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A Pair Formation Approach to 
Modeling Inheritance of Social Traits 

S. Lubkin *and C. Castilla-Chavez** 

Abstract. Transmission of cultural traits behaves superficially like genetic transmission, 
but is substantially more complicated, since transmission is influenced by the population 
at large, as is disease transmission. We present a framework for modeling cultural trans­
mission by a system of ordinary differential equations, with nonlinearities both in the 
transmission and in the formation of pairs. The framework is illustrated with a simple 
example. 

1. Introduction 

Mathematical models of social dynamics have been studied extensively both in the 
context of demography, and in their ov..-n right. There is an extensive literature on 
marriage functions that goes back to 1949 [9]. Currently, there are two approaches 
that dominate the modeling of social dynamics. Classical dynamics follow the 
birth and death processes within the female population [8]. The classical formalism 
has proven extremely useful in the study of age-dependent mortality and fertility 
in demographic processes. An alternative approach that is gaining considerable 
attention consists of using models that follow the dynamics of pairs. This formalism 
naturally incorporates the processes of pair formation and dissolution in addition 
to the usual birth and death processes. Pair formation models have been used to 
study demographic processes, population genetics, and epidemiological processes. 
For a thorough list of references, see [3]. 

The availability of an axiomatic framework [3] opens up the possibilities for 
systematic study of a variety of questions in demography, epidemiology, popu­
lation genetics, ecology, and social and cultural dynamics. Our objective here is 
to illustrate the use of our axiomatic approach for the construction of dynamic 
models that may prove useful in the study of the propagation or survival of social 
traits such as religion and language. The traditional approach [2,4] has been to 
track generations, assuming cultural transmission occurs once, and all births are 
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simultaneous. All parameters are probabilities, rather than rates. We will take a 
mixed approach, incorporating both rates and probabilities. 

Section 2 introduces the pair-formation framework, and in Section 3 we derive 
the general formula for the cultural transmission system. In Section 4, we analyze 
the simplest nontrivial example of pair formation and cultural transmission. 

2. Classical and modern approaches 

In 1972, Parlett asked, "Can there be a marriage function?" [11]. In mathematical 
terms, this was asking whether or not it is possible to have a satisfactory mathe­
matical description of heterosexual pair formation, i.e. mathematically valid and 
biologically relevant. The first answer known to us is provided by the classical 
demographic pair-formation model [5,6,9]. The approach is based on the use of a 
nonlinear function 1/J to model the process (rate) of pair formation. For the situa­
tion with one class each of females f(t) and males m(t), the mixing/pair formation 
function 1/J for this heterosexually-active mixing population is assumed to satisfy 
the following properties at timet [6,10]: 

(a) 1/J(O,j) = 1/J(m,O) = 0, i.e. in the absence of either males or females there 
is no pair formation, 

(b) 1/J (am, a f) = a'¢ ( m, f) V a, m, f >-: 0, i.e. if the sex ratio remains con­
stant, the increase in pair formation is proportional only to population size, 

(c) '¢( m + u, f + v) ~ '1/J( m, f) V u, v;f, m ~ 0, i.e. 1/J is monotonic in m and 
f. 

Condition (b) implies that most reasonable mixing functions are of the form 

In demography and epidemiology, researchers have employed a variety of pair 
formation functions, including 

1/J(m, f) = c min(m, f) 

'¢( m, f) = c.;;nl 

. ) mf 
1/J(m,/ = 2c (m +f) 

where c, an arbitrary positive constant, denotes the rate of pair formation. Pair for­
mation can represent the occurrence of marriages, sexual liaisons, social contacts, 
etc. 
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3. Formulation of the general model 

Definitions 

Consider a two-sex population divided into N groups. The groups may represent 
different languages, religions, socio-economic groups, geographic characteristics, 
etc. For simplicity, assume the number of male groups is the same as the number 
of female groups, a 50:50 sex ratio in each group, including equal birth rates 
for males and females, uniform mortality rates, and heterosexual pairing. These 
assumptions can be relaxed, but doing so does not contribute much to the current 
discussion, although it may contribute in specific cases where data indicates so. 
Let 

mi = number of single males in group i 
fi = number of single females in group i 
Qij = number of pairs with male of type i and female of type j 
Mi = L; Qi; = number of paired i males 
Fi = E; Q;i =number of paired i females 
X!k = proportion of offspring of an lk pair which are of type i 
rzk = reproductive rate of lk pair 
Ai = Ez Lk ru.,X!kQlk = recruitment rate of single males or females of type i 
D'lk = separation rate of lk pa~r --
J.I. = mortality rate 
bi = per capita pair formation rate of i males 
Ci = per capita pair formation rate of i females 
Pi; = proportion of type-i male pairings which are with j females 
Qij = proportion of type-i female pairings which are with j males 

The above definitions give: 

I>ij = L% = 1 
j j 

L:ctmi = L:bdi 
i i 

Mixing framework 

Following Castilla-Chavez and Busenberg [3], we use an axiomatic framework to 
describe the probabilities associated with pair formation which form a substantial 
portion of the basis of our models for the transmission of cultural traits. Specifi­
cally, the set of mixing probabilities, Pi; and Qi;, establishes the mixing/pair for-
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mation among individuals of a heterosexually-active population if they satisfy the 
following postulates: 

(AI} 0 :::; Pi; :::; I, 0 :::; Qij :::; I 
(A2} L:; Pij = E; Qij = I 
(A3} c;miPi; = b;J;Q;i 
(A4} If, for some i or j, c;b;md; = 0, then we define Pi;= Qij = 0. 

Property (A3} simply expresses conservation of pairings. A useful class of pair 
formation functions is given by proportionate mixing, or Ross solutions [3], 

- b;f; 
Pij = P; ="' 

LJCimi 

_ c;m; 
Qij = Q; = L;bdi 

(Ia) 

(I b) 

where, of course, L:, c;mi = L:i bdi· It can be shown [3], that all solutions to 
(AI}-(A4} can be given by multiplicative perturbations of proportionate mixing, 

R!R"!' 
Qij = iJ;(<Pi; + Ek1iik~r> 

(2a} 

(2b) 

where tPii are preference coefficients which yield deviations from pure proportionate 
mixing, and Rf" is given by I- L:kPktPik and R{ is given by I- L:k iJktPik· 

General model 

With the above mixing framework, we can now write the general model 

j 

j, = At - (p. + bi)f, + :E<JJ. + O'ji)Q;i 
j 

Q,; = c;miPi;- (2J.L + u,;)Q,; 

= b;fiQji- (2p. + O'i;)Qij 

(3a) 

(3b) 

(3c) 

(3d) 

where Ai, Pi;, Qij may be complicated nonlinear functions of time and/or the state 
variables, and where we have made use of the conservation property (A3}. 
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Recruitment 

The recruitment function is the key to the dynamics of extinction versus persis­
tence, since we assume mortality is uniform across groups. If a group's recruitment 
does not keep up with the uniform mortality as well as other groups, it will not 
persist, if by persistence we mean proportional representation being bounded away 
from zero. If persistence is defined instead as population being bounded away from 
zero, even though proportionate population may go to zero, then persistence re­
quires that recruitment outpace mortality solely within a group, not necessarily 
when compared with other groups. 

As examples of the types of recruitment functions that might be easily incor­
porated into the model, consider 

(a) maternal determination: 

Ai = L L rzkQzko(k, i) 
l k 

where o ( i, j) is 1 if i = j, 0 otherwise, 
(b) biparental determination: 

where 0 :::; 'Y :::; 1, 

Ai = L L rzkQzk('Yo(k, i) + (1- 'Y)o(l, i)) 
l k 

(c) biparental determination influenced by outside population: 

~ = L L rzkQzk[f3('yo(k, i) + (1- -y)o(l, i)) + (1- {3) ~mi: lit M~-: F~.l 
z k im, + '+ '+ ' 

where 0 :::; {3 :::; 1, etc. More elaborate and germane functions may be conjured, 
based on what is known or conjectured about a particular system. In most cases, 
the values of the parameters are not generally known, but sometimes they are 
indeed quantifiable [4]. 

4. Example: maternal determination 

As an example, consider the following model. Let the mortality and separation 
rates be the same for all groups, and let the type of the offspring be determined 
solely by the type of its mother, i.e. 

xjk = c(k,j) 

where o(i,j) is 1 if i = j, 0 otherwise. Furthermore, let the recruitment rate be 
directly proportional to the number of paired females of each type, with birth rates 
ri. Assume some mixing functions Pij,qij· Then the general model reduces to 

(4a) 
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ji = riFi- (J.L + bi)/i + (J.L + a)Fi 

Qij = CimiPii- (2J.L + a)Qij 

= b;fiq;i- (2J.L + a)Qij 

(4b) 

(4c) 
(4d) 

Summing the Q equations over j and i respectively, we obtain the aggregated 
model 

mi = riFi- (J.L + Ci)mi + (J.L + a)Mi 

ji = riFi- (J.L + bi)fi + (J.L + a)Fi 

Mi = Ci,mi- (2J.L + a)Mi 

Pi = bdi - {2J.L + a )Fi 

(5a) 

(5b) 
(5c) 
(5d) 

since, by definition, 'L.; Pii = 'L.; qii = 1. The aggregated model is linear, so 
its only equilibrium is zero, and all populations remain in a fixed ratio, so no 
populations go extinct unless all do. We can write (5) in matrix form, 

(6) 

where X= (mb ... ,mN,fi, ... ,JN,Mb ... ,MN,Fl, ... ,FN)T, and where A, a 
4N x 4N matrix, can be written in block form as 

where 

B = diag( -J.L - t;) 

C = diag(J.L +a) 

D=diagh) 

E = diag( -J.L- bi) 

F = diag(J.L +a+ ri) 

G = diag(Ci) 

H = diag( -2J.L- a) 

J = diag(bi) 

K = diag( -2J.L- a) 

A is easily triangulable by row operations: 

(

B 0 C 
- 0 E 0 
A= 0 0 H- [j] C 

0 0 0 

D ) F 
[j] D 

K- [i] F 

{7) 

(8) 

where [ajb]ij = ai;/bii if i = j, 0 otherwise, i.e. scalar division of nonzero ma­
trix elements. The eigenvalues of A must be the same as those of A, which are 
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immediately seen to be 

The last N eigenvalues may take on positive values if ri is sufficiently large. Thus 
the stability of the zero equilibrium will depend on the birth rates ri. 

A simple estimate for the spectrum of A is given by observing that the first 
3N columns of A are strictly diagonally dominant, and the last N columns are 
strictly diagonally dominant if JL+o-+2ri < 2JL+o- V i. That is, a necessary and 
sufficient condition for the strict diagonal dominance of A is that JL > 2 max (ri)· 
Observing further that all the diagonal elements of A are negative, and applying 
the Levy-Desplanques Theorem [7], we see that a sufficient condition for the zero 
solution to be stable is that JL > 2 max (ri)· This is simply a condition of mortality 
outpacing reproduction, and does not depend on pair formation rates at all. j,F'rom 
this analysis, we see that in systems where the recruitment rates can be written 
solely in terms of the aggregates Mi, Fi, i = 1, ... , N, i.e. in systems where we need 
not keep track of different types of pairs, we need not keep track of pair formation 
functions Pii, qii. This will not, however, generally be the case, since generally 
one's parentage will affect one's social traits. Analysis of most social transmission 
models will be far more complicated than this analysis. 

5. Discussion 

Previous approaches to modeling cultural transmission have either been very spe­
cific, as in the bilingual competition model of Baggs and Freedman [1], or have 
been general, but confined by a rigid framework. For example, Cavalli-Sforza and 
Feldman [4] and Boyd and Richerson [2] both construct an elaborate framework 
based on cultural transmission once per generation, e.g. at birth. This has the dis­
advantages of excluding cultural transmission during an individual's lifetime (e.g. 
religious conversion) and of requiring that generations be of equal duration, and 
generated simultaneously. The discrete-generation approach is not necessarily any 
easier to analyze than our differential equation approach, and it may introduce 
behaviors (e.g. periodicity) more appropriate to organisms which do have discrete, 
simultaneous generations, such as insects, than to humans. 

The problems of cultural transmission are complex, and the data is minimal. 
We plan to continue this work in several directions, generally incorporating more 
realistic nonlinearities, tied to data, and analyzing the resulting more complicated 
systems with more numerically-oriented techniques, since it takes only one more 
complicated term in our equations to render their explicit analysis intractable. 
Most realistic models of cultural transmission will go beyond the proportionate 
mixing of our example of Section 4, and incorporate like-with-like preferences, i.e. 
4>ii =f. 0 in the pair formation terms. 
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For example, a study by the Council of Jewish Federations [12] reports that the 
religion of the spouses of American Jewish subjects was Jewish in 89% of marriages 
before 1965, and in 43% of marriages after 1985, although the proportion of Jews in 
the US population was only 2-3% during that period. This indicates a very large ¢11 

(preference of minority members for minority members) of 29 and 22 respectively, 
in comparison to the relatively indifferent <Poo (preference of majority members for 
majority members) of 1.0, during that period. Thus any serious modeling attempt 
must include like-with-like preferential mixing, where it is appropriate. 

It will also be of interest to study various recruitment functions, as discussed in 
Section 3. It may also be fruitful to incorporate age structure into the framework, 
since cultural transmission often has an age-linked component [4]. 
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