Chapter 4. Selenium- and Tellurium-Nitrogen Reagents Tristram Chivers ^a and Risto S. Laitinen ^b ^a Department of Chemistry, University of Calgrary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4 ^b Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland #### **Table of Contents** - 4.1 Scope and Introduction - 4.2 Binary Selenium-nitrogen and Tellurium-nitrogen Reagents - 4.2.1 Neutral Species - 4.2.2 Cations - 4.2.3 Anions - 4.3 Chalcogen-nitrogen Halides - 4.3.1 Ternary Selenium-nitrogen Halides - 4.3.2 Imido Chalcogen Halides - 4.4 $E(NSO)_2$ Reagents (E = Se, Te) - 4.5 Selenium/Tellurium-nitrogen-silicon Reagents - 4.6 Chalcogenylnitrosyls ArN=Se - 4.7 Chalcogen(IV) Diimides - 4.7.1 Synthesis, Structures, and Applications in Organic Synthesis - 4.7.2 Thermal Decomposition - 4.7.3 Insertion and Cycloaddition Reactions - 4.7.4 Reactions with Nucleophiles and Electrophiles - 4.8 Tris(*tert*-butylimido)tellurite Dianion - 4.9 Chalcogen(II) Amides and Diamides - 4.10 Radical Chemistry - 4.11 Conclusions - 4.12 References ## **Abstract** The reactivity of the chalcogen-nitrogen bond towards main-group element or transition-metal halides, as well as electrophilic and nucleophilic reagents, is the source of a variety of applications of Se-N and Te-N compounds in both inorganic or organic chemistry. The thermal lability of Se-N compounds also engenders useful transformations including the formation of radicals via homolytic Se-N bond cleavage. These aspects of Se-N and Te-N chemistry will be illustrated with examples from the reactions of the binary selenium nitride Se₄N₄, selenium nitrogen halides $[N(SeCl_n)_2]^+$ (n = 1, 2), the synthons $E(NSO)_2$ (E = Se, Te), chalcogen-nitrogen-silicon reagents, chalcogen(IV) diimides RN=E=NR, the triimidotellurite dianion $[Te(N^tBu)_3]^{2-}$, chalcogen(II) amides and diamides $E(NR_2)_2$ (E = Se, Te; R = alkyl, SiMe₃), and heterocyclic systems. ## 4.1 Scope and Introduction The development of the chemistry of selenium-nitrogen (Se-N) and tellurium-nitrogen (Te-N) chemistry has lagged behind the remarkable advances in sulfur-nitrogen (S-N) chemistry that have occurred in the past 40 years [1]. In part, this slow progress can be attributed to the lack of simple, easily handled Se-N and Te-N reagents. Nevertheless, a number of such reagents are now available and the goal of this chapter is to provide an overview of their applications in inorganic and organic chemistry. The chemistry of Se-N and Te-N compounds has been discussed in various reviews and book chapters over the past 30 years [2-11]. While several of these expositions cover the topic in general [2, 3, 6a, 7, 8, 10], other contributions address specific aspects, e.g. metal-Se-N compounds [4], binary Se-N species [5], heterocyclic Se-N and Te-N compounds [6b, 11], and imido-selenium- and – tellurium compounds [9]. A book [1] and three recent book chapters include a discussion of S-N as well as Se-N and Te-N chemistry [8a, 8b, 11]. In keeping with the focus of this treatise on synthetic chemistry, the emphasis of this chapter will be on the preparative methods for the most important reagents containing Se-N and Te-N bonds, as well as their reactions. Comparison will be made with related S-N reagents wherever appropriate. The structural chemistry of Se-N and Te-N compounds will not be discussed, since this aspect is covered well in many of the aforementioned book chapters and reviews. This overview will start with a discussion of the applications of inorganic selenium-nitrogen reagents commencing with binary selenium nitrides, notably Se_4N_4 , followed by sections on selenium- and tellurium-nitrogen halides, $E(NSO)_2$ synthons (E = Se, Te), and chalcogen-nitrogen-silicon (Se-N-Si) and Te-N-Si) reagents. The second half of the chapter will deal with organic Se-N and Te-N reagents, including the ephemeral selenonitrosyls ArN=Se (Ar = aryl), chalcogen diimides RN=E=NR (E = Se, Te: R = alkyl, aryl), triimidochalcogenite dianions $[E(NR)_3]^{2-}$ (E = Se, Te), and chalcogen diamides $E(NR_2)_2$ (E = Se, Te; R = alkyl, SiMe₃). # 4.2 Binary Selenium-Nitrogen and Tellurium-Nitrogen Reagents ### 4.2.1 Neutral species The quintessential sulfur-nitrogen cage molecule S₄N₄ is a rich source of novel sulfur-nitrogen chemistry [1, 8]. The selenium analogue Se₄N₄ may be prepared in several ways. One of these involves the reaction of (CH₃CH₂O)₂SeO with gaseous ammonia in benzene; this procedure has been adapted for the preparation of ¹⁵N-enriched Se₄¹⁵N₄ by using stoichiometric amounts of ¹⁵NH₃ [12]. A second method employs the treatment of selenium tetrahalides SeX₄ (X = Cl or Br) with ammonia at elevated temperatures [13, 14]. A more convenient procedure involves the reaction of (Me₃Si)₂NLi with a mixture of selenium chlorides (eq. 1). Pure Se₄N₄ is isolated in 66 % yield after washing with 10 % aqueous KCN solution to remove red selenium, selenium halides and selenium oxides and with water to remove LiCl [15]. $$12(Me_3Si)_2NLi + 2Se_2Cl_2 + 8SeCl_4 \rightarrow 2Se_4N_4 + 24Me_3SiCl + 12LiCl$$ (1) Caution: Dry Se₄N₄ is an extremely dangerous material, which can explode at the slightest provocation, e.g. when touched with a metal spatula. It is essential, therefore, to store and handle this reagent under an inert solvent, *e.g.* a hydrocarbon, to limit reactions to small amounts (<500 mg) of Se₄N₄, and to wear appropriate protective clothing [14, 15]. Despite its hazardous nature Se₄N₄ has been used as the source of a number of important seleniumnitrogen compounds either via oxidation or adduct formation (Figure 4.1). The first example involved reaction of Se₄N₄ with WCl₆ in boiling dichloromethane, which generates a complex of the monomeric chloroselenonitrene (NSeCl) ligand, *viz.* dimeric [Cl₄W(NSeCl)]₂ [16]; the analogous molybdenum complex is obtained from treatment of Se₄N₄ with MoCl₅ [17]. The oxidation of Se₄N₄ with [Se₄][AsF₆]₂ produces [Se₃N₂]₂[AsF₆]₂ in high yield as an orange solid that can be manipulated with a metal spatula and is stable to heat [18]; the binary Se-N cation in this salt is a dimer of the radical cation [Se₃N₂]^{+*}. The corresponding dication [Se₃N₂]²⁺ is produced upon treatment of Se₄N₄ with AsF₅. The chlorinated dimer [Se₃N₂Cl]₂ is formed as an explosive, insoluble dark brown powder from the reaction of Se₂Cl₂ with Se₄N₄ in dichloromethane [19]. A major goal in investigations of selenium-nitrogen compounds has been the generation of polymeric (SeN)_x [20], the selenium analogue of the well-known polysulfur nitride (SN)_x. The latter is a conducting polymer with metallic properties, which is generated by the polymerization of S_2N_2 formed by heating S_4N_4 [1]. By contrast, the pyrolysis of Se_4N_4 under vacuum at temperatures up to 220 °C results in decomposition to elemental selenium and N_2 gas [20]. Although the binary selenium nitride Se_2N_2 has not been isolated, the reaction of Se_4N_4 with AlBr₃ in dibromomethane at room temperature generates the adduct [(AlBr₃)₂(μ -Se₂N₂)], incorporating a bridging Se_2N_2 ligand, as an air-sensitive yellow solid [21] (Figure 4.1). Transition-metal complexes of Se_2N_2 are found in the dianion [Pd₂Cl₆(μ -Se₂N₂)]²⁻ formed in the high-temperature reaction of Se_4N_4 with [Pd₂Cl₆]²⁻ salts in dichloromethane [22]. The reactions of Se₄N₄ with transition-metal reagents have also been employed to generate complexes of the chelating binary selenium-nitrogen anions, *e.g.* Se₃N⁻, Se₂N₂²⁻ and its protonated derivative Se₂N₂H⁻, via oxidative addition reactions (Figure 4.2) [4]. For example, the combination of Se₄N₄ with [PtCl₂(PMe₂Ph)]₂ in boiling chloroform produces a mixture of [PtCl(Se₃N)(PMe₂Ph)] and [PtCl(Se₂N₂H)(PMe₂Ph)]Cl, which were separated (in low yields) by chromatography [23, 24] (Figure 4.2). Complexes of the *N,Se* chelating Se₂N₂²⁻ dianion are also formed via the oxidative addition of Se₄N₄ to the zerovalent platinum complex Pt(PPh₃)₃ in dichloromethane. The monomeric complex [Pt(Se₂N₂)(PPh₃)₂] was characterized in solution by ³¹P NMR spectroscopy while the solid-state structure of the dimer [Pt(Se₂N₂)(PPh₃)]₂.CH₂Cl₂, which was isolated in 30 % yield, was determined by X-ray crystallography [25]. binary sulfur nitride S_4N_2 is a six-membered ring with a sulfur diimide -N=S=N- functionality. It is a low melting red solid (Mp 23 °C), which must be stored below -20 °C to avoid decomposition [26]. The preparation of the selenium analogue Se_4N_2 as a black powder stable at room temperature "in almost quantitative yield" from the reaction of Se_2Cl_2 and trimethylsilyl azide has been claimed [27]. However, a reinvestigation of this reaction showed that the black powder is the selenium-nitrogen chloride $Se_3N_2Cl_2$ [28]. The facile thermal decomposition of acyclic selenium(IV) diimides RN=Se=NR (R=alkyl, $SiMe_3$) (Section 7) above 0 °C implies that cyclic Se_4N_2 is likely to have low thermal stability due to the presence of the -N=Se=N- functionality in the ring. The Unlike Se₄N₄ (and S₄N₄) the only known tellurium nitride has the composition Te₃N₄, as expected for a tellurium(IV) nitride. A highly explosive yellow powder identified as "Te₃N₄" is obtained from the treatment of potassium triimidotellurite $K_2[Te(NH)_3]$ with an excess of ammonium nitrate in liquid ammonia [29]. The structure of "Te₃N₄" may involve a μ_3 -nitrido bridging three tellurium(IV) centres of a Te₃N₃ ring [30]. Support for this suggestion comes from the identification of this structural motif in the tetra-adduct Te₆N₈(TeCl₄)₄ in which the central feature is a dimer of Te₃N₄ [31]. The highly explosive nature of "Te₃N₄" precludes synthetic applications. #### 4.2.2 Cations The simple binary cations NS^+ and NS_2^+ are important reagents in sulfur-nitrogen chemistry [1]. The selenium analogues NSe^+ and NSe_2^+ are unknown as isolated
species. However, the latter may be generated *in situ* from the acyclic cation $N(SeCl)_2^+$ upon reduction with $SnCl_2$ (see Section 3). ### 4.2.3 Anions The acyclic sulfur-nitrogen anions SSNS⁻ and SNSNH- may be used as isolated or *in situ* reagents, respectively, for the generation of metal complexes [32]. Although the selenium analogues have not been characterized in solution or in the solid state, solutions of Se₄N₄ in liquid ammonia behave as an *in situ* source of such anions. Thus, Se₄N₄ dissolves in liquid ammonia at high pressure (*ca.* 50 atm.) and reacts with PtCl₂(PMe₂Ph)₂ to give Pt(Se₂N₂)(PMe₂Ph)₂ [33]. It was observed, however, that the ¹⁵N-labelled material Se₄¹⁵N₄ can be recovered unchanged from such solutions implying that Se₄N₄ does not react with liquid ammonia. By contrast, liquid ammonia solutions of S₄N₄ have been shown to contain binary S-N anions such as cyclic S₃N₃⁻ and S₄N₅⁻ by ¹⁴N NMR spectroscopy [34] Solutions of SeCl₄ in liquid ammonia provide a safer route to metal complexes of the $Se_2N_2^2$ -dianion than the reactions of Se_4N_4 described in Section 1, as illustrated by the example shown in eq. 2; the orange platinum complex [Pt(Se₂N₂)(DPPE)] (DPPE = Ph₂PCH₂CH₂PPh₂) is isolated in 74 % yield [35]. Presumably the Cl₂ by-product formed in this reaction is purged under the stream of nitrogen that is used to remove the excess of ammonia, since it is known that complexes of the type [Pt(Se₂N₂)(PR₃)₂] react with halogens to regenerate Se₄N₄ [36]. $$[PtCl_2(DPPE)] + 2SeCl_4 + 8NH_3 \rightarrow [Pt(Se_2N_2)(DPPE)] + 2Cl_2 + 6NH_4Cl$$ (2) ## 4.3 Chalcogen-Nitrogen Halides ### 4.3.1 Ternary Selenium-Nitrogen Halides As a source of the –SeNSe- unit the cationic selenium-nitrogen halides [Cl₂SeNSeCl₂]⁺ and [ClSeNSeCl]⁺ are potential building blocks in Se-N chemistry; they can be prepared in gram-scale quantities from readily available reagents. The former species was obtained in an attempt to generate the binary cation NSe⁺ from the reaction of [SeCl₃][AsF₆] with N(SiMe₃)₃. When this reaction is carried out in CFCl₃ solution at 0 °C the orange solid [(SeCl₂)₂N][AsF₆] is produced in 83 % yield (eq. 3) [37]. The use of the hexachloroantimonate [SeCl₃][SbCl₆] rather than the hexafluoroarsenate salt results in loss of Cl₂ from the initial product to generate the [ClSeNSeCl]⁺ cation as the orange SbCl₆⁻ salt in 89 % yield [38] (eq. 4). $$6[SeCl_3][AsF_6] + 5N(SiMe_3)_3 \rightarrow 3[(SeCl_2)_2N][AsF_6] + 9Me_3SiF + 6Me_3SiCl + 3AsF_3 + N_2 (3)$$ $$2[SeCl3][SbCl6] + N(SiMe3)3 \rightarrow [(SeCl)2N][SbCl6] + SbCl5 + Cl2 + 3Me3SiCl$$ (4) The reaction of [(SeCl)₂N][SbCl₆] with CF₃C≡CCF₃ and SnCl₂ in liquid SO₂ produces the five-membered cationic ring CF₃CSeNSeCCF₃⁺ as the colorless SbCl₆⁻ salt [39, 40] (Figure 4.3) This transformation probably occurs via the intermediate formation of NSe₂⁺ (Section 2.2), which undergoes cycloaddition with the alkyne. The reduction of the cyclic CF₃CSeNSeCCF₃⁺ cation with sodium dithionite in liquid SO₂ occurs with the loss of nitrogen to produce the cyclic diselenide CF₃CSeSeCCF₃ as a red liquid in 40 % yield, which slowly dimerizes to an eight-membered ring (Figure 4.3). For comparison, the corresponding reaction with the sulfur analogue generates the neutral 7π-electron radical CF₃CSNSCCF₃ as a black-green liquid via a one-electron reduction [41]. $$[N(SeCl)_{2}]_{2}[SbCl_{6}]$$ $$F_{3}C$$ $$CF_{3}$$ $$F_{3}C$$ $$CF_{3}$$ $$F_{3}C$$ $$CF_{3}$$ $$F_{3}C$$ $$F_{3}C$$ $$CF_{3}$$ $$F_{3}C$$ $$CF_{3}$$ $$F_{3}C$$ $$CF_{3}$$ $$F_{3}C$$ $$CF_{3}$$ Red crystals of the selenium-nitrogen chloride Se₂NCl₃ are isolated in 57 % yield from the reaction of tris(trimethylsilyl)amine with selenium tetrachloride in a 1:2 molar ratio in *boiling* dichloromethane [42]. If the same reaction is carried out *at 0-20 °C* in CH₂Cl₂ the chlorine-rich product Se₂NCl₅ is obtained as a pale pink powder in 94 % yield [43]. Under similar conditions the reaction of SeBr₄ with N(SiMe₃)₃ generates the explosive bromo derivative Se₂NBr₃ [43]. Reaction of Se₂NCl₃ with the chloride-ion acceptor GaCl₃ produces the acyclic [ClSeNSeCl]⁺ cation (Figure 4.4a). The cyclic cation [Se₃N₂Cl]⁺ is formed as the SbCl₆⁻ salt upon treatment of Se₂NCl₅ with antimony(III) chloride in CH₂Cl₂ (Figure 4.4b); this cation is also obtained, as the GaCl₄⁻ salt in 50 % yield, upon reduction of [ClSeNSeCl]⁺ with triphenylantimony in dichloromethane [45] There are no tellurium analogues of the selenium-nitrogen halides Se_2NCl_x (x = 3, 5). Instead the reaction of $N(SiMe_3)_3$ with tellurium tetrachloride in a 1:2 molar ratio in CH_2Cl_2 followed by treatment of the white precipitate with AsF_5 produces the $Te_4N_2Cl_8^{2+}$ dication as the AsF_6^- salt [46]. This dication is formally a dimer of the hypothetical tellurium(IV) imide $[Cl_3Te-N=TeCl]^+$, however no reactions of this species have been reported. #### 4.3.2 Imido Chalcogen Halides A homologous series of moisture-sensitive, acyclic *tert*-butylimido selenium(II) chlorides ClSe[N(¹Bu)Se]_nCl (n = 1-3) have been isolated from the cyclocondensation reactions of *tert*-butylamine with SeCl₂ in various stoichiometries [47]. These intermediates react with *tert*-butylamine to form cyclic selenium imides via either nucleophilic substitution or reduction; the latter process produces rings with an Se-Se linkage (Figure 4.5). The bifunctional reagents ClSe[N(¹Bu)Se]_nCl (n = 1-3) are potential synthons for the incorporation of other main group elements into Se-N rings. Imidoselenium(IV) dihalides of the type RNSeCl₂ are either unknown (R = alkyl, aryl) or thermally unstable yellow liquids R_FNSeCl_2 ($R_F = CF_3$ or C_2F_5); the latter decompose at ambient temperature with the formation of the diazene $R_FN=NR_F$ and a mixture of selenium chlorides [48]. By contrast, the tellurium analogues 'BuNTeX₂ (X = Cl, Br) can be isolated as thermally stable yellow-gold (X = Cl) or red (X = Br) solids from the redistribution reactions between tellurium tetrahalides and 'BuNTe(μ -N'Bu)₂TeN'Bu in THF at 23 °C (eq 5) [49]. The halide exchange between [Cl₂Te(μ -N'Bu)₂TeCl₂]₂ and trimethylsilyl bromide provides a cleaner route to the corresponding bromide. $$^{t}BuNTe(\mu-N^{t}Bu)_{2}TeN^{t}Bu+ \ 2TeX_{4} \rightarrow 4/n[X_{2}Te(\mu-N^{t}Bu)_{2}TeX_{2}]_{2} \ (X = Cl, Br)$$ (5) The potential of the imidotellurium(IV) dichloride as a reagent in Te-N chemistry is indicated by the reaction with potassium *tert*-butoxide in THF, which proceeds at 23 °C to give the metathetical product in 71 % yield (eq 6) [b]. $$1/2[Cl_{2}Te(\mu-N^{t}Bu)_{2}TeCl_{2}]_{2} + 4KO^{t}Bu \rightarrow (^{t}BuO)_{2}Te(\mu-N^{t}Bu)_{2}Te(O^{t}Bu)_{2} + 4KC1$$ (6) ## 4.4 $E(NSO)_2$ Reagents (E = Se, Te) Bis(sulfinylamino)chalcogenanes $E(NSO)_2$ (E = Se Te) reagents are readily prepared by the methods shown in eq 7 and 8. The yield of yellow crystals of $Se(NSO)_2$ is 69 % when the reaction is conducted in CH_2Cl_2 [50, 51]. Although $SeCl_2$ is thermally unstable, it is possible that this reagent could be used (to avoid loss of selenium) if the reaction is carried out in THF at 0 °C [52]. $$2Me_3SiNSO + Se_2Cl_2 \rightarrow Se(NSO)_2 + 1/8Se_8 + 2Me_3SiCl$$ (7) There are a number of synthetic routes to the tellurium analogue $Te(NSO)_2$. The recommended procedure involves the reaction of $Te(SCF_3)_2$ with $Hg(NSO)_2$ in CS_2 at 50 °C for 5 days in the absence of light (eq 8) [53]. The sparingly soluble solid is isolated in 60 % yield after sublimation. The unusual use of photolytically sensitive $Te(SCF_3)_2$ as a source of tellurium(II) in this synthesis probably reflects the instability of tellurium(II) dihalides TeX_2 (X = Cl, Br). $$Te(SCF_3)_2 + Hg(NSO)_2 \rightarrow Te(NSO)_2 + Hg(SCF_3)_2$$ (8) Bis(sulfinylamino)chalcogenanes $E(NSO)_2$ (E = Se, Te) are versatile reagents in chalcogennitrogen chemistry [54, 55]. A common reaction of thionylimines RNSO is the thermal or basepromoted elimination of SO_2 to give the corresponding acyclic sulfur(IV) diimide RN=S=NR [1]. In the case of $Se(NSO)_2$ this process gives rise to heterocyclic compounds containing different chalcogens. For example, the reaction of $Se(NSO)_2$ with $TiCl_4$ produces the highly insoluble yellow adduct $SeSN_2 \cdot TiCl_4$ (Figure 4.6), which is assumed to have a polymeric structure with bridging fourmembered $SeSN_2$ rings [51]. By contrast, reactions with the oxidizing Lewis acids MF_5 (M = As, Sb) produce the dimeric cation $[Se_2SN_2]_2^{2+}$ as $[MF_6]^-$ salts [51]. A different type of behavior is observed with $SeCl_4$, which yields the cations $[ClSe_2SN_2]^+$ as the chloride salt [51]. The corresponding reactions with tellurium tetrahalides TeX_4 (X = Cl, Br) generate X_2SeSN_2 , a five-membered ring that contains all three heavy chalcogens (Figure 4.6) [56]. $$Se \xrightarrow{Ticl_4}$$ $$Se \xrightarrow{Ticl_4}$$ $$Se \xrightarrow{Ticl_4}$$ $$Se \xrightarrow{Ticl_4}$$ $$Se \xrightarrow{Se}$$ \xrightarrow$$ In contrast to the behavior of Se(NSO)₂, the oxidation of the tellurium analogue Te(NSO)₂ with Cl₂ in CS₂ produces high yields of the tellurium(IV) derivative Cl₂Te(NSO)₂, which can also be obtained quantitatively by treatment of elemental tellurium with ClNSO in CS₂ at 0 °C for 48 h [53]. Cl₂Te(NSO)₂ undergoes SO₂ elimination upon reaction with Cl₂ to form the dinuclear complex Cl₂Te(μ -Cl)(μ -Cl)(μ -NSN)TeCl₂ or when heated at 95 °C (Figure 4.7) [53] $$S = Te CI$$ $$S = Te CI$$ $$N = S = N$$ $$CI_{2}Te(NSO)_{2}$$ $$CI_{2}Te(NSO)_{2}$$ $$CI = Te CI$$ $$N = S = N$$ $$S = N$$ ## 4.5 Selenium/Tellurium-Nitrogen-Silicon Reagents The susceptibility of Si-N bonds to cleavage by main-group element halides accompanied by facile elimination of volatile trimethylsilyl halides render selenium-nitrogen-silicon reagents versatile sources of other selenium-nitrogen compounds. However, the thermal instability of the selenium(IV) diimide Me₃SiNSeNSiMe₃ (Section 7) has limited
the application of this reagent. It can be prepared by the reaction of (Me₃Si)₂NLi with SeOCl₂ in pentane [57] or diethyl ether [58]. Reaction of *in situ*-generated Me₃SiNSeNSiMe₃ with acyclic [(NPPh₂Cl)₂]Cl produces the six-membered ring (Ph₂PN)₂(NSeCl), which can be isolated as pale yellow crystals in 40 % yield, suggesting that wider use of this reagent should be possible (Figure 4.7) [58]. $$\begin{pmatrix} Ph & P+ & Ph \\ Ph & P+ & Ph \\ CI & CI \\ + & Ph & Ph \\ + & Ph & Ph \\ + & 2 Me3SiCI \\ NSiMe3$$ By contrast to the selenium(IV) analogue (*vide supra*), the selenium(II) derivative (Me₃Si)₂NSeN(SiMe₃)₂ is thermally more stable and, hence, represents a more useful reagent in Se-N chemistry. The reaction of LiN(SiMe₃)₂ with Se₂Cl₂ in a 2:1 molar ratio in *n*-hexane at -78 °C produces this monoselenide as yellow crystals in 75 % yield (eq 9) [59]. In a subsequent investigation of the same reaction, the diselenide (Me₃Si)₂NSeSeN(SiMe₃)₂ was isolated as a yellow oil in 19 % yield, in addition to the monoselenide (Me₃Si)₂NSeN(SiMe₃)₂ (64 %) [60]. The triselenide (Me₃Si)₂NSeSeSeN(SiMe₃)₂ is the major product of the reaction of (Me₃Si)₂NH with Se₂Cl₂ in a 2:1 molar ratio in CH₂Cl₂ at 0 °C; however, the triselenide could not be separated in pure form from the co-formed di- and tetra-selenides [60] $$2\text{LiN}(\text{SiMe}_3)_2 + \text{Se}_2\text{Cl}_2 \rightarrow \text{Se}[\text{N}(\text{SiMe}_3)_2]_2 + 1/8\text{Se}_8 + 2\text{LiCl}$$ (9) The easily handled reagent (Me₃Si)₂NSeN(SiMe₃)₂ reacts with SeCl₄ to produce pure Se₄N₄ in 71% yield [15], but the method depicted in eq 1 is the preferred route to this explosive material. An extension of this methodology to the reaction of (Me₃Si)₂NSeN(SiMe₃)₂ with a mixture of SCl₂ and SO₂Cl₂ in a 1:1:1 molar ratio produced good yields of the mixed-chalcogen cage 1,5-Se₂S₂N₄ as an insoluble red-brown powder accompanied by small amounts of red selenium [61]. By contrast, a mixture of six-membered rings, predominantly SeS₃N₂, is produced in the reaction of (Me₃Si)₂NSN(SiMe₃)₂ with a 3:1:1 mixture of S₂Cl₂, Se₂Cl₂ and SeCl₄ [62]. The explosive black selenium-nitrogen chloride Se₃N₂Cl₂ is obtained in 95 % or 89 % yields, respectively, by reaction of (Me₃Si)₂NSeN(SiMe₃)₂ with (a) a mixture of SeCl₄ and Se₂Cl₂ in a 4:1 molar ratio (eq 10) or (b) SeOCl₂ [19]; these reactions are carried out in CH₂Cl₂ at –78 °C The related dimeric selenium-nitrogen chloride (Se₃N₂Cl)₂ is isolated as an insoluble dark brown powder in essentially quantitative yield by adjusting the stoichiometry of the reactants (eq 11) [19]. $$Se[N(SiMe_3)_2]_2 + 4SeCl_4 + Se_2Cl_2 \rightarrow Se_3N_2Cl_2 + 12MeSiCl$$ (10) $$2Se[N(SiMe_3)_2]_2 + 2SeCl_4 + Se_2Cl_2 \rightarrow (Se_3N_2Cl)_2 + 8MeSiCl$$ (11) The unsymmetrically substituted monoselenide (Me₃Si)^tBuNSeN^tBu(SiMe₃) with only one Si-N bond per amido group is obtained in 75 % yield as a yellow solid from the reaction of the corresponding lithium amide with Se₂Cl₂ in *n*-hexane [63]. Treatment of this monoselenide with SnCl₄ in a 1:2 molar ratio in dichloromethane produces the *N*,*N*'-chelated SnCl₄ complex of the selenium(IV) diimide ^tBuN=Se=N^tBu in a redox process that involves elimination of Me₃SiCl (Figure 4.9) [64]. The formation of long chains typified by the polymer (SN)_x is a prominent feature of sulfurnitrogen chemistry [1]. In that context the preparation of the yellow monoselenide (Me₃SiNSN)₂Se in 65 % yield by the route shown in eq 12 is significant [65]. The treatment of this monoselenide with SeCl₂ in CH₂Cl₂/THF at -78 °C, however, results in cyclization to give the cage molecule 1,5-Se₂S₂N₄ as a dark red precipitate in 73 % yield (eq 13) [65]. $$2(Me_3SiN)_2S + SeCl_2 \rightarrow (Me_3SiNSN)_2Se + 2Me_3SiCl$$ (12) $$(Me3SiNSN)2Se + SeCl2 \rightarrow 1,5-Se2S2N4 + 2Me3SiCl$$ (13) # 4.6 Chalcogenylnitrosyls ArN=Se Chalcogenylnitrosyls RN=Se are formed as transient species when R = aryl. The selenium(II) synthon PhSO₂SeCl has been used as a source of selenium in reactions with arylamines ArNH₂ in the presence of trimethylamine. The selenonitrosoarene ArN=Se can be trapped as a Diels-Alder adduct with dimethylbutadiene (Figure 4.10) [66]. The 1,2-selenazines formed in this way have limited stability (2-3 h) at room temperature when $Ar = 4-XC_6H_4$ (X = Br, Me), but this is improved to 3 days when $Ar = 2-MeSC_6H_4$. Dimers of RNSe have not been observed, however larger cyclic oligomers (RNSe)_n (R = alkyl, n = 3, 4) have been isolated as stable crystalline solids from cyclocondensation reactions of SeCl₂ with primary amines [47] or the thermal decomposition of selenium(IV) diimides (Section 7). $$ArN + PhSO_2SeCI \longrightarrow [Ar - N = Se]$$ $$R = H, SiMe_3$$ Me Ar Me Ar N Me Me Me Me Me # 4.7 Chalcogen(IV) Diimides ### 4.7.1 Synthesis, structures and applications in organic synthesis The selenium(IV) diimides RN=Se=NR (R = t Bu, Ts) (Ts = p-toluenesulfonyl) were first reported and used as *in situ* reagents for the allylic amination of olefins or 1,3-dienes more than 40 years ago [67,68]. In early experiments these imidoselenium reagents were prepared by the reaction of SeCl₄ with 2 equivalents of the corresponding amine (tert-butylamine or p-toluenesulfonamide) in CH₂Cl₂ in the presence of 4 equivalents of an amine base. A more reactive aminating reagent is formed when anhydrous chloramine-T (TsNClNa) is stirred with elemental selenium in CH₂Cl₂ [67,68]. Owing to the insolubility of the reactants in this synthesis, a subsequent modification involved the use of the more soluble 2-nitrobenzenesulfonamide (NsNClNa) for the generation of NsN=Se=NNs [69]. This in situ reagent reacts in a manner similar to selenium dioxide in the allylic amination of olefins and 1,2-diamination of 1,3-dienes (Figure 4.11) [69] The thermally unstable dialkyl selenium(IV) diimides RN=Se=NR (R = t Bu, Ad) (Ad = adamantyl) have been isolated as an oil_or yellow crystals, respectively, from the reaction of the appropriate primary alkylamine with SeCl₄ [70, 71]; the introduction of supermesityl substituents (R = Mes* = 2,4,6- t Bu₃C₆H₂) enhances the thermal stability of the selenium(IV) diimide [72]. The X-ray analyses of RN=Se=NR (R = Ad, Mes*) reveal monomeric structures in the solid state [71, 72]. By contrast, the tellurium(IV) diimide t BuNTe(μ -N t Bu)₂TeN t Bu, which is obtained in good yields as a thermally stable orange solid from the reaction of LiNH t Bu with TeCl₄ in THF, is dimeric [73]. The formation of the tellurium(IV) diimide is accompanied by smaller amounts of the cyclic tellurium(II) imide (TeN t Bu)₃ when this reaction is conducted in toluene [74]. The calculated dimerization energy for the [2 + 2] cycloaddition of two E(NR)₂ (E = Se, Te; R = t Bu, SiMe₃) molecules is strongly exothermic for tellurium(IV) diimides, but approximately thermoneutral for selenium(IV) diimides, consistent with the experimental observations [75, 76]. However, the dimerization of selenium(IV) diimides is promoted by group 12 metal dihalides MCl_2 (M = Cd, Hg) to give N,N'-chelated complexes of ${}^{t}BuNSe(\mu-N{}^{t}Bu)_{2}SeN{}^{t}Bu$ [77], which are structurally analogous to the HgCl₂ complex of the tellurium(IV) diimide dimer ${}^{t}BuNTe(\mu-N{}^{t}Bu)_{2}TeN{}^{t}Bu$ [78]. ### 4.7.2 Thermal Decomposition The thermal decomposition of RN=Se=NR (R = ¹Bu, Ad) provides a source of several cyclic selenium imides (Figure 4.12) [76, 79]. Thus, a solution of ¹BuN=Se=N¹Bu in toluene at 20 °C produces the six-membered ring Se₃(N¹Bu)₃, the five-membered ring Se₃(N¹Bu)₂ and its higher homologue the fifteen-membered ring Se₉(N¹Bu)₆ [79]. Similarly, the thermal decomposition of AdN=Se=NAd in THF gives rise to Se₃(NAd)₃ and Se₃(NAd)₂; the five-membered ring structure of the latter was confirmed by X-ray analysis [76]. Cyclodimerization of acyclic RN=Se=NR to give a four-membered ring (Section 7.1) may be the first step in the formation of these cyclic selenium imides. However, the generation of selenium-rich systems must involve elemental selenium, which is formed during the thermal decomposition as evinced by the detection of ¹BuN=N¹Bu as a byproduct [79]. A more versatile route to the generation of cyclic selenium imides is provided by cyclocondensation reactions of SeCl₂ with ¹BuNH₂, since the stoichiometry can be controlled (Section 3) [47]. ### 4.7.3 Insertion and Cycloaddition Reactions Selenium(IV) diimides readily undergo insertion reactions into the Si-Si bond of hexachlorodisilane (eq 14) [80]. Insertion into the C-B bond of triethylborane occurs at low temperatures, but the initially formed cyclic product ${}^{t}BuN(\mu-SeEt)(\mu-BEt_2)N{}^{t}Bu$ decomposes at -50 ${}^{o}C$ [81]. $$RN=Se=NR + Cl_3Si-SiCl_3 \rightarrow R(Cl_3Si)N-Se-N(SiCl_3)R$$ (14) A different type of behavior is observed between selenium diimides and bis(amino)stannylenes [82]. In a 1:1 molar ratio these reactants produce a red spirocyclic compound, which formally results from the oxidative addition of the selenium diimide to the Sn(II) center. However, the use of an excess of the stannylene results in the insertion of a Sn(II) centre into an Sn-N bond of the initially formed spirocyclic compound to give a yellow tricyclic compound with a Sn-Sn bond (Figure 4.13) [82]. A double cycloaddition occurs in the reaction of the tellurium(IV) diimide dimer 'BuNTe(μ-N'Bu)₂TeN'Bu with an excess of *tert*-butyl isocyanate (Figure 4.14) [83]. The initial step generates an *N*,*N*'-ureato tellurium imide, which can be viewed as the cycloaddition product of 'BuNCO and monomeric tellurium(IV) imide. With additional 'BuNCO this intermediate is converted to the corresponding telluroxide, which is isolated as a dimer. ### 4.7.4 Reactions with Nucleophiles and Electrophiles The sensitivity of the polar chalcogen-nitrogen bonds in chalcogen(IV) diimides to nucleophilic attack at the chalcogen centre is signified by the ready conversion of the >E=NR (Se, Te) functionality to the corresponding >E=O group
upon exposure to moisture. The formation of the partial hydrolysis products AdNSe(μ-NAd)₂SeO and OSe(μ-NAd)₂SeO during the decomposition of AdN=Se=NAd in THF is a cogent example of this tendency [76]. In the case the tellurium(IV) diimide 'BuNTe(μ-N'Bu)₂TeN'Bu deliberate hydrolysis using stoichiometric amounts of (C₆F₅)₃B•H₂O results in the successive replacement of the terminal imido groups by oxido ligands [84]. Both monomeric selenium(IV) diimides and dimeric tellurium(IV) diimides are susceptible to nucleophilic attack at the chalcogen centre by reagents such as LiNH^tBu or KO^tBu to give the tripodal dianions [E(N^tBu)₃]²⁻ [85, 86] and [Te(O^tBu)(N^tBu)₂]⁻ [87], respectively. Reactions of the tris(*tert*-butylimido)tellurite dianion Te(N^tBu)₃]²⁻ are discussed in Section 9 [88]. The terminal N'Bu groups in the dimer 'BuNTe(μ-N'Bu)₂TeN'Bu are readily protonated by Brønsted acids. For example, reaction with HCF₃SO₃ produces the monoprotonated derivative [('BuNH)Te(μ-N'Bu)₂TeN'Bu][CF₃SO₃] in quantitative yields [89]. Similarly, 'BuNTe(μ-N'Bu)₂TeN'Bu forms a 1:1 adduct with the strong Lewis acid B(C₆F₅)₃ [90]. By using the appropriate amount of the electrophile CF₃SO₃Me either mono- or di-methylation of the exocyclic N'Bu groups in the dimer can be achieved [91]. ### 4.8 Tris(tert-butylimido)tellurite dianion Tris(*tert*-butylimido)chalcogenite dianions $[E(N^tBu)_3]^{2-}$ (E = Se, Te) are potentially versatile reagents in chalcogen-nitrogen chemistry. In the case of the selenium derivative (E = Se) applications are limited due to facile air oxidation to give radical species [92]. However, detailed investigations of the reaction chemistry of the tellurium derivative have revealed a rich coordination chemistry that, in some cases, is accompanied by redox behavior (Figure 4.15) [88]. For example, in group 13 chemistry the reaction with PhBCl₂ produces an *N*,*N*'-chelated complex with a terminal N^tBu group, which is an unique representative of a monomeric tellurium(IV) imide [85]. By contrast, the reaction with InCl₃ involves a second chelation of the Te(N^tBu)₃]²⁻ dianion to give a dimer with two five-coordinate indium centers (Figure 4.15] [93]. In group 14 chemistry, the reaction with tin(II) chloride provides an intriguing case of redox behavior [94]. The product incorporates the pyramidal Te(N^tBu)₃]²⁻ ligand bridging two tin atoms in different oxidation states, one of which is attached to a terminal telluride. The structure is completed by an N^tBu bridge between the two tin centres resulting from Te-N^tBu bond cleavage in the redox process. Redox behavior is also observed in the reaction of $Te(N^tBu)_3]^{2-}$ with PhPCl₂ [88]. In this transformation half of the tellurium in the dianion is reduced to tellurium metal while the two phosphorus centers are oxidized from the +3 to +5 oxidation states to give a spirocyclic complex of tellurium (IV) (Figure 4.15). By contrast, the reaction of $Li_2[Te(N^tBu)_3]$ with the heavier group 15 trihalides ECl₃ (E = Sb, Bi) generates the homoleptic monoanionic complexes E[Te(N^tBu)₃] as their monolithium derivatives [95]. ## 4.9 Chalcogen(II) Amides and Diamides The selenium(II) derivative (ⁱPr₂N)₂Se has been isolated as a white solid in 61 % yield from the reaction of diisopropylamine with SeOCl₂ in diethyl ether at 0 °C; (Me₂N)₂Se was obtained as an oil in 30 % yield from the the decomposition of (Me₂N)₂SeO, which was prepared by reaction an excess of dimethylamine with SeOCl₂ in hexane [96]. In contrast to the poorly characterized Se(NR₂)₂ (R = Me, Et) derivatives [96], polyselanes with terminal piperidino or morpholino groups can be prepared by heating black selenium powder with morpholine or piperidine in the presence of red lead. In the case of piperidine, this procedure provides the tetraselane as red crystals in an optimum yield of 26 % based on selenium (eq 15), whereas morpholine gives a mixture of di-, tri- and tetra-selanes [97]. An intriguing property of piperidinotetraselane is its decomposition in CS₂ at room temperature to produce a new monoclinic form of red *cyclo*-Se₈ (eq 16) [98]. $$19Se + 8C_5H_{10}NH + Pb_3O_4 \rightarrow 4Se_4(NC_5H_{10})_2 + 3PbSe + 4H_2O$$ (15) $$Se_4(NC_5H_{10})_2 + 2CS_2 \rightarrow 3/8Se_8 + Se(S_2CNC_5H_{10})_2$$ (16) The applications of the silylated chalcogen(II) diamides $E[N(SiMe_3)_2]_2$ resulting from the facile cleavage of the Si-N bond by main-group element halides are discussed in Section 5. A fascinating feature of the tellurium derivative is the formation of the monomeric radical cation $[Te[N(SiMe_3)_2]_2]^{+\bullet}$ upon one-electron oxidation with AsF_5 [99]. Tellurium(II) diamides are useful reagents in organotellurium chemistry owing to the susceptibility of the Te-N bonds to protolysis by weakly acidic substrates. For example, he reaction of $Te[N(SiMe_3)_2]_2$ with phenylacetylene in boiling THF produces a mixture of bis(phenylethynyl)telluride and 1,4-diphenylbutadiene in 38 and 12 % yields, respectively (eq 17) [100, 101]. $$(Me_3Si)_2NTeN(SiMe_3)_2 + 4PhC \equiv CH \rightarrow PhC \equiv CTeC \equiv CPh + PhC \equiv C-C \equiv CPh + 4(Me_3Si)_2NH$$ (17) In a similar manner alkynyl tellurides RC≡CPh may be obtained in good yields (R = Ph, 72 %; R = ⁿBu, 85 %) by treatment of arenetellurenamides with terminal acetylenes in THF at 20 °C (eq 18); the reagent PhTeNⁱPr₂ is prepared generated *in situ* by treatment of benzenetellurenyl iodide with LiNⁱPr₂ in THF [102]. The transformation shown in eq 18 is specific for tellurium, since it does not occur when pure PhSeNⁱPr₂ is used [102]. $$PhTeN^{i}Pr_{2} + RC \equiv CH \rightarrow RC \equiv CTePh + HN^{i}Pr_{2}$$ $$(18)$$ Although the dimethylamido derivative Te(NMe₂)₂ reacts readily with a range of amines, phosphines and thiols, the only stable products that have been isolated from such reactions are those containing bulky thiolate ligands, *e.g.* Te(SCPh₃)₂, which is obtained as air- and moisture-stable orange crystals from the reaction in toluene at -78 °C (eq 19) [103]. Polymeric [Te(NMe₂)₂]_∞ is isolated in 74 % yield as yellow needles from the reduction of TeCl₄ with an excess of LiNMe₂ in THF-diethyl ether; this moisture-sensitive reagent deposits black metallic tellurium on exposure to air [103]. $$1/\infty[\{Te(NMe_2)_2\}_{\infty}] + 2Ph_3CSH \rightarrow Te(SCPh_3)_2 + 2NHMe_2$$ (19) The susceptibility of the selenium-nitrogen bond to protonolysis is the key to the function of the cyclic selenenamide Ebselen, an anti-inflammatory drug that acts as a glutathione peroxidase mimic. Mechanistic studies show that the Se-N bond in Ebselen reacts readily with PhSH to form a selenenyl sulfide, which is subsequently converted to the corresponding selenol and selenenic acid [104,105] (Figure 4.16). The potentially broad range of pharmacological applications of Ebselen are under active investigation [106]. # 4.10 Radical Chemistry The thermal lability of the Se-N linkage may engender unusual transformations resulting from homolytic cleavage and the concomitant formation of radicals. As a cogent example, the metathesis of PhC(NSiMe₃)[N(SiMe₃)₂)] with three molar equivalents of PhSeCl gives rise to the resonance-stabilized radical [PhC(NSePh)₂]* (detected by in situ EPR spectroscopy) via Se-N bond scission. This radical undergoes a rapid transformation to an intramolecularly Se---N stabilized diazene [107] (Figure 4.17). Radical formation is also observed for P,N,Se heterocyles. A pertinent example is the dissociation of the eight-membered ring 1,5-Ph₄P₂N₄Se₂ into the four-membered cyclic radical [Ph₂PN Se] $^{\bullet}$ in CH₂Cl₂ solution at 25 $^{\circ}$ C [108] (Figure 4.18). In marked contrast, the sulfur analogue 1,5-Ph₄P₂N₄S₂ is thermally stable up to 150 $^{\circ}$ C [109]. $$\begin{array}{c|c} Se - Se \\ N N N N \\ P_{Ph_2} P_{Ph_2} \end{array}$$ $$\begin{array}{c} 25 \circ C \\ CH_2CI_2 \end{array}$$ $$\begin{array}{c} P_{Ph_2} \end{array}$$ $$\begin{array}{c} P_{Ph_2} \end{array}$$ Ring contraction (dissociation) or ring expansion is a common feature of inorganic heterocycles, but isomerization is rare. In this context the slow *solid-state isomerization* of 1,5-Ph₄P₂N₄Se₂R₂ (R = alkyl) into the 1,3-isomer in essentially quantitative yields *at room temperature* is remarkable [110] [Figure 4.19]. The mechanism of this transformation is not known, but it represents another manifestation of novel chemistry generated by the lability of Se-N linkages. $$Ph_{2}P \xrightarrow{R} N$$ $$Ph_{2}P \xrightarrow{N} PPh_{2}$$ $$Se \times N$$ $$Se \times N$$ $$RSe ## 4.11 Conclusions Synthetic applications of selenium-nitrogen or tellurium-nitrogen reagents in inorganic or organic chemistry are less widespread than those of their sulfur-nitrogen analogues, in part, owing to the difficulty in handling highly reactive, unstable compounds. For example, although reactions of Se_4N_4 may generate cyclic Se-N cations or metal complexes of Se-N anions, via oxidation or reduction, respectively, the explosive nature of this binary selenium nitride has limited its applications (Section 2.1). Thus, all attempts to generate the selenium analogue of the conducting polymer $(SN)_x$, which is produced via S_2N_2 generated by the thermolysis of S_4N_4 , have failed. Similarly, although the binary sulfur-nitrogen cations NS_x^+ (x = 1, 2) are readily prepared and exhibit a variety of insertion or cycloaddition reactions [1], the application of the selenium analogue NSe₂⁺ is limited to a single example of its use as *situ* reagent (Section 3.1). The use of selenium diimides RN=Se=NR in organic synthesis is well-established and aminations of unsaturated substrates by these reagents follow a similar pathway to reactions of the isoelectronic reagent selenium dioxide SeO₂ (Section 7.1). Selenium(IV) diimides are, however, thermally unstable and this lability has limited the applications of the silicon-nitrogen-selenium reagent Me₃SiN=Se=NSiMe₃ in reactions with non-metal or
metal halides to a single example (Section 5); nonetheless, further examples of the use of this *in situ* reagent can be readily envisaged. On the other hand, the thermal decomposition of selenium(IV) diimides results in chemistry that is not observed for the sulfur analogues, notably the formation of a wide variety of thermally stable, cyclic selenium imides (Section 7.2). Tellurium(IV) diimides exhibit much higher thermal stability than their selenium analogues as a consequence of dimerization without further ring transformations. Consequently, the reactions of these tellurium-nitrogen compounds with electrophiles and nucleophiles have been studied in some detail (Sections 7.3 and 7.4). For example, the dianion [Te(N'Bu)₃]², isolectronic with tellurite [TeO₃]²⁻, is readily obtained and has been shown to have an extensive coordination chemistry with p-block elements (Section 8). The susceptibility of the tellurium-nitrogen bond in tellurium(II) amides to protonolysis has been exploited in the preparation tellurium acetylides. However, the expansion of this application of tellurium diamides to the formation of other Te-E bonds (e.g., E = P, S) is so far limited to a single example (Section 9). This approach to the synthesis of tellurium compounds, as well as further applications of *in situ* reagents such as NSe₂⁺ and Me₃SiN=Se=NSiMe₃, certainly merit further investigations. ### 4.12 References - [1] Chivers, T. A Guide to chalcogen-nitrogen chemistry. World Scientific, Singapore, 2005. - [2] Kirsch, G. Compounds with Se-N and Te-N bonds. In: Patai,S. ed. The chemistry of organic selenium and tellurium compounds. Vol. 2. John Wiley & Sons Ltd. 1987, 421-461. - [3] Bjorgvinsson M, Roesky HW. The structures of compounds containing selenium-nitrogen and tellurium-nitrogen bonds. Polyhedron 1991, 10, 353-2370. - [4] Kelly PF, Slawin AMZ, Williams DJ, Woollins JD. Metal-selenium-nitrogen complexes. Chem Soc Rev 1992, 245-252. - [5] Klapötke T. Binary selenium-nitrogen species. In: Steudel. R. ed. The chemistry of inorganic ring systems. Elsevier Science Publishers. Ch. 20, 1992, 409-427. - [6] (a) Chivers T, Selenium-nitrogen chemistry, Main Group Chem. News 1993, 1, 6-14; (b) Chivers T, Doxsee DD, Heterocyclic selenium- and tellurium-nitrogen compounds. Comments Inorg. Chem 1993, 15, 109-135. - [7] Haas A, Kasprowski J, Pryka M. Tellurium- and selenium-nitrogen compounds; preparation, characterization and properties. Coord Chem Rev 1994, 130, 301-353. - [8] (a) Chivers T, Laitinen RS. Chalcogen-nitrogen chemistry. In: Devillanova FA. ed. Handbook of chalcogen-nitrogen chemistry: new perspectives in sulfur, selenium and tellurium. RSC Publishing, Cambridge UK 2007, 223-285; (b) Chivers T, Laitinen RS. Recent developments in chalcogen-nitrogen chemistry. In: Devillanova FA. ed. Handbook of chalcogen-nitrogen chemistry: new perspectives in sulfur, selenium and tellurium. Vol. 2. RSC Publishing, Cambridge UK 2013, 191-237. - [9] Laitinen RS, Oilunkaniemei R, Chivers T. Synthesis, structures, bonding, and reactions of imido-selenium and –tellurium compounds. In: Woollins JD, Laitinen RS. eds. Selenium and tellurium chemistry. Springer-Verlag Berlin 2011, 103-122. - [10] Klapötke, TM, Krumm B, Moll R. Compounds of selenium and tellurium with nitrogen bonds. In: Rappoport Z. ed. The chemistry of organic selenium and tellurium compounds. Vol. 3, Part 2, John Wiley & Sons Ltd. Chichester UK 2012, 863-889. - [11] Vasiljeva J, Arsenyan P. Synthesis of Se-N and Te-N bond-containing heterocycles, Chemistry of heterocyclic compounds, 2017, 53, 1061-1067. - [12] Ginn VC, Kelly PF, Woollins JD. Facile introduction of ¹⁵N into chalcogen-nitrogen systems using ¹⁵N-labelled ammonia. J Chem Soc Dalton Trans 1992, 2129-2130. - [13] Gowik PK, Klapötke, TM. The Raman spectrum of tetraselenium tetranitride Se₄N₄. Spectrochim Acta 1990, 46A, 1371-1373. - [14] Awere EG, Passmore J, White PS. Preparation and characterization of thermally stable $[Se_3N_2]_n[AsF_6]_2$ containing the "electron-rich aromatic" 6π $[Se_3N_2]^{2+}$ (n = 1) and 7π $[Se_3N_2]^{+*}$ (n = 2). J Chem Soc Dalton Trans 1993, 299-310. - [15] Siivari, J, Chivers T, Laitinen RS. A simple, efficient synthesis of Se₄N₄. Inorg Chem 1993,32, 1519-1520. - [16] Afel J, El-Kholi A, Willing W, Muller, Dehnicke K. Se₄N₄ as a reagent for synthesis of chloroselenonitrene-tungsten complexes. Chimia 1988, 42, 70-71. - [17] Afel J, Dehnicke K. Synthesis of the chloroselenonitrene complex with molybdenum [Cl₄Mo(NSeCl)]₂. Chimia 1988, 42, 413-?? - [18] Awere EG, Passmore J, White PS, Klapötke, TM. The preparation, characterization in solution of the 7π radical 1,2,4-triseleno-3,5-diazolium and the 6π (1,2,4-triseleno-3,5-diazolium)²⁺ cations, and the X-ray crystal structures of [Se₃N₂]₂[AsF₆]₂ and [Se₃N₂][AsF₆]₂ containing the first stable binary selenium-nitrogen species. J Chem Soc Chem Commun 1989, 1415-1417. - [19] Siivari J, Chivers T, Laitinen RS. Synthesis and characterization of selenium-nitrogen chlorides: force-field calculation for the Se₃N₂Cl⁺ cation. Inorg Chem 1993, 32, 4391-4395. - [20] Wolmershäuser G, Brulet CR, Street GB. Mixed sulfur-nitrogen-selenium compounds. Inorg Chem 1978, 17, 3586-3589. - [21] Kelly PF, Slawin AMZ. Preparation and crystal structure of [(AlBr₃)₂(Se₂N₂)], the first example of a main-group element adduct of diselenium dinitride. J Chem Soc Dalton Trans 1996, 4029-4030. - [22] Kelly PF, Slawin AMZ. The preparation of salts of [Pd(μ-Se₂N₂)Cl₆]²⁻, the first adducts of diselenium dinitride. Angew Chem Int Ed Engl 1995, 34, 1758-1759. - [23] Kelly PF, Slawin AMZ, Williams DJ, Woollins JD. The preparation and X-ray structure of [PtCl(Se₃N)Cl(PMe₂Ph)]. J Chem Soc Chem Commun 1989, 408-409. - [24] Kelly PF, Parkin IP, Slawin AMZ, Williams DJ, Woollins JD, Platinum complexes of the anions Se₂N₂²⁻ and Se₂N₂H⁻; X-ray structure analysis of [PtC(Se₂N₂H)Cl(PMe₂Ph)]Cl. Angew Chem Int Ed Engl 1989, 28, 1047-1049. - [25] Kelly PF, Slawin AMZ, Williams DJ, Woollins JD. Reaction of Se₄N₄ with Pt(PPh₃)₃: the preparation and X-ray structure of [Pt(Se₂N₂)(PPh₃)₂].CH₂Cl₂. Polyhedron 1990, 9, 1567-1591 - [26] Chivers T, Codding PW, Laidlaw WG, Liblong SW, Oakley RT, Trsic M. The crystal, molecular and electronic structures of tetrasulfur tetranitride. J Am Chem Soc 1983, 105, 1186-1192. - [27] Dehnicke K, Schmock F, Köhler KF, Frenking G. Se₄N₂, A novel selenium nitride. Angew Chem Int Ed Engl 1991, 30, 577-578. - [28] Siivari J, Chivers T, Laitinen R. Se₃N₂Cl₂, A novel selenium-nitrogen chloride: reinvestigation of "Se₄N₂". Angew Chem Int Ed Engl 1992, 31, 577-578. - [29] Schmitz-Dumont O, Ross B. Formation of selenanthrene from diphenyl selenide and of dipotassium triimidotellurite from diphenyl telluride. Angew Chem Int Ed Engl 1967, 6, 1071-1072. - [30] Chivers T. Tellurium compounds of main group elements; progress and prospects. J Chem Soc Dalton Trans 1996, 1185-1194. - [31] Mosa W, Lau C, Möhlen M, Neumüller B, Dehnicke K. [Te₆N₈(TeCl₄)₄] Tellurium nitride stabilized by tellurium tetrachloride. Angew Chem Int Ed Engl 1998, 37, 2840-2842. - [32] Chivers T, Laitinen RS. Fundamental chemistry of binary S,N and ternary S,N,O anions: analogues of sulfur oxides and N,O anions. Chem Soc Rev. 2017, 46, 5182-5192. - [33] Kelly PF, Woollins JD. The reactivity of Se₄N₄ in liquid ammonia. Polyhedron 1993, 12, 1129-1133. - [34] Belton PS, Parkin IP, Williams DJ, Woollins JD. The reactions of sulphur-nitrogen species in liquid ammonia. J Chem Soc Chem Commun 1988, 1479-1480. - [35] Parkin IP, Woollins JD. Preparation and characterization of $[Pt(SeSN_2)(PR_3)_2]$, $[Pt(Se_2N_2)(PR_3)_2]$, $[Pt(Se_2N_2H)(PR_3)_2][BF_4]$, and $[Pt(Se_2N_2H)(PR_3)_2][BF_4]$. J Chem Soc Dalton Trans 1990, 925-930. - [36] Parkin IP, Slawin AMZ, Williams DJ, Woollins JD. Reaction of [Pt(Se₂N₂)(DPPE)] with halogens a new route to Se₄N₄. Phosphorus, Sulfur, Silicon and Related Elements 1991, 57, 273-277. - [37] Broschag, M, Klapötke, TM, Tornieporth-Oetting IC, White PS. The preparation and structure of [(SeCl₂)₂N][AsF₆]•MeCN containing the first ternary selenium, nitrogen, chlorine cation. J Chem Soc Chem Commun 1992, 1390-1391. - [38] Broschag, M, Klapötke, TM, Schulz A, White PS. The ClSeNSeCl⁺ cation. An unusual structurally very versatile ion adopting different solid-state structures as deduced by X-ray and ab initio methods. Inorg Chem 1993, 32, 5734-5738. - [39] Broschag M, Klapötke, TM. The intriguing diversity of neutral and cationic selenium-nitrogen heterocycles. Phosphorus, Sulfur, Silicon and Related Elements 1994, 93-94, 181-184. - [40] Borisenko KB, Broschag M, Hargettai I, Klapötke, TM, Schröder D, Schulz A, Schawarz H, Tornieporth-Oetting IC, White PS. Preparation of N(SeCl)₂+X⁻ (X = SbCl₆ or FeCl₄), F₃CCSeNSeCCF₃+SbCl₆-, F₃CCSeNSeCCF₃, F₃CCSeSeCCF₃ and F₃CCSeSeC(CF₃)C (CF₃)SeSeCCF₃. Electron diffraction study of F₃CCSeSeCCF₃ and crystal structure of the eight-membered heterocycle F₃CCSeSeC(CF₃)C (CF₃)SeSeCCF₃. J Chem Soc Dalton Trans 1994, 2705-2712. - [41] Awere EG, Burford N, Mailer C, Passmore J, Schriver MJ, White PS, Banister AJ, Oberhammer H, Sutcliffe LH. The high yield preparation, characterization, and gas phase structure of the thermally stable [F₃CCSNSCCF₃]*. J Chem Soc Chem Commun 1987, 66-67. - [42] Wollert R, Höllwarth A, Frenking G, Fenske D, Goesmann, Dehnicke K. Se₂NCl₃ and [Se₂NCl₂][GaCl₄], chloride nitrides of trivalent selenium. Angew Chem Int Ed Engl 1992, 31, 1251-1253. - [43] Lau C, Neumüller B, Hiller W, Herker M, Vyboishchikov, Frenking G, Dehnicke K. Se₂NBr₃, Se₂NCl₅, Se₂NCl₆⁻: New nitride halides of selenium(III) and selenium(IV). Chem Eur J 1996, 2, 1373-1378. - [44] Wollert R, Neumüller B, Dehnicke K. Synthesis and crystal structure of [Se₃N₂Cl][GaCl₄]. Z Anorg Allg Chem 1992, 616, 191-194. - [45] Lau C, Neumüller B, Dehnicke K. Synthesis and crystal structure of [Se₃N₂Cl][SbCl₆]. Z Naturforsch 1997, 52b, 543-545. - [46] Passmore J,
Schatte G, Cameron TS. Preparation and structure of Te₄N₂Cl₈(AsF₆)₂•2SO₂ containing Te₄N₂Cl₈²⁺, the first tellurium-nitrogen-halogen cation. J Chem Soc Chem Commun !995, 2311- 2312. - [47] Chivers T, Laitinen RS. Insights into the formation of inorganic heterocycles *via* cyclocondensation of primary amines with group 15 and 6 halides. Dalton Trans 2017, 46, 1357-1367. - [48] Thrasher JS, Bauknight Jr. CW, DesMarteau DD. (Perfluoroalkylimino)selenyl chlorides. Inorg Chem. 1985, 24, 1598-1599. - [49] Chivers T, Enright G, Sandblom N, Schatte G, Parvez M. Synthesis and reactions of *tert*-butylimidotellurium dihalides: X-ray structures of [Cl₂Te(μ-N^tBu)₂TeCl₂]₂ and (^tBuO)₂Te(μ-N^tBu)₂Te(O^tBu)₂. Inorg Chem 1999, 38, 5431-5436. - [50] Haas A, Kasprowski J. Synthesis of bis(sulfinylamido)selane Se(NSO)₂. Chimia 1987, 41, 340. - [51] Haas A, Kasprowski J, Angermund K, Betz P, Krüger C, Tsay Y-H, Werner S. Synthesis, structures, and properties of cyclothiaselenazenium cations [Se₂N₂S]₂²⁺, [XSe₂N₂S]₂²⁺, [Se₂N₂S]⁺, [S₃SeN₅]⁺ as well as Cl₂Se₂N₂S and SeSN₂•TiCl₄. Chem Ber 1991, 124, 1895-1906. - [52] Maaninen A, Chivers T, Parvez M, Pietikäinen, Laitinen RS. Syntheses of SeX_2 (X = Cl, Br) in THF solution and a new route to selenium sulfides Se_nS_{8-n} (n = 1-5): X-ray crystal structure of *cis*- $SeCl_2$ (tht)₂ and $SeCl_2$ •tmtu. Inorg Chem 1999, 38, 4093-4097. - [53] Boese R, Dworak J, Hass A, Pryka M. Synthesis, structures and properties of CF₃S-substituted tellurium compounds. Chem Ber 1995, 128, 477-480. - [54] Haas A, Pryka M. New pathways to tellurium-chalcogen-nitrogen chemistry: preparations, structures, and properties of telluraheterocycles. Chem Ber 1995, 128, 11-22. - [55] Haas A, Acyclic and heterocyclic tellurathianitrogen compounds: a review on recent publications. J Organomet Chem 2002, 646, 80-93. - [56] Haas A, Kasprowski J, Pryka M. Synthesis, structures, and properties of Cl_2TeSeN_2S and $[Se_2N_2S]_2^{2+}[XSO_3^{-}]_2$ (X = F, CF₃). Chem Ber 1992, 125, 789-792. - [57] Fockenberg F, Haas A, Advances in perhalogeno thiocarbonyl, selenocarbonyl and selenodiimide chemistry. Z Naturforsch 1986, 41b, 413-422. - [58] Bestari K, Cordes AW, Oakley RT, Young KM. Heterocyclic 1,2,4,6-thia- and 1,2,4,6-selenatriazinyl radicals; spin distributions and modes of association. J Am Chem Soc 1990, 112, 2249-2255. - [59] Björgvinsson M, Roesky HW, Pauer F, Stalke D, Sheldrick GM. Preparation and structural characterization of the bis[bis(trimethylsilyl)amido]chalcogenides of selenium and tellurium. Inorg. Chem. 1990, 29, 5140-5143. - [60] Siivari J, Maaninen A, Haapaniemi E, Laitinen RS. Formation and identification of bis[bis(trimethylsilyl)amino]tri- and tetrachalcogenides. Z Naturforsch 1995, 50b, 1575-1582. - [61] Maaninen A, Laitinen RS, Chivers T, Pakkanen TA. Preparation, X-ray structure, and spectroscopic characterization of 1,5-Se₂S₂N₄. Inorg Chem 1999, 38, 3450-3454. - [62] Maaninen A, Siivari J, Suontamo RJ, Konu J, Laitinen RS, Chivers T Theoretical and experimental studies of six-membered selenium-sulfur nitrides $Se_xS_{4-x}N_2$ (x = 0-4). Preparation of S_4N_2 and SeS_3N_2 by the reaction of bis[bis(trimethylsilyl)amino]sulfane with chalcogen chlorides. Inorg Chem 1997, 36, 2170-2177. - [63] Björgvinsson M, Roesky HW, Pauer F, Stalke D, Sheldrick GM. Preparation and structure characterization of the bis[*tert*-butyl(trimethylsilyl)amino]chalcogenides of selenium and tellurium. Eur J Solid State Chem 1991, 29, 759-776. - [64] Gindl J, Björgvinsson M, Roesky HW, Freire-Erdbrügger C, Sheldrick GM. Synthesis and structure of a stable selenodiimide complex. Dalton Trans 1993, 811-812. - [65] Konu J, Maaninen A, Paananen K, Ingman P, Laitinen RS, Chivers T, Valkonen J. Preparation and structural characterization of (Me₃SiNSN)₂Se, a new synthon for sulfur-selenium nitrides. Inorg Chem 2002, 41, 1430-1435. - [66] Bryce MR, Chesney A. phenylsulfinylselenyl chloride (PhSO₂SeCl): A new reagent for the formation of C-Se and N-Se bonds. Generation and *in situ* Diels-Alder trapping of selenonitrosoarene intermediate (Ar-N=Se). J Chem Soc Chem Commun 1995, 195-196. - [67] Sharpless KB, Hori T, Truesdale LK, Dietrich CO. Allylic amination of olefins and acetylenes by imido selenium compounds, J Am Chem Soc. 1976, 98, 269-271. - [68] Sharpless KB, Singer SP. 1,2-Diamination of 1,3-dienes by imido selenium compounds. J Org Chem 1976, 41, 2504-2505. - [69] Bruncko M, Khong T-A V, Sharpless KB, Allylic amination with a modified diimidoselenium reagent. Angew Chem Int Ed Engl 1996, 35, 454-456. - [70] Herberhold M, Jellen W. New selenium-nitrogen compounds: *tert*-butyl-seleninylamine, ^tBuNSeO, and di(*tert*-butyl)selenium diimide. Z Naturforsch 1986, 41b, 144-148. - [71] Maaninen T, Laitinen R, Chivers T. A monomeric selenium(IV) diimide and a dimeric seleninylamine. Chem Commun 2002, 1812-1813. - [72] Maaninen T, Tuononen HM, Kosunen K, Oilunkaniemi R, Hiitola J, Laitinen R, Chivers T. Formation, structural characterization,, and calculated NMR chemical shifts of selenium-nitrogen compounds from SeCl₄ and ArNHLi (Ar = supermesityl, mesityl). Z Anorg Allg Chem 2004, 630, 1947-1954. - [73] Chivers T, Sandblom N, Schatte G. Tellurium-nitrogen compounds: Bis(*tert*-butyl)tellurium diimide dimer and bis{lithium[tris-*tert*-butylimido)]tellurite. Inorg Synth 2001, 34, 42-48. - [74] Chivers T, Gao X, Parvez M. Tellurium-nitrogen double bonds and a novel Te₃N₃ ring: The formation and structures of {(^tBuNH)(^tBuN)₃Te₂]Cl, [^tBuNTe(μ-N^tBu)]₂ and [^tBuNTe]₃. J Am Chem Soc 1995, 117, 2359-2360. - [75] Sandblom N, Ziegler T, Chivers T. Chalcogen diimides; relative stabilities of monomeric and dimeric structures $[E(NMe)_2]_n$ (E = S, Se, Te; n = 1, 2). Inorg Chem 1998, 37, 354-359. - [76] Maaninen T, Tuononen HM, Schatte G, Suontamo R, Valkonen J, Laitinen R, Chivers T. Experimental and theoretical investigations of structural trends for selenium(IV) diimides and oxides: X-ray structure of Se₃(NAd)₂. Inorg Chem 2004, 43, 2097-2104. - [77] Karhu AJ, Risto M, Rautiainen JM, Oilunkaniemi R, Chivers T, Laitinen RS. Mercury- and cadmium-assisted [2 +2] cycloaddition of *tert*-butylselenium diimide. Inorg Chem 2015, 54, 9499-9508. - [78] Chivers T, Schatte G. Cadmium complexes of the tripodal [Te(N^tBu)₃ dianion and the HgCl₂ adduct of a tellurium diimide dimer. 2003, 81, 1307-1314. - [79] Maaninen T, Chivers T, Laitinen R, Schatte G, Nissinen M. Selenium imides: ⁷⁷Se investigations of the SeCl₂-[†]BuNH₂ reaction and X-ray structures of Se₃(N[†]Bu)₃, [†]BuN(μ-N[†]Bu)₂So₂, and [†]BuN(μ-N[†]Bu)₂SeO. Inorg Chem 2000, 39, 5341-5347. - [80] Wrackmeyer B, Distler B, Herberhold M. ¹⁵N and ⁷⁷Se nuclear magnetic resonance study of selenium diimides and amino selenanes. Z Naturforsch 1993, 48b, 1307-1314. - [81] Köster R, Schüssler W, Boese R, Herberhold M, Gerstmann S, Wrackmeyer B. Ethyloboration of selenium dioxide and selenium bis(*tert*-butylimide) molecular structure of an organo-substituted eight-membered [-BOSeO-]₂ heterocycle. Chem Ber 1996, 129, 503-507 - [82] Wrackmeyer B, Köhler C, Milius W, Herberhold M. Reaction of N,N'-dialkyl selenium diimides with bis(amino)stannylenes formation of a tin-tin bond. Z Anorg Allg Chem 1995, 621, 1625-1631. - [83] Schatte G, Chivers T, Jaska C, Sandblom N. Cycloaddition reaction of *tert*-butyl isocyanate and a tellurium diimide dimer: extended helical structure of the ureato telluroxide {[OC(μ-N^tBu)₂TeO]₂. Chem Commun 2000, 1657-1658. - [84] Schatte G, Chivers T, Tuononen HM, Suontamo R, Laitinen R, Valkonen J. Experimental and theoretical investigations of tellurium(IV) diimides and imidotelluroxanes; X-ray structures of $B(C_6F_5)_3$ adducts of $OTe(\mu-N^tBu)_2TeN^tBu$ and $[OTe(\mu-N^tBu)_2Te(\mu-O)]_2$ and tBuNH_2 . Inorg Chem 2005, 44, 443-451. - [85] Chivers T, Gao X, Parvez M. A Te₂N₆Li₄ cage containing the tris(*tert*-butylimido)tellurite dianion, Angew Chem Int Ed Engl 1995, 34, 2549-2551. - [86] Chivers T, Parvez M, Schatte G. Preparation and structure of [Li₂Se(N^tBu)₃]₂, containing the novel Se(N^tBu)₃²- anion. Inorg Chem 1996, 35, 4094-4095. - [87] Chivers T, Gao X, Parvez M. Pyramidal tellurite ions $Te(N^tBu)_2(E^tBu)^-$ (E = O, NH); syntheses and structures of $[K(THF)Te(N^tBu)_2(O^tBu)]_2$ and $\{[LiTe(N^tBu)_2(NH^tBu)]_2LiCl\}_2$. Inorg Chem 1996, 35, 553-554. - [88] Chivers T. The imido ligand in main group element chemistry. Can J Chem 2001, 79, 1841-1850. - [89] Konu J, Chivers T, Schatte G, Parvez M, Laitinen RS. Formation of N-I charge-transfer bonds and ion pairs in polyiodides with imidotellurium cations. Inorg Chem 2005, 44, 2973-2982. - [90] Chivers T, Schatte G. Cooperative ring-opening by $B(C_6F_5)_3$ and a tellurium diimide dimer. Eur J Inorg Chem 2003, 3314-3317. - [91] Chivers T, Parvez M, Schatte G. Reactions of *cis*-[¹BuTe(μ-N¹Bu)]₂ and M[O₃SCF₃] (M = Ag, Cu): Chelation, cis → trans Isomerization, and the spirocyclic ligand [¹BuNTe(μ-N¹Bu)]₂Te(μ-O)]₂. Inorg Chem 1999, 38, 5171-5177. - [92] Brask JK, Chivers T, McGarvey B, Schatte G, Sung R, Boeré RT. ESR investigations of the radicals $\{Li_3[E(N^tBu)_3]_2\}$ (E = S, Se) and the radical anions $SO_x(N^tBu)_{3-x}$ (x = 1, 2). Inorg Chem 1998, 37, 4633-4636. - [93] Chivers T, Schatte G. A new coordination mode for the tripodal [Te(N^tBu)₃]²⁻ dianion: preparation and structures of {ClIn[Te(NtBu)₃]}₂ and {LiIn[Te(N^tBu)₃]₂}•LiCl. Eur J Inorg Chem 2002, 2266-2269. - [94] Chivers T, Schatte G. Synthesis and characterization of ['BuNSn(μ-N'Bu)₂TeN'Bu]μ³-SnTe, a stannatellurone with four-coordinate tin. Chem Commun 2001, 2264-2265. - [95] Chivers T, Parvez M, Schatte G, Yap GPA. Homoleptic bismuth and antimony complexes of the tripodal [Te(N^tBu)₃]²⁻ anion. Inorg Chem 1999, 38, 1380-1381. - [96] King RB, Sangokoya SA, (Dialkylamido)selenium derivatives. Inorg Chem 1987, 26, 2727-2730. - [97] Foss O, Janickis V. Synthesis of dimorpholino-di-, tri-, and tetra-selane, and dipiperidonotetraselane. Crystal
and molecular structures of the two tetraselanes. JCS Dalton 1980, 620-623. - [98] Foss O, Janickis V. X-ray crystal structure of a new red, monoclinic form of *cyclo*-octaselenium, Se₈. JCS Chem Comm 1977, 834-835. - [98] Björgvinsson M, Heinze T, Roesky HW, Pauer F, Stalke D, Sheldrick GM. Synthesis and structure of the first tellurium(III) radical cation. Angew Chem Int Ed Engl 1991, 30, 1677-1679. - [100] Murai T, Imaeda K, Kajita S, Kimura K, Ishihara H, Kato S. Tellurium amides as a new tellurating agent. Phophorus Sulfur and Silicon and the Related Elements 1992, 67, 239-242. - [101] Murai T, Imaeda K, Kajita S, Ishihara H, Kato S. Reductive dialkynylation of tellurium tetrachloride with lithium amides and terminal alkynes. J Chem Soc Chem Commun 1991, 832-834. - [102] Murai T, Nomura K, Kimura K, Kato S. Organotellurium compounds involving tellurium(II)-nitrogen bonds. Synthesis of arenetellurenamides and their reactions with acetylenes. Organometallics 1991, 10, 1095-1098. - [103] Allan RE, Gornitza H, Kärcher J, Paver MA, Rennie, M-A, Russell CA, Raithby PR, Stalke D, Steiner A, Wright DS. Structure and reactivity of [{Te(NMe₂)₂}_∞]; application to the preparation of metalloorganic tellurium(II) compounds. J Chem Soc Dalton Trans 1996, 1727-1730. - [104] Sarma BK, Mugesh G. Antioxidant activity of anti-inflammatory compound Ebselen: a reversible cyclization pathway via selenenic acid and seleninic acid intermediates. Chem Eur J 2008, 14, 10603-10614. - [105] Selvakumar K, Shah P, Singh HB, Butcher RJ. Synthesis, structure, and glutathione peroxidase-like activity of amino acid containing Ebselen analogues and diaryl diselenides. Chem Eur J 2011, 17, 12741-12755. - [106] Azad GK, Tomar RS. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Mol Biol Rep 2014, 41, 4865-4879. - [107] Chandrasekhar V, Chivers T, Kumaravel SS, Parvez M, Rao MNS. Reactions of -tris(trimethylsilyl)benzamidine with organochalcogen halides: formation of diazenes via the resonance-stabilized radicals [PhC(NEPh)₂]*. Inorg. Chem. 1991, 30, 4125-4130. - [108] Chivers T, Doxsee DD, Parvez M. Preparation and spectroscopic characterization of 1,5-and 1,3-diphosphadiselenatetrazocines. Inorg Chem 1993, 32, 2238-2242. - [109] Chivers T. Hilts RW, Jin P, Chen Z, Lu X. Synthesis, properties, and bishomoaromaticity of the first tetrahalogenated derivative of a 1,5- diphosphadithiatetrazocine; a combined experimental and computational investigation. Inorg Chem 2010, 49, 3810-3815, and references cited therein. - [110] Chivers T, Doxsee DD, Fait JF, Parvez M. Preparation and solid-state isomerization of *Se,Se*'-dialkyldiphosphadiselenatetrazocines. Inorg Chem 1993, 32, 2243-2248. ## **Captions to Figures** - **Figure 4.1**. Preparation of Se-N compounds from Se₄N₄: (i) [Se₄][AsF₆]₂ (ii) AsF₅ (iii) Se₂Cl₂ (iv) AlBr₃ (v) [PPh₄]₂[Pd₂Cl₆] (vi) WCl₆. - **Figure 4.2.** Oxidative-addition reactions of Se₄N₄ with (i) [PtCl₂(PMe₂Ph)]₂ in boiling CH₂Cl₂ (ii) Pt(PPh₃)₃ in CH₂Cl₂ at 23 °C. - **Figure 4.3**. Oxidative-addition of *in situ*-generated "NSe₂+" to an alkyne: (i) excess SnCl₂, CF₃C≡CCF₃ (ii) Na₂S₂O₄ (iii) 0 °C, 7d. - **Figure 4.4.** Formation of (a) acyclic [ClSeNSeCl]⁺ and (b) cyclic [Se₃N₂Cl]⁺ cations from selenium-nitrogen chlorides and Lewis acids. - **Figure 4.5.** Formation of cyclic selenium imides from reactions of ClSe[N(^tBu)Se]₂Cl with ^tBuNH₂ via (i) nucleophilic substitution or (ii) reduction. - **Figure 4.6.** Formation of mixed-chalcogen heterocycles from $Se(NSO)_2$ and Lewis acids: (i) $TiCl_4$, (ii) MF_5 (M = As, Sb), (iii) $SeCl_4$, (iv) TeX_4 (X = Cl, Br). - Figure 4.7. SO₂ elimination reactions of Cl₂Te(NSO)₂: (i) Excess Cl₂, CS₂ (ii) 95 °C, 12 h. - **Figure 4.8.** Generation of a P₂N₃Se heterocycle from Me₃SiNSeNSiMe₃. - **Figure 4.9.** Formation of a selenium(IV) diimide complex from a bis(amido)selenium(II) reagent. - **Figure 4.10.** Generation and trapping of ArN=Se with dimethylbutadiene. - **Figure 4.11.** (a) Allylic amination and (b) 1,2-diamination with a diimidoselenium(IV) reagent (Ns = 2-nitrobenzenesulfonyl). **Figure 4.12.** Formation of cyclic selenium imides from thermal decomposition of RN=Se=NR $(R = {}^{t}Bu, Ad)$. Figure 4.13. Reactions of selenium diimides with a bis(amino)stannylene. **Figure 4.14.** Cycloaddition reactions of a tellurium diimide dimer with *tert*-butyl isocyanate: $(i) + 2^{t}BuNCO$ $(ii) - 2^{t}BuN=C=N^{t}Bu$. **Figure 4.15**. Reactions of the tris(*tert*-butylimido)tellurite dianion Te(N^tBu)₃]²⁻ with main-group element halides Figure 4.16. Catalytic mechanism of action of Ebselen Figure 4.17. Formation of a diazene via the selenium-nitrogen radical [PhC(NSePh)₂]* Figure 4.18. Dissociation of 1,5-Ph₄P₂N₄Se₂ into a cyclic radical [Ph₂PN Se]^{*} Figure 4.19. Solid-state transformation of 1,5-Ph₄P₂N₄Se₂R₂ into the 1,3- isomer