→0

µ(B(x, r) ∩ E)
µ(B(x, r)) = 1. (2.4)

The following lemma allows for choosing scales with density within a desired range, once an upper bound
for the density is met.
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Lemma 2.5. Let X = (X, d, µ) be a D-doubling metric measure space and let E be a Borel subset of X. If x is a
point of density of E and if R > 0 is such that

µ(E ∩ B(x, R))
µ(B(x, R)) ≤ b

for some b ∈ (0, 1), then there exists r′ ∈ (0, R) such that

b
D ≤ µ(E ∩ B(x, r′))

µ(B(x, r′)) ≤ b.

Remark 2.6. Above, if X is such that the map (x, r) → µ(B(x, r)) is continuous, then the upper bound is
attained for some r′, i.e.

µ(E ∩ B(x, r′))
µ(B(x, r′)) = b.

This occurs, for instance, when X is a geodesic metric space, or when X is a subset of a geodesic metric space
and equipped with the restricted measure and distance.

Proof of Lemma 2.5. Put h(t) := µ(E∩B(x,t))
µ(B(x,t)) , so limt→0 h(t) = 1, and put Rk = 2−kR. Since x is a point of density

of E, there is some N0 ∈ N such that for all k ≥ N0 we have h(Rk+1) > b. Let K be the largest index such that
h(RK) ≤ b.

From doubling we have h(t/2)
h(t) ≤ D for all t > 0. So if h(RK) ≤ D−1b, then

h(RK+1) = h
(RK
2

)
≤ D · h(RK) ≤ b

which is a contradiction to K being the largest index with this property. The desired estimate for r′ = RK
follows.

2.2 Preliminaries on Uniformity

Here, a curve is a continuous map γ : I → X and Ω ⊂ X will denote a closed set.

Definition 2.7. Given x, y ∈ Ω and A ≥ 1, we say that γ : [0, 1] → X is an A-uniform curve between x and
y in Ω if γ(0) = x, γ(1) = y, diam(γ) ≤ Ad(x, y), and

d(γ(t), Ωc) ≥ 1
A min{diam(γ|[0,t]), diam(γ|[t,1])}. (2.8)

for all t ∈ [0, 1].
A subset Ω ⊂ X is called A-uniform if for every x, y ∈ Ω there is an A-uniform curve between x and y. If

Ωc = ∅, we apply the convention d(x, ∅) =∞, and the condition is vacuously satisfied for Ω = X.
An open subset R of X is called (A−)co-uniform if ∂R is connected and X \ R is A−uniform.

The notion of uniform domains Ω (in Euclidean spaces) has been introduced by Martio and Sarvas, [15]
where it was initially required that such sets Ω be open. We remark, that if a closed subset Ω is uniform then
its interior int(Ω) is uniform in the classical sense. One can also show that ∂Ω is a porous subset, and thus
has zero Lebesgue measure. This allows us to apply many of the calculations in classical literature, see [9,
Section 4.2] for a more detailed discussion. We also refer to [2, 21] for further, fundamental results about such
domains. Co-uniformity, which appears in [9], was introduced as a further, convenient context for multiply-
connected domains.

Clearly every set is a uniform domain in itself, i.e. if Ω = X then the conditions in Definition 2.7 are
automatically satisfied. Of the next two lemmas, the first relates uniformity of domains to the previous notion
of doubling (Definition 2.1) and the second is a technical estimate to be used later. See [9, Lemma 4.24] and
[9, Lemma A.3] for detailed arguments, respectively. The first of these also follows easily from [2, Lemma 4.2].
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Lemma 2.9. Suppose Ω ⊂ X is A-uniform and A ≥ 1 and that X is Q-Ahlfors regular with constant C, then Ω is
Q-Ahlfors regular with constant C′ = C′(C, Q) when equipped with the restricted measure.

Lemma 2.10. Let Ω ⊂ X be a closed subset and let x, y ∈ Ω. If γ : [0, 1] → Ω is an A-uniform curve between
x and y in Ω, then for every t ∈ [0, 1] it holds that

d(γ(t), Ωc) ≥ 1
4A min{d(x, Ωc) + diam(γ|[0,t]), d(y, Ωc) + diam(γ|[t,1])}.

We will also need the following result. It affirms the intuitive idea that nontrivial overlaps of uniform
domains are also uniform. To formulate it, recall that a metric space X is C-quasiconvex, if for every pair
of points x, y ∈ X there exists a rectifiable curve γ : [0, 1] → X so that γ(0) = x, γ(1) = y, and Len(γ) ≤
Cd(x, y). We emphasise that we will only apply this result with X = Rd, which is clearly 1-quasiconvex (and
in particular, convex). The proof is somewhat technical, however, and can be found in [9, Theorem 4.22].

Theorem 2.11. ([9, Theorem 4.22]) Fix structural constants A1, A2, C, D ≥ 1. Let X be a C-quasiconvex, D-
metric doubling metric space, let Ω be an A1-uniform subset of X, and let S be a bounded, A2-co-uniform subset
of X. If

S ⊂ int(Ω)

then Ω \ S is A′-uniform in X, with dependence A′ = A′(A1, A2, C, D, d(S,∂Ω)diam(S) ).

We will also need the following “collared” estimate for neighborhoods of uniform domains. In general,
for non-empty subsets E of X we define their neighborhoods Nr(E) for r > 0 by

Nr(E) =
⋃
e∈E

B(e, r). (2.12)

Lemma 2.13. Let A, D ≥ 1 and let (X, d, µ) be a D-doubling space. There are constants CN = CN(D, A) ≥ 1 and
b = b(D, A) > 0 so that for every nonempty A-uniform subset U of X, every x ∈ U, every r ∈ (0, diam(U)], and
every δ ∈ (0, 1) it holds that

µ(BU(x, r)) ∩ Nδr(Uc)) ≤ CNδbµ(BU(x, r)).

This follows directly from [2]. More precisely, as stated in [2, Lemma 4.2] uniform domains satisfy the
“corkscrew” condition, so by [2, Theorem 2.8] this is equivalent to the “local b-shell” conditions for balls;
this is precisely the estimate in our preceding Lemma. While the proofs in [2] are formulated for uniform
domains that are open, they apply in our setting of closed uniform domains too, since µ(∂R) = 0; see the
discussion above after Definition 2.7. The following lemma allows us to exchange balls in an appropriate way
for ones which are strictly contained inside Ω.

Lemma2.14. LetA, D ≥ 1, let X bea geodesicD-doubling space, and letΩ ⊂ X beA-uniform. For any η ∈ (0, 1)
there is a σ = σ(D, A, η) ∈ (0, 1) so that for any choice of x ∈ Ω, r > 0, and E ⊂ Ω with

Θµ(E, B(x, r)) ≥ η,

and any s ∈ (0, σ) there exists p ∈ B(x, 8Ar) so that d(p, Ωc) ≥ σr and

Θµ(E, B(p, sr)) ≥ 1
2D2Θµ(E, B(x, r)) ≥ 1

2D2 η.

Proof. Let x ∈ Ω and r > 0. With the same constants as above, let b = b(D, A) and CN = CN(D, A) ≥ 1 be as in
Lemma 2.13. Now put

σ = 1
32A

(
η

2CN

)1/b
,
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so σ ∈ (0, 1). Let s ∈ (0, σ) be given, and in what follows, put δ := 8Aσ < 1
2 (

η
2CN )

1/b and let

Fi =
{
E \ N2δr(Ωc), if i = 1
B(x, r) \ (E ∪ N2δr(Ωc)), if i = 2.

It follows from our hypothesis that

min{µ(E ∩ B(x, r)), µ(B(x, r) \ E)} ≥ ηµ(B(x, r)). (2.15)

By our choices of σ and δ,

CN(2δ)b < CN · η
2CN

≤ 1
2Θµ(E, B(x, r)),

so for the case i = 1, using U = Ω in Lemma 2.13 we have

µ((E \ N2δr(Ωc)) ∩ B(x, r)) ≥ µ(E ∩ B(x, r)) − µ(E ∩ N2δr(Ωc) ∩ B(x, r))
≥ µ(E ∩ B(x, r)) − µ(Ω ∩ N2δr(Ωc) ∩ B(x, r))
≥ µ(E ∩ B(x, r)) − CN(2δ)bµ(B(x, r) ∩ Ω)

> Θµ(E, B(x, r))µ(B(x, r)) −
Θµ(E, B(x, r))

2 µ(B(x, r)).

From this (and replacing E with its complement, for i = 2) we conclude

µ(Fi ∩ B(x, r)) ≥ Θµ(E, B(x, r))
2 µ(B(x, r)). (2.16)

Now consider the sets

D := {(y, z) ∈ X × X : y ∈ B(x, 2r), d(y, Ωc) ≥ δr, d(z, y) ≤ sr},
D′

i := {(y, z) ∈ X × X : z ∈ B(x, r) ∩ Fi , d(z, y) ≤ sr},

where, clearly,D′
i ⊂ D. Using Fubini’s Theorem, for i = 1, 2 it follows that∫

B(x,2r)\Nδr(Ωc)

µ(Fi ∩ B(y, sr))
µ(B(y, sr)) dµ(y) =

∫∫
D

1Fi (z)
µ(B(y, sr)) dµ(z) dµ(y)

≥ 1
D

∫∫
D′

i

1Fi (z)
µ(B(z, sr)) dµ(z) dµ(y)

≥
∫

Fi∩B(x,r)

1
Dµ(B(z, sr))

∫
B(z,sr)

1 dµ(y) dµ(z)

≥ 1
Dµ(Fi ∩ B(x, r)).

As a result, for both i = 1, 2, there thus exists some yi ∈ B(x, 2r) \ Nδr(Ωc) so that

µ(B(x, 2r) \ Nδr(Ωc))µ(Fi ∩ B(yi , sr))
µ(B(yi , sr))

≥ 1
Dµ(Fi ∩ B(x, r)).

By Equation (2.16) we have for such yi ∈ B(x, 2r) \ Nδr(Ωc) that

µ(Fi ∩ B(yi , sr))
µ(B(yi , sr))

≥ Θµ(E, B(x, r)) 12D
µ(B(x, r))
µ(B(x, 2r)) ≥

1
2D2Θµ(E, B(x, r)).

In summary, there must exist yi ∈ B(x, 2r) \ Nδr(Ωc) so that

µ(Fi ∩ B(yi , sr)) ≥
1

2D2Θµ(E, B(x, r))µ(B(yi , sr)). (2.17)
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We next consider three different cases. If

µ(B(y1, sr) \ E) > 1
2D2 µ(B(yi , sr)). (2.18)

then since d(x, y1) ≤ 2r ≤ 2Ar, the claim would follow for p := y1. Similarly, if equation (2.18) held with y2
replacing y1, then the claim would hold for p := y2 instead. Note that in these first two cases, we obtain the
weaker density estimate from the claim. In the final case, which we handle next, we obtain a point p so that
Θµ(E, B(p, sr)) = 1/2.

We can therefore assume for i = 1, 2 that

µ(B(yi , sr) \ E) ≤
1

2D2 µ(B(yi , sr)). (2.19)

Let γ : I = [0, 1] → X be a A-uniform curve joining y1 and y2, so by Lemma 2.10 we get

d(γ(t), Ωc) ≥ 1
4A min{d(y1, Ωc), d(y2, Ωc)} ≥ sr

for all t ∈ I. Since X is geodesic and doubling, the map

T(t) := µ(B(γ(t), sr) ∩ E)
µ(B(γ(t), sr))

is continuous. From Equation (2.19) we get T(0) ≥ (1 − 1
2D2 ) ≥ 1

2 and T(1) ≤ 1
2D2 ≤ 1

2 , so by continuity, there is
some t so that T(t) = 1

2 . Moreover,

d(γ(t), x) ≤ diam(γ) + d(y1, x) ≤ Ad(y1, y2) + 2r ≤ 4Ar + 2r ≤ 8Ar

follows from the definition of an A-uniform curve, in which case p = γ(t) satisfies p ∈ B(x, 8Ar) as well as

Θµ(E, B(y, sr)) = T(t) = 1
2 ≥ 1

2D2 ≥ 1
2D2Θµ(E, B(x, r))

which is the desired conclusion.

By a similar argument one also gets the following.

Corollary 2.20. Fix D ≥ 1. Suppose X ⊂ Rd is connected, suppose µ = λ|X is D-doubling, and fix r ∈
(0, diam(X)). There is a constant L = L(D) so that the following holds: if η ∈ (0, 1), E ⊂ X, and B(x, r) ⊂ X
satisfy

Θµ(E, B(x, r)) ≥ η

then for each r1 ∈ (0, r) there exists x1 ∈ X so that

Θµ(E, B(x1, r1)) ≥
1
L η.

Remark 2.21. The proof of Corollary 2.20 proceeds exactly as in Lemma 2.14, but with the following substitu-
tions:

• replace every instance of sr by r1;
• replace Nδr(Ωc) and N2δr(Ωc) by empty sets, and remove where appropriate;
• use the entire space X, so no complementary set Ωc is needed. Instead, choose

Fi =
{
E, if i = 1
X \ E, if i = 2

D = {(y, z) ∈ X × X : d(x, y) < 2r, d(z, y) ≤ r1}
D′

i = {(y, z) ∈ X × X : z ∈ B(x, r) ∩ Fi , d(z, y) ≤ r1};
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• to finish the proof, use directly that X is connected and that the map

z 7→ µ(B(z, r1) ∩ E)
µ(B(z, r1))

is continuous, in which case no explicit curve γ is needed.

We need also a lemma on volumes for subsets of interest in Euclidean spaces.

Lemma 2.22. Under the hypotheses of Theorem 1.3, then Sn ⊂ Rd is d-Ahlfors regular with constant CAR
depending only on those constants from Definition 1.1 and the sequence n.

Proof. Let A, δ, L be the constants for the uniform sparseness condition. As µ is the restriction of Lebesgue
measure, we clearly have µ(BSn (x, r)) ≤ ωdrd, . so it suffices to show the lower bound in (2.3). Since nk ∈ N
with nk ≥ 3 it clearly holds that ∞∑

k=1

1
ndk

<
∞∑
k=1

1
nd−1k

< ∞.

If we set Y = Ω, then Lemma 2.9 further implies Y is d-Ahlfors regular with some constant C(A, d). The same
is true with a different constant, if we set Y = Ω \ R for any R ∈ Rn,k, as Theorem 2.11 implies that Y is A′-
uniform, for some A′ depending solely on A (and the doubling constant of Rd). Either way, such Y is Ahlfors
d-regular with a constant C = C(A′, D).

In the following, we prove a lower bound only for some small scales depending on the sequence n. In
particular, choosing K ∈ N so that

∞∑
k=K

1
ndk

≤ δd

4d+1CLdωd
,

it suffices to prove a lower bound for r ∈ (0, δsK−1/2). Once this bound is established, with some constant C′,
it applies to all r ≤ δsK−1/4; so if instead r ∈ [δsK−1/2, diam(Sn)] then

µ(BSn (x, r)) ≥ µ(BSn

(
x, δsK−14

)
) ≥ C′

( δsK−1
4

)d
≥ C′

( δsK−1
4

)d rd

diam(Sn)d

in which case Sn is CAR-Ahlfors regular with CAR = C′( δsK−1
4 diam(Sn) )

d.
To this end, choose J ≥ K so that 1

2 δsJ < r < 1
2 δsJ−1. Let x ∈ Sn. By condition (5) in Definition 1.1, the ball

B(x, r) intersects at most one R ∈ Rn,k for k ≤ J. For any such R, let Y = Ω \ R; otherwise let Y = Ω. In either
case, Y is C-Ahlfors regular and satisfies

B(x, r) ∩ Sn = B(x, r) ∩ Y \
(⋃

k>J

⋃
R∈Rn,k

R
)
.

Now put Rn,k(x, r) := {R ∈ Rn,k : R ∩ B(x, r) = ̸ ∅}. As a special case, assuming first that for all k > J we have

µ
( ⋃

R∈Rn,k

B(x, r) ∩ R
)
≤ ωd

(4Lr
δnk

)d
, (2.23)

then summing over k gives

µ
(⋃

k>J

⋃
R∈Rn,k

B(x, r) ∩ R
)
≤

∞∑
k=J

µ
( ⋃

R∈Rn,k

B(x, r) ∩ R
)
≤
( ∞∑

k=K

1
ndk

)
ωd

4dLdrd
δd

≤ rd
4C

and along with the previous equality of sets, the lower bound follows with C′ = 1/(2C):

µ(B(x, r) ∩ Sn) = µ
(
B(x, r) ∩ Y \

⋃
k>J

⋃
R∈Rn,k

R
)

= µ(B(x, r) ∩ Y) − µ
(⋃

k>J

⋃
R∈Rn,k

B(x, r) ∩ R
)
≥ rd
2C .
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To see how estimate (2.23) is valid in the general case, observe that each R ∈ Rn,k that intersects B(x, r) can
also be included in a ball B(xR , Lsk) and that the rescaled balls B(xR , δsk−1/2) are disjoint and are contained
in B(x, 2r). Thus there are at most ( 4r

δsk−1 )
d such balls and summing over all previous such R yields

µ
( ⋃

R∈Rn,k

B(x, r) ∩ R
)
≤

∑
R∈Rn,k(x,r)

ωdLdsdk ≤ ωdLdsdk
4drd
δdsdk−1

= ωd4dLdrd
δdndk

,

which is (2.23) as desired.

3 Isoperimetry for Sierpiński sponges
In this section, we develop tools regarding isoperimetry, which are used to prove Theorem 1.3. For complete-
ness, we define Poincaré inequalities here, although, we shall quickly pivot to the equivalent notion of (rela-
tive) isoperimetry, which is what we actually prove and use.

Definition 3.1. Let 1 ≤ p < ∞. A closed subset X ofRd, with µ = λ|X, is said to satisfy a p-Poincaré inequal-
ity (with constants C, Λ ≥ 1) if for all Lipschitz functions f : X → R and all x ∈ X and r ∈ (0, diam(X)) we
have for balls B := B(x, r) that

−
∫
B

|f − fB| dµ ≤ Cr

−
∫
ΛB

|∇f |p dµ

1/p

. (3.2)

Here, for any locally Lebesgue integrable f : X → R its average value on a ball is

fB := −
∫
B

f dµ := 1
µ(B)

∫
f dµ,

and by Rademacher’s Theorem, the restriction of the gradient∇f to X is well-defined almost-everywhere.
This inequality is essentially a local property, as the following version of [1, Theorem 1.3] shows. This

quantitative version does not appear explicitly in the reference, but follows directly from their argument.

Lemma 3.3. Suppose that (X, d, µ) is a bounded, connected, D-doubling metric measure space. If X satisfies
Definition 3.1 with constant (C, Λ) for all r ∈ (0, r0), then X satisfies Definition 3.1 for all r > 0 with constants
C1 = C1(C, Λ, diam(X)

r0 ) and Λ1 = Λ1(C, Λ, diam(X)
r0 ).

3.1 Definition of isoperimetry and iteration

Lahti and Korte discuss in [13] various criteria that are equivalent to a 1-Poincaré inequality. To formulate
them, we will require two additional notions. If µ is a doubling measure on X, then put

h(B(x, r)) := 1
r µ(B(x, r))

and define for any set E ⊂ X the codimension-one Hausdorff content as

Hh,δ(E) := inf
{ ∞∑

i=1
h(B(xi , ri))

∣∣∣∣ ri ≤ δ, E ⊂
∞⋃
i=1

B(xi , ri)
}
,

and the codimension-one Hausdorff measure as

Hh(E) := lim
δ→0

Hh,δ(E).

If we use h(B(x, r)) = rs instead, we obtain the s-dimensional (spherical) Hausdorff measureHs(E) (up
to a scalar multiple, depending on convention).
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Remark 3.4. Note that if µ is Ahlfors Q-regular with constant CAR, then Hh is comparable to (Q − 1)-
dimensional (spherical) Hausdorff measureHQ−1. Indeed, we have

1
CAR

HQ−1(E) ≤ Hh(E) ≤ CARHQ−1(E),

as follows easily from thedefinition.Wewill use this fact, aswewill be givingbounds for the d−1-dimensional
Hausdorff measure instead of the codimension-one Hausdorff measure.

We are now ready to introduce the criterion [13, Theorem 1.1].

Theorem 3.5 (Korte-Lahti). A doubling metric measure space (X, d, µ) satisfies the 1-Poincaré inequality if
and only if there are constants CS , ΛS ∈ [1,∞) such that for every ball B = B(x, r) and any Borel set E ⊂ X we
have

Θµ(E, B) ≤ CSr
Hh(∂E ∩ ΛSB)

µ(ΛSB)
. (3.6)

Inequality (3.6) is known as a relative isoperimetric inequality: once a ball is given, the measure of
the boundary of Ewithin that ball controls the density of E and its complement relative to that ball. To specify
the dependence on parameters, we sometimes refer to (3.6) as a relative isoperimetric inequality with
constants CS and ΛS.

The relative isoperimetric inequality can be considered as a property of every subset E in X, relative to
every ball in the space X. However, it will be helpful to introduce a “density level” in our proofs, i.e. to consider
isoperimetric inequalities only for “large enough” sets.

Definition 3.7. Let τ, C > 0. A metric measure space (X, d, µ) is said to satisfy a (τ, C)-isoperimetric in-
equality if there is a Λ ≥ 1 such that every Borel set E ⊂ X and ball B = B(x, r) satisfies the following: if
Θµ(E, B) ≥ τ, then

Θµ(E, B) ≤ Cr
Hh(∂E ∩ ΛB

)
µ(ΛB) . (3.8)

To specify the dependence on parameters, we say that X satisfies a (τ, C)-isoperimetric inequality
with inflation factor Λ.

Since the left hand side of (3.8) is bounded below by τ, it would really suffice to give just a constant lower
bound. However, we wish the constants to match those in Equation (3.6) as closely as possible, and simply to
weaken the condition by restricting the sets considered.

Proof of Theorem 1.8. Given parameters D ≥ 2, τ ∈ (0, D−3], C > 0, and Λ ≥ 1, we will assume that X satisfies
the (C, τ)-isoperimetric inequality with inflation factor Λ and prove the isoperimetric inequality (3.6) with
CS = 2D7+log2(Λ)C and ΛS = 2Λ.

Let E be any Borel subset of X. Without loss of generality assume

µ(E ∩ B(x, r)) < 1
2µ(B(x, r)),

otherwise we prove the inequality by replacing E by Ec. Now if x ∈ X and r > 0 satisfy
µ(E ∩ B(x, 2r))
µ(B(x, 2r)) ≥ 1

D3

then by hypothesis, the inequality equation (3.8) is exactly what we want for (3.6) except for an extra factor
of D arising when the quantity µ(ΛB) is adjusted for µ(2ΛB).

We can therefore assume that
µ(E ∩ B(x, 2r))
µ(B(x, 2r)) < 1

D3 .

Consider the set of density points

S =
{
z ∈ B(x, r)

∣∣∣ lim
t→0

µ(B(z, t) ∩ E)
µ(B(z, t)) = 1

}
.
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By Lebesgue differentiation, we have µ(S) = µ(E ∩ B(x, r)) and for each z ∈ S we have
µ(E ∩ B(z, r))
µ(B(z, r)) ≤ D2 µ(E ∩ B(x, 2r))

µ(B(z, 4r)) ≤ D2 µ(E ∩ B(x, 2r))
µ(B(x, 2r)) < 1

D .

Thus, from Lemma 2.5 there exists rz ≤ r with
1
D2 < µ(B(z, rz) ∩ E)

µ(B(z, rz))
< 1
D . (3.9)

By the 5B-covering lemma (see e.g. [16, Theorem 2.1]), there is a countable subset {zi}i∈I of S and radii si = rzi
such that {B(zi , Λsi)}i∈I is pairwise disjoint, that Bi := B(zi , si) satisfy (3.9), and that

S ⊂
⋃
i∈I

B(zi , 5Λsi).

By (3.9) and the hypotheses of the theorem, each E ∩ Bi satisfies Θµ(E, Bi) ≥ 1
D2 > τ and hence the (τ, C)-

isoperimetric inequality as well:

Hh(∂E ∩ B(zi , Λsi)) ≥
µ(B(zi , Λsi))

CsiD2 ≥ µ(B(zi , 5Λsi))
CsiD5 . (3.10)

From this and the inclusion B(zi , Λsi) ⊆ B(x, 2Λr), for each i ∈ I, it follows from a repeated use of doubling
of the measure that

Hh(∂E ∩ B(x, 2Λr)) ≥
∑
i∈I

Hh(∂E ∩ B(zi , Λsi))

(3.10)≥ 1
CD5

∑
i∈I

µ(B(zi , 5Λsi))
si

≥ 1
CD5

µ(S)
r

≥ 1
2CD7+log2(Λ)

µ(B(x, 2Λr))
r

µ(E ∩ B(x, r))
µ(B(x, r))

≥ 1
CS

µ(B(x, 2Λr))
r Θµ(E, B(x, r))

which implies the relative isoperimetric inequality, as desired.

3.2 A Euclidean isoperimetric inequality

We will prove a “projected” isoperimetric inequality for Borel sets E relative to axis-aligned rectangles in
Euclidean spacesRd. This guarantees that ∂SnE has large projections, andwhen combinedwith condition (6)
from Definition 1.2, gives lower bounds forHd−1(∂SnE). To this end we formulate an isoperimetric inequality
in terms of a direction-wise Euclidean boundary.

For x ∈ Rd, denote by li,x the line containing x that is parallel to the i’th coordinate axis. If E ⊂ Rd, we
also put

∂+,iE = { x | x ∈ ∂li,x (li,x ∩ E) }.
In other words, the set ∂+,iE consists of those points x, where a sequence of points exists in the i’th coordinate
direction within E, and outside of E, which converges to it. Next, denote by πi the projection of Rd onto the
hyperplane defined by xi = 0.

We now relate the density of sets with respect to boxeswith the size of the projections of their boundaries.
The following lemma is likely classical, but we include its proof for completeness.

Lemma 3.11. Let Q = ∏d
i=1(ai , bi) be a rectangle, and E ⊂ Rd a Borel set. Then,

Θλ(E, Q) ≤ d
d∑
i=1

Hd−1(πi(∂+,iE ∩ Q))
Hd−1(πi(Q))
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Proof. The statement is invariant under affine functions of xi, so we can assume that Q = (0, 1)d. Also, the
statement is clear for d = 1.

Towards a proof by induction, assume that the statement has been proven for dimension d − 1 and that
d ≥ 2. Without loss of generality assume

λE = λ(E ∩ Q) ≤ 1
2 .

For t ∈ (0, 1) and y ∈ (0, 1)d−1 define

Ht := {(t, x) ∈ (0, 1)d−1 | x ∈ (0, 1)d−1}
ly := {(s, y) ∈ (0, 1)d−1 | s ∈ (0, 1)}

and consider the following images under π1:

I0 := {x ∈ (0, 1)d−1 | lx ⊂ E ∩ Q},
O0 := {x ∈ (0, 1)d−1 | lx ∩ E ∩ Q = ∅},
P0 := (0, 1)d−1 \ (I0 ∪ O0),

in which case it is clear that

P0 = π1(∂+,1E ∩ Q)
π1(E ∩ Q) ⊂ P0 ∪ I0
π1(Q \ E) ⊂ P0 ∪ O0.

IfHd−1(P0) ≥ 1
d λE then the statement of the lemma is trivially true, so assumeHd−1(P0) ≤ 1

d λE which implies
that

λE ≤ Hd−1(π1(E ∩ Q)) ≤ Hd−1(P0 ∪ I0) ≤
1
d λE +Hd−1(I0).

Then,Hd−1(I0) ≥ d−1
d λE. Similarly, we assumed λE ≤ 1

2 ≤ λ(Q \ E) so it follows that

min{Hd−1(I0),Hd−1(O0)} ≥
d − 1
d λE .

Now if t ∈ (0, 1) then E ∩ Ht contains a translate of I0, and its complement contains a translate of O0. Then,
we get from the d − 1-dimensional statement for E ∩ Ht, that

(d − 1)λE
d ≤ (d − 1)

d∑
j=2

Hd−2(πj(∂+,jE ∩ Ht)),

which when integrated over t and using Fubini’s theorem gives

λE ≤ d
d∑
j=2

Hn−1(πj(∂+,jE ∩ Q)).

This gives the desired inequality.

Remark 3.12. The above gives a fairly simple inductive proof of the isoperimetric inequality in Rd, although
with sub-optimal constants.

4 Proof of Theorem 1.3
To begin, recall from §2 that subscripts for balls indicate the space (and hence, the choice of metric) on which
those balls are defined.



388 | Sylvester Eriksson-Bique and Jasun Gong

Remark 4.1 (Dependence on parameters). In the proof below, many choices will depend on the parameters
from Definitions 1.1 and 1.2, as well as lemmas from earlier sections. Two parameters, β and ϵ1, will be deter-
mined at the end of the proof, as they depend on many intermediate parameters. However, none of the other
parameters will depend on the choice of β and ϵ1.

Proof of Theorem 1.3. Definitions 1.1 and 1.2 are scale-invariant, so without loss of generality we may assume
that diam(Ω) = 1. By a coordinate change we can take the maps πi to be orthogonal projections onto hyper-
planes given by xi = 0, for i = 1, . . . , d.

Before fixing other parameters, we first claim that Sn is connected. Indeed, by Theorem 2.11 the domains
obtained by removing finitely many co-uniform sets from Ω, i.e.

Sj,n := Ω \
( j⋃
k=1

⋃
R∈Rn,k

R
)

(4.2)

are a nested sequence of compact connected sets, so the intersection Sn =
⋂∞

j=1 Sj,n is also connected.
It follows from Lemma 2.22 that Sn is d-Ahlfors regular with constant CAR ≥ ωd depending on all param-

eters A, L, δ, d, n. Thus it is also D-doubling with fixed constant D = 2dCdAR.
We now proceed in four steps, indicating reductions and strategies as needed.

Step I: Reduction to a small sum: SinceRd is D-doubling and 1-quasiconvex, Theorem 2.11 implies that for
any k ∈ N and for any fixed obstacle R ∈ Rn,k the set Ω \ R is A′-uniform for some A′ ≥ A.

With ϵ1 ∈ (0, 12 ) to be determined later, choose N so that
∞∑
k=N

1
nd−1k

< ϵ1

and construct S′n analogously to Sn by using the obstacle setsR′
n,l = ∅, for l < N, andR′

n,l = Rn,l for l ≥ N, and
with Ω′ = Ω \ R in place of Ω for any R ∈ Rn,k. (In other words, the difference between Ω and Ω′ is that in the
latter we have re-inserted the obstacles contained in Rn,l for l < N - except possibly for a given R. The set S′n
thus depends on a choice of R.) Clearly Sn ⊂ S′n ⊂ Rd, so the d-Ahlfors regularity of Sn implies the d-Ahlfors
regularity of Sn′ , with the same constant CAR or smaller, and hence the same fixed doubling constant D as
above (or smaller).

So at this level N, if r < δsN−1/2 then by condition (5) of Definition 1.1 the ball B(x, r) can intersect only
one set ρ in the collection {Ωc} ∪

⋃N−1
k=1 Rn,k. Then, with the above construction of S′n with R = ρ, it holds

that

BSn (x, r) = Sn ∩ B(x, r) = S′n ∩ B(x, r) = BSn′ (x, r). (4.3)

It suffices to prove a Poincaré inequality for S′n, say with constants CPI , ΛPI . To see why, by applying (4.3)
and considering only radii r ∈ (0, δsN−1/(2ΛPI)), this gives a local Poincaré inequality in Sn as both sides of
inequality (3.1) coincide in Sn and S′n. The set Sn is bounded, D-doubling and connected, and so, by Lemma
3.3, a local Poincaré inequality further yields a global Poincaré inequality.

We now simplify notation by only considering S′n and dropping the primes, that is by increasing A we
assume now that A = A′ and that Sn = S′n is d-Ahlfors regular with constant CAR. By the construction of S′n
we may also assume that Rn,k = ∅ for k < N. We will also use a simplified notation for balls and for relative
boundaries, that is: Bn(x, r) := BSn (x, r) and ∂nE := ∂SnE. Further, for each i ∈ N we re-index ni+N−1 as ni. If
necessary, we replace Ω by Ω \ ρ as before.

Step II: The strategy for small sums
∑∞

k=N
1

nd−1k
< ϵ1 while assuming Rn,k = ∅ for k < N: By Theorems 1.8

and 3.5, it suffices to prove that there are constants C, Λ so that for sets E ⊂ Sn and balls Bn(x, r), if x ∈ Ω
satisfies

Θµ(E, Bn(x, r)) ≥ 1
D3
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then it would follow that
CrHh(∂nE ∩ Bn(x, Λr))

µ(Bn(x, Λr))
≥ Θµ(E, Bn(x, r)). (4.4)

It suffices to take r ∈ (0, diam(Sn)]. We fix such a ball, as well as a set E for the remainder. By Remark 3.4 it
suffices to prove this estimate withHd−1 replacingHh, in which case the result follows with constant CCAR
in place of C.

The proof will proceed by finding a “good” ball in two steps. We construct, as necessary, balls Bn(x1, r1)
and B(x2, r2), with x1, x2 ∈ Ω, so that Θµ(E, Bn(x1, r1)) ≥ η1 and Θλ(E, B(x2, r2)) ≥ η2; here the precise
choices of ηi, to be made at the end of Step III below, will be quantitative in the previous parameters. In
order to pass to Euclidean bounds and apply Lemma 3.11, the second ball in this process will be a Euclidean
ball. Putting x = x0 and r = r0, for i = 1, 2, we will also ensure that d(xi , xi−1) ≤ Siri−1, and ri ∈ [ 1Si ri−1, ri−1]
for some Si > 1 which will depend quantitatively on the parameters.

As a result, we show that x2 ∈ Ω satisfies both d(x2, x) ≤ Sr and r ≥ r2 ≥ 1
S r for some universal constant

S = max{S1S2, S1 + S2}, as well as

Hd−1(∂nE ∩ B(x2,
√
dr2)) ≥ ∆rd−12 (4.5)

for some universal ∆ depending on all of the constants in the statement.
Moreover by doubling, the fact that Θµ(E, Bn(x, r)) ≥ 1

D3 , and the choice of the good balls, we can deduce
estimate (4.4) from inequality (4.5). The constants C, Λ come directly from doubling and Ahlfors regularity.

With the fixed parameters A, D, δ, and L from before, let A′ = A′(A, D, δ, L) be the uniformity constant
from Theorem 2.11. This coincides with an upper bound for the uniformity constant of Ω \ R for any fixed
obstacle R. We note for clarity, that this instance of A′ is different from the previous A′ in Step I – indeed,
due to the abbreviation of notation, the new uniformity constant would arise from the removal of up to two
obstacles from the domain we started from.

Since Sn ⊂ Ω, and Sn ⊂ Ω \R for any obstacle R, then bothΩ andΩ \R are Ahlfors regular with constants
no larger than CAR. Thus, they are also D-doubling.

Step III: Choosing a good ball: Put S1 = 32A′√d
δ > 1 and r1 = min{r, 1/S1}. If r ≤ 1/S1 then it suffices

to choose x1 = x and η1 = 1
D3 . Otherwise r ∈ (1/S1, diam(Sn)], so by Corollary 2.20 there exist L1 > 0 and

x1 ∈ Sn, depending quantitatively on the parameters, so that

Θµ(E, Bn(x1, r1)) ≥
1

L1D3 , (4.6)

in which case choose instead η1 = (L1D3)−1. Note in the first case that d(x1, x) = 0 and in the second case
that

d(x1, x) ≤ diam(Sn) ≤ diam(Ω)S1r = S1r.

In either case, the distance is bounded by S1r and we have S−11 r ≤ r1 ≤ r. Now choose k ∈ N so that

δ
32A′

√
d
sk ≤ r1 ≤

δ
32A′

√
d
sk−1.

We proceed in three separate cases for i = 2.
First, if B(x1, 16A′√dr1) does not intersect Ωc or any obstacles R in Rn,l for l ≤ k, then choose x2 = x1

and r2 = r1. Second, with β > 0 to be determined later, if instead B(x1, 16A′√dr1) does not intersect Ωc but
does intersect such obstacles and if the largest such obstacle R in Rn,l for l ≤ k satisfies diam(R) ≤ βr1, then
we also choose x2 = x1 and r2 = r1. In both cases, putting η2 = ω−1

d C−1ARη1, this yields

Θλ(E, B(x2, r2)) ≥ η2 (4.7)

where we use (4.6) and the Ahlfors regularity of Sn, i.e. µ(Bn(x2, r2)) ≥ 1
ωdCAR λ(B(x2, r2)).

If neither of these two cases occurs, then B(x1, 16A′√dr1) intersects eitherΩc, or some obstacle R inRn,l
for l ≤ k with diam(R) ≥ βr1. Both cannot occur at the same time, and there can be at most one such obstacle,
due to conditions (3) and (4) in Definition 1.1 and by the above choice of k.
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If there is such a obstacle R, then define Ω′ = Ω \ R, and if there is none, then define Ω′ = Ω; either
way, Ω′ is A′-uniformwith A′ fixed as above. As noted at the end of Step II, Ω′ is also CAR-Ahlfors regular and
D-doubling. Denote by µ′ the restricted Lebesgue measure on Ω′ for which we have

Θµ′ (E, B(x1, r1)) ≥ C−2ARη1.

Here, we similarly used estimate (4.6) and the Ahlfors regularity of Ω′. For this domain, applying Lemma 2.14
to Ω′ instead of Ω and with C−2ARη1 for η, there exist σ = σ(D, A′, η1) ∈ (0, 1) and x2 = p ∈ B(x1, 8A′r1) ∩ Ω′

so that B(x2, σr1) ⊂ Ω′ ⊂ Ω as well as

Θλ(E, B(x2,
σ

4A′
√
d
r1)) = Θµ′ (E, B(x2,

σ
4A′

√
d
r1)) ≥

1
2(8

√
d)dC2ARD2

η1. (4.8)

Let r2 = σ
4A′

√
d
r1 and put η2 = 1

2(8A′
√
d)dC2ARD2 η1, from which Equation (4.7) also follows; it now suffices to

take S2 := max{8A′, 4A′√d
σ }. With this choice of ball, we will have

σδ
128A′2d sk ≤ r2 ≤

δ
32A′

√
d
sk−1.

Step IV: An isoperimetric estimate for a good ball: By construction, B(x2, 2A′√dr2) does not intersect Ωc.
Fromour choice of r2 above, anyobstacleR that intersectsB(x2, 2A′√dr2)will also intersectB(x1, 16A′√dr1)
and is contained in Ω′ and therefore satisfies either R ∈ Rn,l for some l > k or R ∈ Rn,l with l ≤ k with

diam(R) ≤ βr1 ≤
4A′√d

σ βr2. (4.9)

If there is an obstacle for which the second case applies, then call it R0; otherwise let R0 = ∅.
Now, let Q be the cube centered at x2 of side length 2r2 and with faces parallel to the coordinate planes,

so Q contains the ball B(x2, r2) and λ(Q) ≤ 2d
√
ddω−1

d λ(B(x2, r2)).
Then for η3 = ωd(2dCAR

√
dd)−1η2, the above estimates (4.8) and (4.7) imply

Θλ(E, Q) ≥ (ω−1
d
√
d
d2d)−1Θλ(E, B(x2, r2)) ≥ (ω−1

d
√
d
d2d)−1ω−1

d C−1ARη2 = η3.

By Lemma 3.11, there is an i so that

Hd−1(πi(Q ∩ ∂+,iE)) ≥
(2r2)d−1η3

d2 . (4.10)

Fix a choice of such an index i.
Let S = πi(Q ∩

⋃
l
⋃

R∈Rn,l
R), i.e. the “shadow” of all of the obstacles intersecting Q and removed from

Ω. Consider the portion of the boundary not shadowed by obstacles:

∂iE := Q ∩ ∂+,iE \ π−1i (S).

If z ∈ ∂iE, then since z ∈ Q ∩ ∂+,iE, there is a sequence of points zEj ∈ E ∩ li,z (j ∈ N) and a sequence
in its complement zEcj ∈ Ec ∩ Ii,z converging to z. These sequences lie in Sn, since they are not shadowed by
obstacles in Q. Indeed, z ∈ ∂nE and we have shown

∂iE ⊂ ∂nE ∩ Q. (4.11)

It thus suffices to prove that Hd−1(∂iE) is greater than a multiple of rd−12 . We will do this by estimating
Hd−1(πi(∂iE)) from below. To do this we note

πi(∂iE) = πi(Q ∩ ∂+,iE) \ S. (4.12)

Now, S consists of two parts:⋃l>k
⋃

R∈Rn,l
πi(R ∩ Q) and πi(R0 ∩ Q). Since R0 is either empty or satisfies

Equation (4.9), it follows that
Hd−1(πi(R0)) ≤ βd−1

(4A′√d
σ

)d−1
rd−12 . (4.13)
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Let ρ = 128A′2d
σδ r2 ≥ sk, so Q ⊂ B(x2, ρ). For the other part, we apply condition (6) from Definition 1.2 and the

assumption that Rn,k = ∅ for k < N. Indeed, putting M = max(k + 1, N) we have

Hd−1
(
πi

⋃
l>k

⋃
R∈Rn,l

πi(R ∩ B(x2, ρ))

)
≤

∞∑
l=M

Lρd−1

nd−1l
≤ ϵ1L(128A′2d)d−1

σd−1δd−1
rd−12 . (4.14)

Then estimates (4.13) and (4.14), together with R0 ∩ Q ⊂ R0 and Q ⊂ B(x2, ρ), give

Hd−1(S) ≤ Hd−1(πi(R0)) +Hd−1

πi

⋃
l>k

⋃
R∈Rn,l

πi(R ∩ B(x2, ρ))


≤

(
ϵ1L(128A′2d)d−1

σd−1δd−1
+ βd−1

(4√dA′

σ

)d−1)
rd−12 . (4.15)

Now, we choose ϵ1 = σd−1δd−1η3
4d2L(128A′2d)d−1 and β =

σ
4A′

√
d
( η3
4d2 )

1
d−1 . These choices, together with estimates (4.15)

and (4.10) together with the equality (4.12) and inclusion (4.11) give

Hd−1(∂nE ∩ B(x2,
√
dr2)) ≥ Hd−1(∂nE ∩ Q) ≥ Hd−1(∂iE)

≥ Hd−1(πi(∂iE))
(4.12)≥ Hd−1(πi(Q ∩ ∂+,iE)) −Hd−1(S)
(4.15)
(4.10)
≥ (2r2)d−1η3

d2 − rd−12 η3
2d2 ≥ η3

2d2 r
d−1
2 . (4.16)

This is estimate (4.5), from which (4.4) follows after applying doubling, Ahlfors regularity as well as the
estimates for d(x2, x) ≤ Sr and r2 ≥ 1

S r obtained by following the previous steps. This concludes the proof of
the isoperimetric inequality.

A Explicit examples
Here, we give an explicit application of Theorem 1.3. This is a generalization of a construction of Mackay,
Tyson, and Wildrick [14] to higher dimensions.

Let n = (ni)∞i=1 be a sequence of odd positive integers with ni ≥ 3. Fix a dimension d ≥ 2 and consider the
following iterative construction:

1. At the first stage, put S0,n = [0, 1]d and T10,n = [0, 1]d and T0,n = {T10,n}.
2. Assuming that we have defined Sk,n, T jk,n, Tk,n at the kth stage, for k ∈ N,

• Subdivide each T ∈ Tk,n into (nk+1)d equal subcubes and exclude the central one.
• Index the remaining subcubes in any fashion as T jk+1,n, and let Tk+1,n = {T jk+1,n} be the collection of
all the remaining cubes.

The k + 1’th order pre-sponge is defined, consistent with (4.2), as the set

Sk+1,n =
⋃

T∈Tk+1,n

T .

3. Define Rn,k to be the set of central 1/nk+1 subcubes that were removed from each T ∈ Tk,n which are
removed at the k’th stage and put Rn,k =

⋃k
l=1Rn,l. Further we note that for k ∈ N,

sk =
k∏
i=1

1
ni

is the side length of each cube T ∈ Tk,n. (For consistency, let s0 = 1.)
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The Sierpiński-sponge associated to the sequence n is then defined as

Sn =
⋂
k≥0

Sk,n. (A.1)

When d = 2, we often call these Sierpiński-carpets due to the fact when n = (3, 3, 3 . . .) the construction
yields the usual “middle-thirds” Sierpiński carpet. Indeed, in the plane, all Sn are homeomorphic to this
space.

The main results by Mackay, Tyson, and Wildrick [14, Theorem 1.5–1.6], for dimension d = 2, imply a
characterization when a Sierpiński carpet with the restricted measure satisfies a Poincaré inequality and has
positive measure. (A reader may notice that they consider instead a renormalized limit measure, which in the
relevant positive measure case is comparable to the restricted measure.) Specifically, the subset satisfies a 1-
Poincaré inequality if and only if n−1 = ( 1ni ) ∈ ℓ1. Their result also states that the carpet satisfies a p-Poincaré
inequality for some (or any) p > 1 if and only if n−2 = ( 1n2i ) ∈ ℓ1. The p > 1 regime behaves quite differently,
and the authors investigated this in more detail in a separate paper [9]. In that paper, there also appears a
version of the following theorem for p > 1; see [9, Theorem 1.6]. These together fully extend the results [14] to
all dimension, as well as to obstacles with different geometries.

The following result is a higher dimensional analogue of the Mackay-Tyson-Wildrick Theorem, for the
p = 1 case.

Theorem A.2. Let n = (ni) be a sequence of odd integers with ni ≥ 3, and let d ≥ 2. The space (Sn, | · |, λ)
satisfies a 1-Poincaré inequality if and only if

∞∑
i=1

1
nd−1i

< ∞. (A.3)

Proof. We check the various conditions of having a sparse collection of co-uniform domains in [0, 1]d with
small projections and then the claim follows from Theorem 1.3. These can be directly verifiedwith the choices
L = 4(

√
dr)d−1, δ = 1

3 , Ω = T0 and A = 1
6d .

Conditions (1), (2): The uniformity and co-uniformity of squares is easy. For example, for the unit cube T0,
if we take x, y ∈ T0 = Ω with d(x, y) = s, then we can form γ by first choosing radial paths towards the
center of the square c from x and y of lengthmin{s/2, d(x, c)} andmin{s/2, d(y, c)}, respectively, and then
concatenating by a straight line segment. This gives a path of length at most 6s, which is 1

6d -uniform.

Condition (3): Each R ∈ Rn,k has side length sk, and so diameter at most
√
dsk.

Conditions (4), (5): If R ∈ Rn,k, then R is a central 1/nk cube of some T ∈ Tn,k−1. Thus the distance to the
boundary, or any other higher level obstacle, is at least the distance to the boundary of T, that is at least
1
3 sk−1, since nk ≥ 3.

Condition (6): Set K = 1. Include πi(B(x, r) ∩ S0,n) into a d − 1 dimensional cube Q0 of side length at most
4
√
dr, which is a union of d − 1 cubes Q = {Qi : i = 1, . . . , N}, for some N, in the grid of side length sk−1.

Each cube Qi of side length sk−1 will include at most one projected cube πi(R) for some R ∈ Rn,k. Such a
cube is centered and accounts for at most 1

nd−1k
of the volume λ(Qi). Thus, λ

(
πi

(⋃
R∈Rn,k

∩Qi

))
≤ 1

nd−1k
λ(Qi).

The entire volume of the cube Q0 is at most (4
√
dr)d−1. Summing over all i = 1, . . . , N gives the claim with

L = (4
√
dr)d−1.

Remark A.4. One can replace the square lattice with a triangular lattice, and perform the removal procedure
on a central triangle instead of a central square. The only crucial property one must ensure is that the central
triangle does not intersect the boundary of its parent triangle. The triangle lattice also comeswith two natural
(non-orthogonal) projections and one may verify the conditions of Theorem 1.3 in a similar fashion. This
would give a triangular version, depicted in Figure 1, of Theorem A.2. The details are left to the reader.
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