
Aggregate Estimations over Location Based Services

Weimo Liu†, Md Farhadur Rahman‡, Saravanan Thirumuruganathan‡, Nan Zhang†, Gautam Das‡
The George Washington University†, University of Texas at Arlington‡

ABSTRACT
Location based services (LBS) have become very popular in re-
cent years. They range from map services (e.g., Google Maps)
that store geographic locations of points of interests, to online so-
cial networks (e.g., WeChat, Sina Weibo, FourSquare) that lever-
age user geographic locations to enable various recommendation
functions. The public query interfaces of these services may be
abstractly modeled as a kNN interface over a database of two di-
mensional points on a plane: given an arbitrary query point, the
system returns the k points in the database that are nearest to the
query point. In this paper we consider the problem of obtaining
approximate estimates of SUM and COUNT aggregates by only
querying such databases via their restrictive public interfaces. We
distinguish between interfaces that return location information of
the returned tuples (e.g., Google Maps), and interfaces that do not
return location information (e.g., Sina Weibo). For both types of in-
terfaces, we develop aggregate estimation algorithms that are based
on novel techniques for precisely computing or approximately es-
timating the Voronoi cell of tuples. We discuss a comprehensive
set of real-world experiments for testing our algorithms, including
experiments on Google Maps, WeChat, and Sina Weibo.

1. INTRODUCTION

1.1 LBS with a kNN Interface
Location based services (LBS) have become very popular in re-

cent years. They range from map services (e.g., Google Maps)
that store geographic locations of points of interests (POIs), to on-
line social networks (e.g., WeChat, Sina Weibo, FourSquare) that
leverage user geographic locations to enable various recommenda-
tion functions. The underlying data model of these services may
be viewed as a database of tuples that are either POIs (in case of
map services) or users (in case of social networks), along with their
geographical coordinates (e.g., latitude and longitude) on a plane.

However, third-party applications and/or end users do not have
complete and direct access to this entire database. The database is
essentially “hidden”, and access is typically limited to a restricted
public web query interface or API by which one can specify an

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 10
Copyright 2015 VLDB Endowment 2150-8097/15/06.

arbitrary location as a query, which returns at most k nearest tuples
to the query point (where k is typically a small number such as
10 or 50). For example, in Google maps it is possible to specify an
arbitrary location and get the ten nearest Starbucks. Thus, the query
interfaces of these services may be abstractly modeled as a “nearest
neighbor” kNN interface over a database of two dimensional points
on a plane: given an arbitrary query point, the system returns the k
points in the database that are nearest to the query point.

In addition, there are important differences among the services
based on the type of information that is returned along with the
k tuples. Some services (e.g., Google maps) return the locations
(i.e., the x and y coordinates) of the k returned tuples. We refer to
such services as Location-Returned LBS (LR-LBS). Other services
(e.g., WeChat, Sina Weibo) return a ranked list of k nearest tuples,
but suppress the location of each tuple, returning only the tuple ID
and perhaps some other attributes (such as tuple name). We refer
to such services as Location-Not-Returned LBS (LNR-LBS).

Both types of services impose additional querying limitations,
the most important being a per user/IP limit on the number of queries
one can issue over a given time frame (e.g., by default, Google map
API imposes a query rate limit of 10,000 per user per day).

1.2 Aggregate Estimations
For many interesting third-party applications, it is important to

collect aggregate statistics over the tuples contained in such hid-
den databases − such as sum, count, or distributions of the tuples
satisfying certain selection conditions. For example, a hotel rec-
ommendation application would like to know the average review
scores for Marriott vs Hilton hotels in Google Maps; a cafe chain
startup would like to know the number of Starbucks restaurants in a
certain geographical region; a demographics researcher may wish
to know the gender ratio of users of social networks in China etc.

Of course, such aggregate information can be obtained by en-
tering into data sharing agreements with the location-based service
providers, but this approach can often be extremely expensive, and
sometimes impossible if the data owners are unwilling to share their
data. Therefore, in this paper we consider the problem of obtain-
ing approximate estimates of such aggregates by only querying the
database via its restrictive public interface. Our goal is to minimize
query cost (i.e., ask as few queries as possible) in an effort to ad-
here to the rate limits imposed by the interface, and yet make the
aggregate estimations as accurate as possible.

The closest prior work is [10]. This approach is based on gen-
erating random point queries, estimating the area of the Voronoi
cell [15] of the returned top-1 tuple for each query, and estimating
the aggregate from these top-1 tuples by making corrections for
sampling bias using the area of the Voronoi cell. However, there
are several limitations of this work. First, this approach works only
for LR-LBS, but does not work for LNR-LBS, and is thus inappli-

ar
X

iv
:1

50
5.

02
44

1v
2

 [
cs

.D
B

]
 1

3
M

ay
 2

01
5

cable over a large variety of location based services such as WeChat
and Sina Weibo that do not return precise location or distance in-
formation. Second, the approximate nature of the technique used
for estimating the area of a Voronoi cell makes the overall aggre-
gate estimation inherently biased. Third, the method only uses the
top-1 returned tuple for each query in its calculations (the remain-
ing k − 1 tuples are ignored) thus leading to inefficiency in the
estimation procedure. We discuss this and other related work in §7.

1.3 Outline of Technical Results
Results over LR-LBS Interfaces: We first describe our results
over LR-LBS interfaces. Like [10], our approach is also based on
generating random point queries and computing the area of Voronoi
cells of the returned tuples, but a key differentiator is that our ap-
proach provides an efficient yet precise computation of the area
of Voronoi cells. This procedure is fundamentally different from
the approximate procedure used in [10] for estimating the area of
Voronoi cells, and is one of the significant contributions of our
paper. This leads to unbiased estimations of SUM and COUNT
aggregates over LR-LBS interfaces; in contrast, the estimations
in [10] have inherent (and unknown) sampling bias.

Moreover, we also leverage the top-k returned tuples of a query
(and not just the top-1) by generalizing to the concept of a top-k
Voronoi cell, leading to significantly more efficient aggregate esti-
mation algorithms. We also developed four different techniques for
reducing the estimation error (and thereby estimation error) over
LR-LBS interfaces: faster initialization, leveraging history, vari-
ance reduction through dynamic selection of query results, and a
Monte Carlo method which leverages current knowledge of up-
per/lower bounds on the Voronoi cell without sacrificing the un-
biasedness of estimations.

We combine the above ideas to produce Algorithm LR-LBS-
AGG, a completely unbiased estimator for COUNT and SUM queries
with or without selection conditions. We note that AVG queries can
be computed as SUM/COUNT.
Results over LNR-LBS Interfaces: We also consider the problem
of aggregate estimations over LNR-LBS interfaces. To the best of
our knowledge, this is a novel problem with no prior work. Recall
that such type of kNN interfaces only return a ranked list of the
top-k tuples in response to a point query, and location information
for these tuples is suppressed. None of the prior work for LR-LBS
interfaces can be extended to LNR-LBS interfaces. For such in-
terfaces, we develop aggregate estimation algorithms that are not
completely bias-free, but can guarantee an arbitrarily small sam-
pling bias. The key idea here is the inference of a tuple’s Voronoi
cell to an arbitrary precision level with a small number of queries
from merely the ranks of the returned tuples.

On a related note, we also show how one can infer the position
of a tuple in LNR-LBS, again at a level of arbitrary precision - a
problem, while of independent interest, is also critical for enabling
the estimations of aggregates that feature selection conditions on
tuples’ locations (e.g., the COUNT of social network users within
10 meters of major highways). We also study a subtle extension to
cases where k > 1; in particular we study the challenge brought by
this case by the (possibly) concave nature of top-k Voronoi cells,
and develop an efficient algorithm to detect potential concaveness
and guarantee the accuracy of the inferred Voronoi cell.

We combine the above ideas to produce Algorithm LNR-LBS-
AGG, an estimator for COUNT and SUM queries with or without
selection conditions. Unlike Algorithm LR-LBS-AGG, this esti-
mator may be biased, but the bias can be controlled to any arbitrary
desired precision. As before, we note that AVG queries can be
computed as SUM/COUNT.

1.4 Summary of Contributions
• Location based services have become very popular in recent

years, and aggregate estimation over such “hidden” databases
with their restricted kNN query interfaces is an important
problem with numerous applications. In our work, we con-
sider both LR-LBS (locations returned) as well as the more
novel LNR-LBS (locations not returned) interfaces.
• For LR-LBS interfaces, we develop Algorithm LR-LBS-AGG

for estimating COUNT and SUM aggregates with or without
selection conditions. It represents a significant improvement
over prior work along multiple dimensions: a novel way of
precisely calculating Voronoi cells lead to completely unbi-
ased estimations; top-k returned tuples are leveraged rather
than only top-1; several innovative techniques developed for
reducing error and increasing efficiency.
• For LNR-LBS interfaces, we develop Algorithm LNR-LBS-

AGG for estimating COUNT and SUM aggregates with or
without selection conditions.This is a novel problem with no
prior work. The estimated aggregates are not bias-free, but
the sampling bias can be controlled to any desired precision.
Among several key ideas, we show how a Voronoi cell can
be inferred to an arbitrary degree of precision from merely
the ranks of returned tuples to point queries.
• Our contributions also include a comprehensive set of real-

world experiments. Specifically, we conducted online tests
over a number of real-world LBS, e.g., Google Maps (LR-
LBS) for estimating the number of Starbucks in US (and
compared the results with the ground truth published by Star-
bucks); WeChat and Sina Weibo for estimating the percent-
age of male/female users in China.

2. BACKGROUND

2.1 Model of LBS
A location based service (LBS) supports kNN queries over a

database D of tuples with location information. These tuples can
be points of interest (e.g. Google Maps) or users (e.g. WeChat,
Sina Weibo). A kNN query q takes as input a location (e.g., lon-
gitude/latitude combination), and returns the top-k nearest tuples
selected and ranked according to a pre-determined ranking func-
tion. Since the only input to a query is a location, we use q to also
denote the query’s location without introducing ambiguity. Most of
the popular LBS follow kNN query model. For most parts of the
paper, we consider the ranking function to be Euclidean distance
between the query location and each tuple’s location. Extensions
to other ranking functions are discussed in §5.3.

Note that tuples in an LBS system contain not only location in-
formation but other many other attributes - e.g., a POI in Google
Maps includes attributes such as POI name, average review ratings
etc. Depending on which attributes of a tuple are returned by the
kNN interface - more specifically, whether the location of a tuple
is returned - we can classify LBS into two main categories:
LR-LBS: A Location-Returned-LBS (LR-LBS) returns the precise
location for each of the top-k returned tuples, along with possibly
other attributes. Google Maps, Bing Maps, Yahoo! Maps, etc., are
prominent examples of LR-LBS, as all of them display the precise
location of each returned POI. Note that some LBS may return a
variant of the precise locations - e.g., Skout and Momo returns not
the precise location of a tuple, but the precise distance between
the query location and the tuple location. We consider such LBS
to be in the LR-LBS category because, through previously studied

techniques such as trilateration (e.g., [18]), one can infer the precise
location of a tuple with just 3 queries.
LNR-LBS: A Location-Not-Returned-LBS (LNR-LBS), on the other
hand, does not return tuple locations - i.e., only other attributes
such as name, review rating, etc., are returned. This category is
more prevalent among location based social networks (presumably
because of potential privacy concerns on precise user locations).
Examples here include WeChat, which returns attributes such as
name, gender, etc., for each of the top-k users, but not the precise
location/distance. Other examples include Sina Weibo, WeChat,
etc., which feature a similar query return semantics.
Common Interface Features and Limitations: Generally speak-
ing, there are two ways through which an LBS (either LR- or LNR-
LBS) supports a kNN query. One is an interactive web or API
interface which allows a location to be explicitly specified as a lat-
itude/longitude pair. Google Maps is an example to this end. An-
other common way is for the LBS (e.g., as a mobile app) to directly
retrieve the query location from a positioning service (such as GPS,
WiFi or Cell towers) and automatically issue a kNN query accord-
ingly. In the second case, there is no explicit mechanism to enter
the location information. Nonetheless, it is important to note that,
even in this case, we have the ability to issue a query from any ar-
bitrary location without having to physically travel to that location.
All mobile OS have debugging features that allow arbitrary location
to be used as the output of the positioning (e.g., GPS) service.

Many LBS also impose certain interface restrictions: One is the
aforementioned top-k restriction (i.e., only the k nearest tuples are
returned). Another common one is a query rate limit - i.e., many
LBS limit the maximum number of kNN queries one can issue per
unit of time. For example, by default Google Maps allows 10,000
location queries per day while Sina Weibo allows only 150 queries
per hour. This is an important constraint for our purpose because it
makes the query-issuing process the bottleneck for aggregate esti-
mation. To understand why, note that even with the generous limit
provided by Google Maps, one can issue only 7 queries per minute
- this 8.6 second per query overhead1 is orders of magnitude higher
than any offline processing overhead that may be required by the
aggregate estimation algorithm. Thus, this interface limitation es-
sentially makes query cost the No. 1 performance metric to opti-
mize for aggregate estimation. An LBS might impose other, more
subtle constraints - e.g., a maximum coverage limit which forbids
tuples far away (say more than 5 miles away) from a query location
to be returned. We shall discuss about these constraints in §5.3.

2.2 Voronoi Cells
Voronoi cell [15] is a key geometry concept used extensively by

our algorithms developed in the paper. Thus, we introduce this
concept here as part of the preliminaries. Consider each tuple t ∈
D as a point on a Euclidean plane bounded by a box B (which
covers all tuples in D). We have the following definition.

DEFINITION 1 (VORONOI CELL). Given a tuple t ∈ D, the
Voronoi cell of t, denoted by V (t), is the set of points on the B-
bounded plane that are closer to t than any other tuple in D.

Note that the B-bound ensures that each Voronoi cell is a finite
region. The Voronoi cells of different tuples are mutually exclusive
- i.e., the Voronoi diagram is the subdivision of the plane into re-
gions, each corresponding to all query locations that would return
a certain tuple as the nearest neighbor2.
1Of course, one can shorten it with multiple IP addresses and API accounts - but
similarly, one can use parallel processing to speed up offline processing as well.
2We assume general positioning [15] - i.e., no two tuples have the exact same location
and no four points on the same circle.

For the purposes of our paper, we define an extension of the
Voronoi cell concept to accommodate the top-k (when k > 1)
query return semantics. Specifically, given a tuple t ∈ D, we define
the top-k Voronoi cell of t, denoted by Vk(t), as the set of query lo-
cations on the plane that return t as one of the top-k results. There
are four important observations about this concept:

First, the top-k Voronoi cells for different tuples are no longer
mutually exclusive. Each location l belongs to exactly k top-k
Voronoi cells corresponding to the top-k tuples returned by query
over l. Second, our concept of top-k Voronoi cells is fundamen-
tally different from the k-th ordered Voronoi cells in geometry [15]
- each of which is formed by points with the exact same k closest
tuples. The difference is illustrated in Figure 1 - while each colored
region is a k-th ordered Voronoi cell, a top-k Voronoi cell may
cover multiple regions with different colors. For example, the top-
2 Voronoi cell for tuple A is marked by a red border and consists of
two different k-th ordered Voronoi cells (AB and AE).

A

E

D

C
B

AB BC

CD

DE

AE
BE

DB

Figure 1: Concavity of top-k Voronoi Diagrams

Third, while both top-1 Voronoi cells and k-th order Voronoi
cells are guaranteed to be convex [15], the same does not hold for
top-k Voronoi cells when k > 1. For example, from Figure 1 we
can see that the aforementioned top-2 Voronoi cell for tuple A is
concave. Fourth, a top-k Voronoi cell tend to contain many more
edges than a top-1 Voronoi cell. As we shall discuss later in the
paper, the larger number of edges and the potential concaveness
makes computing the top-k Voronoi cell of a tuple t more difficult.

2.3 Problem Definition
In this paper, we address the problem of aggregate estimations

over LBS. Specifically, we consider aggregate queries of the form
SELECT AGGR(t) FROM D WHERE Cond where AGGR is an ag-
gregate function such as SUM, COUNT and AVG that can be eval-
uated over one or more attributes of t, and Cond is the selection
condition. Examples include the COUNT of users in WeChat or
AVG rating of restaurants in Texas at Google Maps.

There are two important notes regarding the selection condition
Cond. First, we support any selection condition that can be inde-
pendently evaluated over a single tuple - i.e., it is possible to de-
termine whether a tuple t satisfies Cond based on nothing but t.
Second, for both LR- and LNR-LBS, we support the specification
of a tuple’s location as part of Cond - even when such a location
is not returned, like in LNR-LBS. This is possible thanks to what
we shall discuss in §4.3 - i.e., even with LNR-LBS, one can derive
the location of a tuple to arbitrary precision after issuing a small
number of queries. As such, we support aggregates such as the
percentage of female WeChat users in Washington, DC).

In most part of the technical sections, we focus on aggregates
without selection conditions - the straightforward extensions to var-
ious types of selection conditions will be discussed in §5.
Performance Measures: The performance of an aggregate esti-
mation algorithm is measured in terms of efficiency and accuracy.
Given the query-rate limit enforced by all LBS, the efficiency is
measured by query cost - i.e. the number of queries and/or API

Figure 2: Illustration of Theorem 1

t1

t5 t4

t3

t2
Step 1
Step 3
Step 4

q3

q1 q2

q4

Figure 3: Illustration of LR-LBS-AGG

t1 t2

t3

t4

t5

f4

f3

f2

f1

Figure 4: Faster Initialization - Success

calls that the algorithm issues to LBS. Often, we are given a fixed
budget (based on the rate limits) and hence designing an efficient
algorithm that generates accurate estimates within the budgetary
constraints is crucial. The accuracy of an estimation θ̃ of an aggre-
gate θ could be measured by the standard measure of relative error
|θ̃ − θ|/θ. Note that, for any sampling-based approach (like ours),
the relative error is determined by two factors: bias, i.e. |E(θ̃− θ)|
, and variance of θ̃. The mean squared error, MSE of the estimation
is computed as MSE = bias2 + variance.

An interesting question often arises in practice is how we can
determine the relative error achieved by our estimation. If the pop-
ulation variance is known, then one can apply standard statistics
techniques to compute the confidence interval of aggregate estima-
tions [17]. Absence of such knowledge, a common practice is to
approximate the population variance with sample variance, which
can be computed from the samples we use to generate the final es-
timation and use Bessel’s correction [17] to correct the result.

3. LR-LBS-AGG
In this section, we develop LR-LBS-AGG, our algorithm for

generating unbiased SUM and COUNT estimations over an LR-
LBS query interface. Specifically, we start with introducing our
key idea of precisely computing the (top-k) Voronoi cell of a given
tuple, which enables the unbiased aggregate estimations. While
this idea guarantees unbiasedness, it may require a large number of
queries per (randomized) estimation, leading to a large estimation
variance (and therefore, error) when the query budget is limited.
Hence we develop four techniques for reducing the estimation er-
ror while maintaining the complete unbiasedness of aggregate es-
timations. Finally, we combine all ideas to produce Algorithm LR-
LBS-AGG at the end of this section.

3.1 Key Idea: Precisely Compute Voronoi Cells
Reduction to Computing Voronoi Cells: We start by describing
a baseline design which illustrates why the problem of aggregate
estimations over an LBS’s kNN interface ultimately boils down to
computing the volume of the Voronoi cell corresponding to a tuple
t. As an example, consider the estimation of COUNT(*) (over a
given region) through an LR-LBS with a top-1 interface.

We start by choosing a location q uniformly at random from the
region, and then issue a query at q. Let t be the tuple returned by
q. Suppose that we can compute the Voronoi cell of t (as defined in
§2), say V (t). A key observation here is that the sampling proba-
bility of t, i.e., the probability for the above-described randomized
process to return t, is exactly p(t) = |V (t)|

|V0|
where |V (t)| and |V0|

are the volume of V (t) and the entire region, respectively. Note
that knowledge of p(t) directly leads to a completely unbiased es-

timation of COUNT(*): r = 1/p(t), because

Exp(r) =
∑
t∈D

p(t) · 1

p(t)
= |D|, (1)

where Exp(·) is the expected value of the estimation (taken over
the randomness of the estimation process), and |D| is the total num-
ber of tuples in the database. From (1), one can see that every SUM
and COUNT aggregate we support can be estimated without bias -
the only change required is on the numerator of estimation. Instead
of having 1 as in the COUNT(*) case, it should be the evaluation
of the aggregate over t - e.g., if we need to estimation SUM(A1)
where A1 is an attribute, then the numerator should be t[A1], i.e.,
the value of A1 for t. If the aggregate is COUNT with a selection
condition, then the numerator should be either 1 if t satisfies the
condition, or 0 if it does not. One can see from the above discus-
sions that, essentially, the problem of enabling unbiased SUM and
COUNT estimations is reduced to that of precisely computing the
volume of V (t), i.e., the Voronoi cell of a given tuple t.

Computing Voronoi Cells: For computing the Voronoi cell of a
given tuple, a nice feature of the LR-LBS interface is that it re-
turns the precise location of every returned tuple. Clearly, if we can
somehow “collect” all tuples with Voronoi cells adjacent to that of
t, then we can precisely compute the Voronoi cell of t based on
the locations of these tuples (and t). As such, the key challenges
here become: (1) how do we collect these tuples and (2) how do we
know if/when we have collected all tuples with adjacent Voronoi
cells to t? Both challenges are addressed by the following theorem
which forms the foundation of design of Algorithm LR-LBS-AGG.

THEOREM 1. Given a tuple t ∈ D and a subset of tuples D′ ⊆
D such that t ∈ D′, the Voronoi cell of t defined according to
D′, represented by P ′, is the same as that according to the entire
dataset D, denoted by P , if and only if for all vertices v of P ′, all
tuples returned by the nearest neighbor query issued at v over D
belong to D′.

PROOF. First, note that there must be P ⊆ P ′, because for a
given location q, if there is already a tuple t′ in D′ that is closer to
q than t, then there must at least one tuple in D that is closer to q
than t. Second, if P 6= P ′ (i.e., P ⊂ P ′), then there must at least
one vertex of P ′, say v, that falls outside P . i.e. there must exist a
tuple t0 ∈ (D\D′) that is closer to v than all tuples in D′.

Example 1: Figure 2 provides an illustration for Theorem 1. In
order to compute the Voronoi cell of the tuple corresponding to the
red dot, it suffices to know the location of the adjacent tuples. Since
each Voronoi edge is a perpendicular bisector between the adjacent
tuples, the entire Voronoi cell can be computed as the convex shape
induced by the intersections of the edges.

Theorem 1 answers both challenges outlined above: it tells us
when we have collected all “adjacent” tuples - when all vertices of

t’s Voronoi cell computed from the collected tuples return only col-
lected tuples. It also tells us how to collect more “adjacent” tuples
when not all of them have been collected - any vertex which fails
the test naturally returns some tuples that have not been collected
yet, adding to our collection and starting the next round of tests.

According to the theorem, a simple algorithm for constructing
the exact Voronoi cell for t is as follows: We start with D′ = {t}.
Now the Voronoi cell is the entire region (say an extremely large
rectangle). We issue queries corresponding to its four vertices. If
any query returns a point we have not seen yet - i.e., not in D′ - we
append it toD′, recompute the Voronoi cell, and repeat the process.
Otherwise, if all queries corresponding to vertices of the Voronoi
cell return points in D′, we have obtained the real Voronoi cell for
t ∈ D. One can see that the query complexity of this algorithm is
O(n), where n is the number of points in the database D, because
each query issued either confirms a vertex of the final Voronoi cell
(which has at most n − 1 vertices), or returns us a new point we
have never seen before (there are at most n − 1 of these too). It is
easy to see that the bound is tight - as one can always construct a
Voronoi cell that has n−1 edges and therefore requires Ω(n) top-1
queries to discover (after all, each such query returns only 1 tuple).
An example here is when t is in the center of a circle, on which the
other n− 1 points are located. Algorithm 1 shows the pseudocode
of the baseline approach which we improve in Section 3.2.

Algorithm 1 LNR-LBS-AGG-Baseline
1: while query budget is not exhausted
2: q = location chosen uniformly at random; t = query(q)
3: V (t) = V0; D′ = {t}
4: repeat till D′ does not change between iterations
5: for each vertex v of V (t): D′ = D′∪ query(v)
6: Update V (t) from D′

7: Produce aggregate estimation using samples

Example 2: Figure 3 provides a simple run-through of the al-
gorithm for a dataset with 5 tuples {t1, . . . , t5}. Suppose we wish
to compute V (t4). Initially, we set D′ = {t4} and V (t4) = V0,
the entire bounding box. We issue query q1 that returns tuple t5
and hence D′ = {t4, t5}. We now obtain a new Voronoi edge that
is the perpendicular bisector between t4 and t5. The Voronoi cell
after step 1 is highlighted in light grey. In step 2, we issue query
q2 that returns t4 resulting in no update. In step 3, we issue query
q3 that returns t3. D′ = {t3, t4, t5} and we obtain a new Voronoi
edge as the perpendicular bisector between t3 and t4 depicted in
dark medium gray. In step 4, we issue query q4 that returns t2
resulting in the final Voronoi edge depicted in dark grey. Further
queries over the vertices for V (t4) does not result in new tuples
concluding the invocation of the algorithm.
Extension to k > 1: Interestingly, no change is required to the
above algorithm when we consider the top-k Voronoi cell rather
than the traditional, i.e., top-1 Voronoi cell. To understand why,
note that Theorem 1 directly extends to top-k Voronoi cells - as a
top-k Voronoi computed from D′ still must completely cover that
for D; and any vertex of the top-k Voronoi from D′ which is out-
side that from D must return at least one tuple outside D′. We
further describe how to leverage k > 1 in Sections 3.2.3 and 4.2.

3.2 Error Reduction
Before describing the various error reduction techniques we de-

velop for aggregate estimations over LR-LBS, we would like to
first note that, while we use the term “error reduction” as the title
of this subsection, some of the techniques described below indeed
focus on making the computation of a Voronoi cell more efficient.

The reason why we call all of them “error reduction” is because
of the inherent relationship between efficiency and estimation error
- if the Voronoi-cell computation becomes more efficient, then we
can do so for more samples, leading to a larger sample size and ul-
timately, a lower estimation error (which is inversely proportional
to the square root of sample size [17]).

3.2.1 Faster Initialization
A key observation from the design in §3.1 is its bottleneck: the

initialization process. At the beginning, we know nothing about
the database other than (1) the location of tuple t, and (2) a large
bounding box corresponding to the area of interest for the aggregate
query. Naturally,D′ = {t}, leading to the initial Voronoi cell being
the bounding box, and our first four queries being the corners of
these bounding boxes. Of course, the tentative Voronoi cell will
quickly close in to the real one with speed close to a binary search -
i.e., the average-case query cost is at log scale of the bounding box
size. Nonetheless, the initialization process can still be very costly,
especially when the bounding box is large.

To address this problem, we develop a faster initialization tech-
nique which features a simple idea: Instead of starting with D′ =
{t}, we insert four fake tuples into D′, say D′ = {t, tF1 , . . . , tF4 },
where tF1 , . . ., tF4 form a bounding box around t. The size of
the bounding box should be conservatively large - even though a
wrongly set size will not jeopardize the accuracy of our computa-
tion - as we shall show next.

By computing the initial Voronoi cell from D′ and then issue
queries corresponding to its vertices, there are two possible out-
comes: One is that these queries return enough real tuples (besides
t, of course) that, after excluding the fake ones fromD′, we still get
a bounded Voronoi cell for t. One can see that, in this case, we can
simply continue the computation while having saved a significant
number of initialization queries. The other possible outcome, how-
ever, is when the bounding box is set too small, and we do not have
enough real tuples to “bound” t with a real Voronoi cell. Specif-
ically, in the extreme-case scenario, all four vertices of the initial
Voronoi cell could return t itself. In this case, we simply revert
back to the original design, wasting nothing but four queries.

One can see that the faster initialization process still guarantees
the exact computation of a tuple’s Voronoi cell. It has the potential
to save a large amount of initialization queries in the average-case
scenario, while in the worst case, it wastes at most four queries. Al-
gorithm 2 provides the pseudocode for faster initialization strategy.

Algorithm 2 Fast-Init

1: Input: t; Output: V (t)
2: D′ = {t, tF1 , tF2 , tF3 , tF4 }; Update V (t) based on D′

3: If all queries over vertices of V (t) return t, then return V0

4: repeat till D′ does not change between iterations
5: for each vertex v of V (t): D′ = D′∪ query(v)
6: Update V (t) from D′

7: return V (t)

Example 3: Figures 4 and 5 show two different scenarios where
the strategy is successful and not successful respectively based on
whether the bounding box due to fake tuples is conservatively large.
Given a small dataset with tuples {t1, . . . , t5}, we initialize them
with a bounding box corresponding to fake tuples {f1, . . . , f4}. In
Figure 4, the initial bounding box is tight enough and results in the
computation of the precise V (t4) with much lower query cost (i.e.
only tuples {t3, t5} are visited as against tuples {t2, t4, t5} for the
example of Algorithm 1. On the other hand, if the bounding box

t1 t2

t3

t4

t5 f4

f3

f2

f1

Figure 5: Faster Initialization - Failure

t1

t5
t4

t3

Historical Data
Tighter Initial Box

t2

Figure 6: Leveraging History

t1

t5 t4

t3

Upper Bound
Lower Bound

t2

Figure 7: Upper/Lower Bounds

is not tight (as in Figure 5), then queries over all the vertices of
the bounding box return t4. We then revert back to the original
bounding box V0 that covers the entire region.

3.2.2 Leverage history on Voronoi-cell computation
Another natural optimization is to leverage the information that

is gleaned from computing the Voronoi cells of past tuples to com-
pute a tighter initial Voronoi cell. Recall that our algorithm to com-
pute Voronoi cell of a tuple t (i.e V (t)), using Theorem 1 starts with
an initial Voronoi cell that is an extremely large bounding box that
covers the entire plane that then converges to V (t). In the process
of computing this Voronoi cell, our algorithm retrieved additional
new tuples (by issuing queries for each vertex of the bounding box).
Notice that for a LBS with static tuples (such as POIs in Google
Maps), the results of location query ordered by distance remains
static. Hence it is not necessary to restart every iteration of the
algorithm with the same large bounding box. Specifically, when
computing the Voronoi cell for the next tuple, we could leverage
history by starting with a “tighter” initial bounding box whose ver-
tices are the set of tuples that we have seen so far. In other words,
we reuse the tuples that we have seen so far and make them as in-
put to further rounds. Notice that this approach remains the same
for both k = 1 and k > 1. Since the location of each tuple in
top-k are returned in LR-LBS, each of these tuples could be lever-
aged. As we see more tuples, the initial Voronoi cell becomes more
granular resulting in substantial savings in query cost. Algorithm 3
provides the pseudocode for the strategy. While the pseudocode
uses the simple perpendicular bisector half plane approach [15], it
could also use more sophisticated approaches such as Fortune’s al-
gorithm [15] to compute the bounding box around tuple t using the
tuples from historic queries.

Algorithm 3 Leverage-History
1: Input: t and H (set of tuples obtained from historic queries)
2: Output: Bounding box V ′(t)
3: V ′(t) = V0

4: for each tuple h ∈ H
5: Update V ′(t) with perpendicular bisector between h and t
6: return V ′(t) with the tightest bounding box around t

Example 4: As part of computing V (t4) (see Example 1), we
have the locations of t2, . . . , t5. Using this information, we can
compute the initial bounding box for t2 (shown in red around t2 in
Figure 6) offline - i.e. without issuing any queries.

3.2.3 Variance reduction with larger k
When the system has k > 1, we can of course still choose to use

the top-1 Voronoi cell as if only the top result is returned. Or we
can choose from any of the top-h Voronoi cells as long as h ≤ k.
While intuitively it might appear that using all k returned tuples is
definitely better than using just the top-1, the theoretical analysis

suggests otherwise - indeed, whether top-1 or top-h Voronoi cell is
better depends on the exact aggregate being estimated - specifically,
whether the distribution of the attribute being aggregated is better
“aligned” with the size distribution of top-1 or top-h Voronoi cells.
To see why, simply consider an extreme-case scenario where the
aggregate being estimated is AVG(Salary), and the salary of each
user (tuple) is exactly proportional to the size of its top-1 Voronoi
cell. In this case, nothing beats using the top-1 Voronoi cells as
doing so produces zero variance and thus zero estimation error.

Having said that, however, many aggregates can indeed be better
estimated using top-h Voronoi cells, because the sizes of these top-
h cells are more uniform than those of the top-1 cells, which can
vary extremely widely (see Figure 11 in the experiments section
for an example), while many real-world aggregates are also more
uniformly distributed than the top-1 cell volume (again, see exper-
iments for justification). But simply increasing h also introduces
an undesired consequence: recall from §2 that the larger h is, the
more “complex” the top-h Voronoi cell becomes - in other words,
the more queries we have to spend in order to pin down the exact
volume of the Voronoi cell.

Thus, the key is to make a proper tradeoff between the benefit re-
ceived (i.e., smaller variance per sample) and the cost incurred (i.e.,
larger query cost per sample). Our main idea is a combination of
two methods: leveraging history in §3.2.2 and upper/lower bound
approximation in §3.2.4. Specifically, for each of the k returned
tuples, we perform the following process:

Consider ti returned as the No. i result. We need to decide which
version of the Voronoi cell definition to use for ti. The answer can
be anywhere from 1 to k. To make the determination, for all h ∈
[2, k], we compute λh(ti), the upper bound on the volume of the
top-k Voronoi cell of ti, as computed from all historically retrieved
tuples. Then, we choose the largest h which satisfies λh(ti) ≤ λ0,
where λ0 is a pre-determined threshold (the intuitive meaning of
which shall be elaborated next). Let the chosen value be h(ti). If
none of h ∈ [2, k] satisfies the threshold, we take h(ti) = 1. Then,
if h(ti) ≤ i, we compute the top-h Voronoi cell for ti. The final
estimation from the k returned results becomes:∑

ti:h(ti)≤i≤k

Q(ti)

|Vh(ti)|
(2)

for any SUM or COUNT query Q, where |Vh(ti)| is the volume
for the top-h Voronoi cell of ti.

We now explain the intuition behind the above approach, specif-
ically the threshold λ0. First, note that if the top-h (say top-1)
Voronoi cell of ti is already large, then there is no need to further
increase h. The reason can be observed from the above-described
justification of variance reduction - note that a large top-1 Voronoi
cell translates to a large selection probability p - i.e., a small 1/p
which adds little to the overall variance. Further increasing h not
only contributes little to variance reduction, but might actually in-
crease the variance if 1/p is already below the average value.

Second, admittedly, λh(ti) is only an upper-bound estimate -
i.e., even though we showed above that an already large top-hVoronoi
cell does not need to have h further increased, there remains the
possibility that λh(ti) is large because of an overly loose bound
(from history), rather than the real volume of the Voronoi cell.
Nonetheless, note that this is still a negative signal for using such
a large h - as it means that we have not thoroughly explored the
neighborhood of ti. In other words, we may need to issue many
queries in order to reduce our estimation (or computation) of |Vh(ti)|
from λh(ti) to the correct value. As such, we may still want to
avoid using such a large h in order to reduce the query cost.

While the above explanation is heuristic in nature it is important
to note that, regardless of how we set h(ti), the estimation we pro-
duce for SUM and COUNT aggregates in (2) is always unbiased.

Algorithm 4 Variance-Reduction
1: Input: H; Output: Aggregate estimate from all top-k tuples
2: q = location chosen uniformly at random
3: for each tuple ti returned from query(q)
4: h(ti) = max{h|h ∈ [2, k], λh(ti) ≤ λ0}
5: h(ti) = 1 if no h satisfied the condition λh(ti) ≤ λ0

6: Generate estimate for ti using Equation 2

3.2.4 Upper/lower bounds on Voronoi-cell
Note that in the entire process of Voronoi-cell computation (bar-

ring the very first step of the faster initialization idea discussed in
§3.2.1), we maintain a tentative polygon that covers the entire real
Voronoi cell - i.e., an upper bound on its volume. What often arises
in practice, especially when computing top-k Voronoi cells (which
tend to have many edges), is that even though the bounding poly-
gon is very close to the real Voronoi cell in volume, it has far fewer
edges - meaning we still need to issue many more queries to pin
down the exact Voronoi cell.

The key idea we develop here is to avoid such query costs with-
out sacrificing the accuracy of our aggregate estimations. Specifi-
cally, consider a simple Monte Carlo approach which chooses uni-
formly at random a point from the current bounding polygon, and
then issues a query from that point. If the query returns t - i.e., it
is in the Voronoi cell of t, we stop. Otherwise, we repeat this pro-
cess. Interestingly, the number of trials it takes to reach a point that
returns t, say r, is an unbiased estimation of |V ′(t)|/|V (t)|, where
|V ′(t)| and |V (t)| are the volumes of the bounding polygon and
the real Voronoi cell of t, respectively.

Exp(r) =
∞∑
i=1

[
i ·
(

1− |V (t)|
|V ′(t)|

)i−1

· |V (t)|
|V ′(t)|

]
=
|V ′(t)|
|V (t)| .

In other words, we can maintain the unbiasedness of our estima-
tion without issuing the many more queries required to pin down
the exact Voronoi cell. Instead, when V ′(t) is close enough to
V (t), we can simply use call upon above-described method which,
in most likelihood, requires just one more query to produce an un-
biased SUM or COUNT estimation. For example, we can simply
multiply the number of trials r by |V0|/|V ′(t)|, where |V0| is the
volume of the entire region under consideration, to produce an un-
biased estimation for COUNT(*). Other SUM and COUNT aggre-
gates can be estimated without bias in analogy.

Before concluding this idea, there is one more optimization we
can use here: a lower bound on the top-k Voronoi cell of t. In the
following, we first discuss how to use such a lower bound to further
reduce query cost, and then describe the idea for computing such
a lower bound. Note that once we have knowledge of a region R

that is covered entirely by the real (top-k) Voronoi cell, if in the
above process, we randomly choose a point q (from V ′(t)) which
happens to belong in R, then we no longer need to actually query
q - instead, we immediately know that q must belong to V (t) and
can produce an unbiased estimation accordingly. This is the cost
saving produced by knowledge of a lower bound R.

To understand how we construct this lower bound region, a key
understanding is that, at anytime during the execution of our algo-
rithm, we have tested certain vertices of V ′(t) which are already
confirmed to be part of V (t). Consider such a vertex v. Let C(v, t)
be a circle with v being the center and the distance between t and
v being the radius. Note that we are guaranteed to have observed
all tuples within C(v, t). This essentially leads to a lower-bound
estimation of V (t). Specifically, a point q is in this lower-bound
region if and only if C(q, t), i.e., a circle centered on q with radius
being the distance between q and t, is entirely covered by the union
of C(v, t) for all vertices v of V ′(t) that have been confirmed to
be within V (t). As such, for any q in this region, we can save the
query on it in the above process.

Example 5: The upper bound V ′(t4) of V (t4) after Step 3 in the
Example 2 (i.e. run-through of Algorithm LR-LBS-AGG-Baseline)
is shown in Figure 7 as a quadrilateral with red edges. The three
lower vertices of V ′(t4) are guaranteed to be in V (t4) using the
criteria described above and hence the polygon induced by them
provides a lower bound estimate for V (t4).

3.3 Algorithm LR-LBS-AGG
By combining the baseline idea for precisely computing the Voronoi

cells with the 4 techniques for error reduction, we can design an ef-
ficient algorithm LR-LBS-AGG for aggregate estimation over LR-
LBS. Algorithm 5 shows the pseudocode for LR-LBS-AGG.

Algorithm 5 LR-LBS-AGG
1: while query budget is not exhausted
2: q = location chosen uniformly at random
3: for each tuple ti in query(q)
4: Compute optimal h for ti
5: Construct initial Vh(ti) using Algorithms 2 and 3
6: D′= vertices of Vh(ti)
7: repeat till D′ is not updated or Voronoi bound is tight
8: for each vertex v of Vh(ti): D′ = D′∪ query(v)
9: Update Vh(ti) and V ′h(ti) from D′

10: Produce aggregate estimation using samples

4. LNR-LBS-AGG

4.1 Voronoi Cell Computation: Key Idea
We now consider the case where only a ranked order of points

are returned - but not their locations. We shall start with the case of
k = 1, and then extend to the general case of k > 1.

We start by defining a primitive operation of “binary search” as
follows. Consider the objective of finding the Voronoi cell of a tu-
ple t in the database. Given any location c1 and c2 (not necessarily
occupied by any tuple), where c1 returns t, consider the half-line
from c1 passing through c2. Since a Voronoi cell is convex and c1
resides within the Voronoi cell, this half-line has one and only one
intersection with the Voronoi cell - which is associated with one or
two edges of the Voronoi cell. We define the primitive operation
of binary search for given c1, c2 to be the binary search process of
finding one Voronoi edge associated with the intersection. Please
refer to Appendix A for the detailed design of this process.

Naturally, such a binary search process is associated with an er-
ror bound on the precision of the derived edge. For example, we
can set an upper bound ε on the maximum distance between any
point on the real Voronoi edge (i.e., a line segment) and its closest
point on the derived edge, which we refer to as the maximum edge
error, and use ε as the objective of the binary search operation. One
can see that the number of queries required for this binary search is
proportional to log(1/ε). See Appendix A for exact query cost.

Given this definition, we now show that one can discover the
Voronoi cell of t (up to whatever precision level afforded to us by
the binary search operation) with a query complexity ofO(m log(1/ε)),
where m is the number of edges for the Voronoi cell. Here is the
corresponding process:

We start with one query at point q which returns t. Then, we
construct 4 points that bound q (say q1 : 〈x(q) − 1, y(q)〉, q2 :
〈x(q) + 1, y(q)〉, q3 : 〈x(q), y(q) − 1〉, q4 : 〈x(q), y(q) + 1〉,
where x(·) and y(·) are the two dimensions, e.g., longitude and lat-
itude, of a location, respectively) and call upon the binary search
operation to find the corresponding Voronoi edges intercepting the
half lines from q to q1, . . . , q4, respectively. One can see that, no
matter what the discovered edges might be, they must form a closed
polygon3 which we can use to initiate the testing process described
in §3.1. If all vertices pass the test, then we have already obtained
the Voronoi cell of t. Otherwise, for each vertex (say v) that fails
the test, we perform the binary search operation on the location
of v to discover another Voronoi edge. We repeatedly do so un-
til all vertices pass the test - at which time we have obtained the
real Voronoi cell - subject to whatever error bound specified for the
binary search process (as described above).

To compute the query cost of this process, a key observation is
that each call of the binary search process after the initial step (i.e.,
a call caused by a vertex failing the test) increases the number of
discovered (real) edges for the Voronoi cell by 1. Thus, the number
of times we have to call the binary search process isO(m), leading
to the overall query-cost complexity of O(m log(1/ε)). For the
estimation error, we have the following theorem.

THEOREM 2. The estimation bias for COUNT(*) is at most

|E(θ̃ − θ)| ≤
∑
t∈D

ε2 − 2 · d(t) · ε
(d(t)− ε)2 , (3)

where d(t) is the nearest distance between t and another tuple in
D, and ε is the aforementioned maximum edge error.

Estimation bias for other aggregates can be derived accordingly
(given the distribution of the attribute being aggregated). One can
make two observations from the theorem: First, the smaller max-
imum edge error ε is or the large inter-tuple distance d(t) is, the
smaller the bias will be. Second, we can make the bias arbitrarily
small by shrinking ε - which leads to a log-scale increase of the
query cost.

Algorithm 6 shows the pseudocode for LNR-LBS-AGG that also
utilizes some of the error reduction ideas from §3.2.

Example 6: We consider the same dataset as Example 1, except
that in LNR-LBS the locations of tuples are not returned. Figure 8
shows a run-through of the algorithm by which one of the Voronoi
edges of V (t4) is identified. Initially, the bounding box contains
the entire region, i.e. V0. `1 and `2 are two lines starting from t4
constructed as per Algorithm 7. p1 and p2 are mid points of small
line segments on `1 and `2 such that points on either side of them
return different tuples when queried. The new estimated Voronoi
edge is computed as the line segment connecting p1 and p2. Please
refer to Appendix-A for further details.
3In the extreme-case, some edges of this polygon might be part of the bounding box.

Algorithm 6 LNR-LBS-AGG
1: while query budget is not exhausted
2: q = location chosen uniformly at random; t=query(q)
3: Construct four points q1, . . . , q4 bounding t
4: ei = Binary-Search(qi) ∀i ∈ [1, 4]
5: V (t) = closed polygon from Voronoi edges e1, . . . , e4
6: D′= vertices of V (t)
7: repeat till D′ is not updated
8: for each vertex v of V (t): D′ = D′∪ query(v)
9: Find Voronoi edges ∀d ∈ D′ and update V (t)

10: Produce aggregate estimation using samples

4.2 Extension to k > 1

A complication brought by the rank-only return semantics is the
extension to cases with k > 1. Specifically, recall from §2 that the
(extended) top-k Voronoi cell might be concave when k > 1. In the
case LR-LBS case, this does not cause any problem because, at any
moment, our derived top-k Voronoi cell is computed from the exact
tuple locations of all observed tuples and (therefore) completely
covers the real top-k Voronoi cell. For LNR-LBS case, however,
this is no longer the case: Since we unveil the top-k Voronoi cell
edge after edge, if we happen to come across one of the “concave
edges” early, then we may settle on a sub-region of the real top-k
Voronoi cell. Figure 9 demonstrates an example for such a scenario.

Fortunately, there is an efficient fix to this situation. To under-
stand the fix, a key observation is that any “inward” (i.e., concave)
vertex of a top-k Voronoi cell, say that of t, must be at a position
with equal distance to three tuples, one of them being t (Note: this
might not hold for “outward” vertices). This property is proved in
the following lemma.

LEMMA 1. Any inward vertex of the top-k Voronoi cell of t
must be of equal distance to t and two other tuples in the database.

PROOF. Consider a partition of the entire region into base cells,
each of which returns a different combination of top-k tuples. One
can see that the top-k Voronoi cell of t must be the union of one or
more adjacent base cells. In addition, for general positioning (i.e.,
barring special positions such as bounding edges, etc.), any vertex
of the top-k Voronoi cell is formed by three edges (of some base
cells in the partition). Now consider the three edges which form
an inward vertex v, denoted by e1, e2, e3. Note that, given v is in-
ward, one of the three edges must be inside the top-k Voronoi cell
of t. Let this edge be e1. One can see that both e2 and e3 separate
the top-k Voronoi cell from the outside - i.e., ∀i ∈ {1, 2}, we have
locations on one side of ei returning t in top-k while locations on
the other side do not. That is, each of e2 and e3 must be the per-
pendicular bisector of the line segment connecting t and another
tuple in the database. Let these two tuples be t2 and t3 for e2 and
e3, respectively. In other words, v must have equal distance to t, t2
and t3.

Given this property, the extension to k > 1 becomes straightfor-
ward: LetD′ be the set of all tuples we have observed which appear
along with t in the top-k result of a query answer. Let t ∈ D′. First,
note that if the polygon we output is not the top-k Voronoi cell of
t, then it must be a sub-region of it missing at least one inward ver-
tex. According to the above lemma, each inward vertex is formed
by two perpendicular bisectors, each between t and another tuple.
A key observation here is that at least one of the missed inward ver-
tices must be entirely formed by tuples inD′. The reason is simple:
if no missed inward vertex satisfies this property, then we must have
found the correct top-k Voronoi cell of t over D′ - i.e., what we get

t1

t5 t4

t3

t2
Step 1
Step 2

q1

p2

p1

Figure 8: Illustration of Algorithm LNR-LBS-AGG AB BC

CD

DE

AE
BE

DB

AB BC

CD

DE

AE
BE

DB

Figure 9: Handling Concavity of top-k Voronoi Diagrams

so far must be a super-region of the correct top-k Voronoi of t over
the entire database, contradicting our previous conclusion that it is
a sub-region.

Now our task is reduced to finding such a missing inward vertex.
Note that this is equivalent with finding the perpendicular bisector
of t and every other tuple in D′ - as once these perpendicular bi-
sectors are identified, the rest is simply getting their intersections
which can be done offline. For each tuple in D′, we either have al-
ready identified the perpendicular bisector through one of the pre-
vious calls to the binary search process - or we can initiate a new
one as follows.

Specifically, to find the perpendicular bisector of t and t′ ∈ D′,
note that t′ being inD′ means that (1) at least one of the vertices of
the polygon we currently have must return t′, and (2) at least one
of the vertices of the polygon we currently have must not return
t′. In other words, there must exist an edge of our current polygon
which has two vertices once returning t′ and the other does not -
i.e., this edge intercepts with the perpendicular bisector of t and
t′. As such, we simply need to return the binary search process
over this edge to find the perpendicular bisector, and then use it
to update our polygon. We repeat this process iteratively until we
have enumerated all perpendicular bisectors of t and other nodes in
D′ - at which time we can conclude that there is no missing inward
vertex. In other words, we have found the top-k Voronoi cell of
t. One can see that the query complexity of this process remains
at O(m log(1/ε)), as every new binary search process called will
return us a new edge for the top-k Voronoi cell.

4.3 Tuple Position Computation
Another important problem in the LNR-LBS case is the compu-

tation of a tuple’s position, since such information is not returned
in query answers as in the LR-LBS case. As discussed in the intro-
duction, this problem can be of independent interest - it can also be
called upon as a subroutine for aggregate query processing when
the selection condition involves a tuple’s location. For example,
one might be interested in the number of WeChat users within 20
meters of major highways (i.e., those who are likely driving). To
estimate this aggregate, we need to compute the location of a tuple
(i.e., a WeChat user) in order to determine whether it satisfies the
selection condition for the aggregate query.

Once we compute the Voronoi cell for a tuple t, the computation

a
b

c

t1

t2

t3

d1

d2

d3

Figure 10: Demonstration of Tuple Position Computation

of t’s exact location takes only two additional calls to the binary
search process. The key idea of this computation is demonstrated
in Figure 10. The figure depicts one vertex of the top-1 Voronoi cell
of t1. Let the vertex (at the center of the figure) be the origin point
o. The figure includes two edges of the Voronoi cell, d1 and d3,
corresponding to the perpendicular bisector of (t1, t2) and (t1, t3),
respectively. Note that since o is of equal distance to t1, t2, and t3,
it must be attached to a third edge which is part of the Voronoi cell
for t2 and t3 - this is depicted as d2 in the figure.

In the following, we describe the computation of t1’s location in
three steps: First, we show that, with knowledge of d1, d2 and d3,
one can readily compute the line from o to t1 - i.e., the angle a in the
figure. Note that this indicates as long as one can do the same for
another vertex of the Voronoi cell (say o′), then the location of t1
can be derived as the intersection of two lines: (o, t1) and (o′, t1).
Of course, in practice we only know d1 and d3 from the Voronoi
cell computation, not d2. Thus, we demonstrate in the second step
that deriving d2 from d1 and d3 takes only a single call to the binary
search process.

First, to understand how angle a can be derived from d1, d2, d3,
a key observation from Figure 10 is that the lines from o to any two
tuples must form equal angle to the Voronoi edge between them
- e.g., (o, t1) and (o, t3) must form equal angles to d3. In other
words, the angle between (o, t3) and d3 is also a. Equipped with
this observation, it becomes obvious that:

(a+ b) + (b+ c) + (c+ a) = 2π (4)
⇒ a+ b+ c = π (5)

Since b + c is exactly the angle between d1 and d2, we can easily
compute a as π − (b + c). As such, we computed the line from o

to t1 based on knowledge of only d1, d2 and d3.
Now we explain how one can compute d2 - the only one of the

three edges not part of the Voronoi cell of t1 - with a single call to
the binary search process. Note from the fact that we have com-
puted both d1 and d3 that we must have issues at least one query
which returns t2 as the top result, say q2, and a query which returns
t3 on the top, say q3. Obviously, d2 intercepts the line segment
between q2 and q3 exactly once. Thus, we simply need to call the
binary search process over (q2, q3) to derive d2 and enable the com-
putation of t1’s exact location. One can see that, overall, the query
complexity for computing both the Voronoi cell and the location of
a tuple remains O(m log(1/ε)), where m is the number of edges
for its Voronoi cell.

5. DISCUSSIONS

5.1 Aggregates with Selection Conditions
In most of the previous discussions, we considered aggregates

without selection conditions (i.e., every tuple in the bounding re-
gion is aggregated). There is indeed a straightforward extension
to aggregates with selection conditions - specifically, there are two
possible scenarios:

The first is when the selection condition can be “passed through”
to LBS. For example, if our goal is to COUNT “STARBUCKS”
within the bounding region, the selection condition NAME = ‘STAR-
BUCKS’ can be passed through to LBS - i.e., we simply append to
each query we issue the exact same selection condition as the ag-
gregate, NAME = ‘STARBUCKS’. One can see that no other change
is required to the aggregate estimation process.

The other scenario is when the LBS does not support the selec-
tion condition. For example, if we want to COUNT all businesses
with at least an average review score of four stars within the bound-
ing region, then we cannot simply pass this selection condition to
an LBS that does not support filtering by average review scores.
In this case, we simply need to “post-process” the selection condi-
tion - e.g., for the above example, this means that after randomly
choosing a query and obtain the returned tuple (as in §3.1), we first
determine if the tuple satisfies the filtering condition. If so, we
continue with the original process and return the same estimation.
Otherwise, we return 0 (i.e., the aggregate query applied over the
returned tuple, again divided by the sampling probability) as the
estimation. One can see that the result remains an unbiased estima-
tion for the aggregate, now with selection conditions.

In the experiments, we shall demonstrate online tests over real-
world LBS on aggregates with selection conditions in both cate-
gories - e.g., COUNT of STARBUCKS over Google Maps, which
can be passed through, and COUNT(restaurants) that are open on
Sundays, which cannot.

5.2 Leveraging External Knowledge
In previous discussions, we focused on how to process the re-

sults returned by a randomly chosen query (e.g., how to compute
the top-k Voronoi cell of a returned tuple). The way the initial query
is chosen, however, remains a simple design of choosing a location
uniformly at random from the bounding region. Admittedly, with-
out any knowledge of the distribution of tuple locations, uniform
distribution appears the natural choice. Nonetheless, in real-world
applications, we often have certain a priori knowledge of the tu-
ple distributions, which we can leverage to optimize the sampling
distribution of queries.

For example, if our goal is to estimate an aggregate, say COUNT,
of Point-Of-Interests (POIs, e.g., restaurants) in the US, a reason-
able assumption is that the density of POIs in a region tends to be

positively correlated with the region’s population density. Thus,
we have two choices: either to sample a location uniformly at ran-
dom - which leads to POIs in rural areas to be returned with a much
higher probability (because their Voronoi cells tend to be larger); or
to sample a location with probability proportional to its population
density - which hopefully leads to a more-or-less uniform selection
probabilities over all POIs. Clearly, the second strategy is likely
better for COUNT estimation, as a more uniform selection prob-
ability distribution directly leads to a smaller estimation variance
(and therefore error). For example, in the extreme-case scenario
where all POIs are selected with equal probability, our COUNT
estimation will be precise with zero error. Thus, an optimization
technique we adopt in this case is to design the initial sampling dis-
tribution of queries according to the population density information
retrieved from external sources, e.g., US Census data [1].

There are two important notes regarding this optimization: First,
no matter if the external knowledge is accurate or not, the COUNT
and SUM estimations we produce always remain unbiased. This is
obvious from (1) in §3.1, which guarantees unbiasedness no matter
what the sampling distribution p(t) is. Second, the optimal sam-
pling distribution depends on both the tuple distribution and the
aggregate query itself. For example, if we want to estimate the
SUM of review counts for all POIs, then the optimal sampling dis-
tribution is to sample each tuple with probability proportional to its
review count (as this design produces zero estimation variance and
error). Given the difficulty of predicting the aggregate (e.g., review
COUNT in this case) ahead of time, leveraging external knowledge
is better considered as heuristics (a very effective one nonetheless,
as we shall demonstrate in experimental results) rather than a prac-
tice that guarantees the reduction of estimation errors.

5.3 Special LBS Constraints
We now consider two special constraints that are enforced by the

query interfaces of some real-world LBS. The first one is a max-
imum radius on the returned results - i.e., the distance between
the query location q and the returned tuples is bounded by a pre-
determined threshold dmax. If no tuple in the database falls within
the circle centered at q with radius dmax, then the query returns
empty. Google Maps and Weibo both enforce this constraint, with
the threshold being 50 KM [3] and 11 KM4, respectively.

Interestingly, no change is required for our algorithms (both LR-
LBS-AGG and LNR-LBS-AGG) to handle this situation. One can
see that, as long as a query result is non-empty, the nearest neigh-
bor is always returned, enabling the usage of our algorithms. When
a query returns empty, we simply return 0 as the COUNT or SUM
estimation (for this sample query). The unbiasedness is unaffected
- note from (1) in §3.1 that unbiasedness is guaranteed no matter
if the sampling probability p(t) of all tuples sum up to 1 or not -
as long as each tuple still has a positive probability to be returned.
With this constraint, there is

∑
t p(t) < 1 with the remaining prob-

ability returning 0 - still leading to an unbiased SUM or COUNT
estimation.

The second constraint we have observed from real-world LBS is
a more complex ranking function that involves not only the distance
between query location and a tuple but also other factors such as the
static rank of certain attributes for the tuple. Google Places API is
an example here, as it allows ranking by “prominence” which takes
into account both distance and tuple popularity5.

For this constraint, the applicability of our results is no longer
straightforward. The key challenge here is that the area returning a

4http://open.weibo.com/wiki/2/place/nearby/users
5Note that Google Places API also supports traditional distance-based ranking, en-
abling the direct usage of our algorithms.

http://open.weibo.com/wiki/2/place/nearby/users

tuple may become segregated across many disjoint regions, making
it extremely difficult to compute the sampling probability (p(t) in
(1) in §3.1) for a tuple. To understand why, consider an example
where tuples are ranked according to the SUM of two scores, one
is distance, awarding a higher score to a tuple closer by, but 0 to
tuples more than 50 miles away. The other is a static score such
as popularity. What might happen here is that the most popular
tuple (in the bounding region, say US) is returned by queries on all
places without a tuple within 50 miles (say the middle of a desert
in Nevada). Clearly, it becomes extremely difficult to enumerate all
the disjoint regions that return this tuple.

Fortunately, for LR-LBS in practice, it is still highly likely for
our LR-LBS-AGG algorithm to successfully handle the constraint
- because the algorithm works properly as long as the nearest neigh-
bor is always included in the top-k results. Since an LR-LBS re-
turns tuple locations, we can always post-process the query answer
to obtain the nearest neighbor according to distance, and then apply
our algorithm. Given that k � 1 in real-world LBS, we anticipate
a near-certain probability for the nearest neighbor to be included in
the top-k results, thus enabling LR-LBS-AGG.

5.4 Extension to Higher Dimensions
While LBS in practice is mostly confined to 2D, we would like

to point out here (if only for theoretical interests) that our algorithm
readily applies to kNN queries over higher-dimensional data where
Euclidean distance is used as the ranking function. Specifically,
note that for LR-LBS, Theorem 1 holds no matter what dimension-
ality the tuple locations have - as a higher-dimensional Voronoi cell
computed from a subset of tuples still completely encompasses the
real one. Similarly, all the optimizations discussed in §3.2 readily
apply as well. For LNR-LBS-AGG, the only change required is on
the binary search process: instead of finding the perpendicular bi-
secting line between two tuples as in the 2D case, we now need to
find the perpendicular bisecting (d−1)-dimensional plane in the d-
dimensional case. Correspondingly, each vertex of the d-D Voronoi
cell is now the interception of

(
d
2

)
such (d−1)-dimensional planes.

In other words, we still only need two vertices of the Voronoi cell
to derive a tuple’s location in LNR-LBS - enabling the usage of
LNR-LBS-AGG.

6. EXPERIMENTAL RESULTS

6.1 Experimental Setup
Hardware and Platform: All our experiments were performed on
a quad-core 2.5 GHz Intel i7 machine running Ubuntu 14.10 with
16 GB of RAM. The algorithms were implemented in Python.
Offline Real-World Dataset: To verify the correctness of our re-
sults, we started by testing our algorithms locally over OpenStreetMap
[4], a real-world spatial database consisting of POIs (including restau-
rants, schools, colleges, banks, etc.) from public-domain data sources
and user-created data.

We focused on the USA portion of OpenStreetMap. To enrich
the SUM/COUNT/AVG aggregates for testing, we grew the at-
tributes of POIs (specifically, restaurants and schools) by “JOIN-
ing” OpenStreetMap with two external data sources, Google Maps
[3] and US Census [1]. Specifically, we added for each (applica-
ble) restaurant POI its review ratings from Google Maps; and each
school POI its enrollment number from US Census. The US Cen-
sus data is also used as the (optional) external knowledge source
- i.e., to provide the population density data for the optimization
technique discussed in §5.

Note that we have complete access to the enriched dataset and
full control over its query interface. Thus, we implemented a kNN

interface with ranking function being the Euclidean distance; re-
turned attributes either containing all attributes including location
(for testing LR-LBS) or without location (for LNR-LBS); and vary-
ing k to observe the change of performance for our algorithms.
Online LBS Demonstrations: In order to showcase the efficacy
of our algorithms in real-world applications, we also conducted
experiments online over 3 very popular real-world LBS: Google
Maps [3], WeChat [6], and Sina Weibo [5]. Each of these services
has at least hundreds of millions of users. Unlike the offline exper-
iments, we do not have direct access to the ground-truth aggregates
due to the lack of partnership with these LBS. Nonetheless, we did
attempt to verify the accuracy of our aggregate estimations with in-
formation provided by external sources (e.g., news reports) - more
details later in the section.

In online experiments for LR-LBS, we used Google Maps, specif-
ically its Google Places API [3], which takes as input a query lo-
cation (latitude/longitude pair) and (optionally) filtering conditions
such as keywords (e.g., “Starbucks”) or POI type (e.g., “restau-
rant”), and returns at most k = 60 POIs nearby, ordered by distance
from low to high, with location and other relevant information (e.g.,
review ratings) returned for each POI.

For LNR-LBS, we tested WeChat and Sina Weibo using their re-
spective Android apps. Both directly fetch locations from the OS
positioning service and search for nearby users, with WeChat re-
turning at most k = 50 and Sina Weibo returning k = 100 nearest
users. Unlike Google Maps, these two services do not return the
exact locations of these nearby users - but only provide attributes
such as name, gender, etc.

An implementation-related issue regarding WeChat is that, un-
like its mobile apps, its API does not support nearest-neighbor
search. Thus, we conducted our experiments by running its An-
droid app (with support for nearest-neighbor search) on the offi-
cial Android emulator, and used the debugging feature of location
spoofing to issue queries from different locations. We then used
the MonkeyRunner tool6 for Android emulator to interact with the
app - i.e., sending queries and receiving results. Specifically, to
extract query answers from the Android emulator, we first took a
screenshot of the query-answer screen, and then parsed the results
through an OCR engine, tesseract-ocr7.
Algorithms Evaluated: We mainly evaluated three algorithms in
our experiments: LR-LBS-AGG and LNR-LBS-AGG from §3 and
§4, respectively, along with the only existing solution for LR-LBS
(note there is no existing solution for LNR-LBS), which we refer
to as LR-LBS-NNO [10]. LR-LBS-NNO has a number of tune-
able parameters - we picked the parameter settings and optimiza-
tions from [10] that provided the best performance. We also tested
variants of our algorithms that lack certain variance-reduction tech-
niques discussed in §3 and the weighted sampling in order to demon-
strate the effectiveness of these techniques.
Performance Measures: As discussed in §2, we measure effi-
ciency through query cost, i.e., the number of queries issued to
the LBS. Our estimation accuracy is measured experimentally by
relative error. Each data point is obtained as the average of 25 runs.

6.2 Experiments over Real-World Datasets
Unbiasedness of Estimators: Our first experiment seeks to show
the unbiasedness of our estimators for LR-LBS-AGG and LNR-
LBS-AGG even after incorporating the various error reduction strate-
gies. LR-LBS-NNO is known to be unbiased from [10] after an ex-

6http://developer.android.com/tools/help/monkeyrunner_
concepts.html
7https://code.google.com/p/tesseract-ocr/

http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
https://code.google.com/p/tesseract-ocr/

Figure 11: Voronoi Decomposition of Starbucks in US

pensive bias correction step. Figure 12 shows a trace of the three al-
gorithms when estimating COUNT of all restaurants in US by plot-
ting the current estimate periodically after fixed number of queries
have been issued to LBS. We can see that LR-LBS-NNO has a
high variance and takes significantly longer to converge while our
estimators quickly converge to the ground truth much before LR-
LBS-NNO. This indicates that the error reduction techniques suc-
cessfully reduce the variance of our estimators.
Query Cost versus Relative Error: We start by testing the key
tradeoff - i.e., query cost vs. relative error - for all three algo-
rithm over various aggregates. Specifically, Figures 14, 15, 16 and
17 show the results for four queries, COUNT of schools in US,
COUNT of restaurants in US, SUM of school enrollments in US,
and AVG of restaurant ratings in Austin, Texas, respectively. One
can see that not only our LR-LBS-AGG algorithm significantly out-
perform the previous LR-LBS-NNO [10] in all cases, even our al-
gorithm for the LNR-LBS case achieves much better performance
than the previous algorithm (despite the lack of tuple locations in
query results).
Query Cost versus LBS Size: Figure 18 shows the impact of LBS
database size (in terms of number of POIs or users) on query cost to
estimate the COUNT of schools in US for a fixed relative error of
0.1 . We varied the database size by picking a subset of the database
(such as 25%, 50%, etc) uniformly at random and estimating the
aggregate over it. As expected for a sampling-based approach, the
increase in database size do not have any major impact and only
results in a slight increase in overall query cost (due to the more
complex topology of Voronoi cells).
Query Cost versus k: Figure 19 shows how the value of k (the
number of tuples returned by k-NN interface) affects the query
cost. Again, we measure the query cost required to achieve a rel-
ative error of 0.1 on the aggregate COUNT of schools in US. We
compared an variant that leverages our variance reduction strategy
that adaptively decides which subset of tuples (i.e. h of top-k)
to use with fixed variants that uses all the top-k tuples. As ex-
pected, our adaptive strategy has a lower query cost and consis-
tently achieves a saving of 10% of query cost.
Efficacy of Error Reduction Strategies: We started by verifying
the effectiveness of weighted sampling using external knowledge -
Figure 13 compares the performance of the two sampling strategies
- uniform and weighted - while estimating the COUNT of schools
in US. One can see that the weighted sampling variants result in
significant savings in query cost.

In our final set of experiments, we evaluated the efficacy of the
various error reduction strategies we described in the paper. We
compared 5 different variants of our algorithm for LR-LBS rang-

Table 1: Summary of Online Experiments

LBS Aggregate Estimate Query Budget
Google
Places

COUNT(Starbucks in US) 12023 5000

Google
Places

COUNT(restaurants in
Austin TX and open on
Sundays)

2856 5000

WeChat COUNT(WeChat users in
China)

338.4 M 10000

WeChat Gender Ratio of WeChat
users in China

67.1:32.9 10000

Weibo COUNT(Weibo users in
China)

44.6 M 10000

Weibo Gender Ratio of Weibo
users in China

50.4:49.6 10000

ing from no error reduction strategies (LR-LBS-AGG-0) to sequen-
tially adding them one by one in the order discussed in the paper
culminating in LR-LBS-AGG that incorporates all of them. Fig-
ure 20 shows the results of this experiment. As expected the first
two strategies of faster initialization and leveraging history caused
a significant reduction in query cost. We observed that the results
for LNR-LBS were very similar.

6.3 Online Demonstrations
Google Places: Our first online demonstration of LR-LBS-AGG
was on Google Places API and estimating two aggregates with dif-
ferent selection conditions. The first involves selection conditions
that can be passed over to LBS (COUNT of Starbucks in US) while
the second involves aggregates with selection condition that cannot
be passed over (see §5 for discussion) such as COUNT of restau-
rants in Austin, Texas that are open on Sundays.

Table 1 shows the results of the experiments. We also verified the
accuracy of our estimates for first aggregate (COUNT of Starbucks)
through the public release of Starbucks Corp [2]. One can see from
the table that, with just 5000 queries, LR-LBS-AGG achieves very
accurate estimations (< 5% relative error) for the count.

To provide an intuitive illustration of the execution of our algo-
rithm, we also continued the estimation of COUNT(“Starbucks”)
until enumerating all Starbucks in the US. Figure 11 demonstrates
the Voronoi diagram constructed by our algorithm at the end. One
can see the vastly different sizes of Voronoi cells - spanning hun-
dreds of thousands km2 in rural areas and smaller than 1km2 in
urban cities, justifying the effectiveness of weighted sampling.
WeChat and Sina Weibo: We estimated two aggregates, (1) total
number of users and (2) gender ratio, over two LNR-LBS, WeChat
and Sina Weibo, respectively. Table 1 shows the results of the ex-
periments. One can observe from the table that our estimations
quickly converge to a narrow range (+/- 5%) after issuing a small
number of queries (10000). While we do not have access to the
ground truth this time, we do note an interesting observation from
our results: the percentage of male users is much higher on WeChat
than on Sina Weibo - an observation verified by various surveys in
China [7]. We would like to note that the COUNT aggregate mea-
sures the number of users who have enabled the location feature of
WeChat and Weibo respectively and is different from the number
of registered or active accounts.
Localization Accuracy: As a final set of experiments, we also
evaluated the effectiveness of our Tuple position computation ap-
proaches in tracking real world users. Specifically, we sought to
identify the precise location of static objects located across the re-
gion. We conducted this experiment over Google Places in US and
WeChat in China. We treated Google Places as LNR-LBS by ignor-

0 5000 10000 15000 20000 25000

100000

150000

Es
tim

at
ed

 C
ou

nt
 (R

es
ta

ur
an

ts
)

Query Cost

 Ground Truth
 LR-LBS-NNO
 LR-LBS-AGG
 LNR-LBS-AGG

Figure 12: Unbiasedness of Esti-
mators

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

5000

10000

15000

20000

Q
ue

ry
 C

os
t

Relative Error

 LR-LBS-AGG
 LR-LBS-AGG-US
 LNR-LBS-AGG
 LNR-LBS-AGG-US

Figure 13: Impact of Sampling
Strategy

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

5000

10000

15000

20000

25000

Q
ue

ry
 C

os
t

Relative Error

 LR-LBS-NNO
 LR-LBS-AGG
 LNR-LBS-AGG

Figure 14: COUNT(schools)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

5000

10000

15000

20000

25000

30000

Q
ue

ry
 C

os
t

Relative Error

 LR-LBS-NNO
 LR-LBS-AGG
 LNR-LBS-AGG

Figure 15: COUNT(restaurants)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

5000

10000

15000

20000

25000

30000

Q
ue

ry
 C

os
t

Relative Error

 LR-LBS-NNO
 LR-LBS-AGG
 LNR-LBS-AGG

Figure 16: SUM(enrollment) in
Schools

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

5000

10000

15000

20000

25000

30000

35000

40000
Q

ue
ry

 C
os

t

Relative Error

 LR-LBS-NNO
 LR-LBS-AGG
 LNR-LBS-AGG

Figure 17: AVG(ratings) in
Austin, TX Restaurants

25% 50% 75% 100%
0

5000

10000

15000

20000

25000

Q
ue

ry
 C

os
t

Fraction of POIs

 LR-LBS-NNO
 LR-LBS-AGG
 LNR-LBS-AGG

Figure 18: Varying Database Size

1 2 3 4 5 Adaptive

10000

15000

Q
ue

ry
 C

os
t

K

 LR-LBS-AGG
 LNR-LBS-AGG

Figure 19: Varying k

ing the location provided its API. We sought to identify the loca-
tion of 200 randomly chosen POIs after issuing at most 100 queries
for each POI. For WeChat, we positioned our user at 200 diverse
locations within China (typically in Urban places) and sought to
identify the location. Since the precise location of the POI/user is
known, we can compute the distance between actual and estimated
positions. Figure 21 shows the result of the experiments. The re-
sults show that more than 80% of the POIs were located within 20m
of the exact location and every POI was located within a distance of
75m. Due to the various location obfuscation strategies employed
by WeChat, we achieved an accuracy of 50m or lower only 45%
of the time. We still were able to locate user within 100m almost
all the time. While our theoretical methods could precisely identify
the location, the discrepancy in real-world occurs due to various ex-
ternal factors such as obfuscation, coverage/localization limits etc.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
4000

6000

8000

10000

12000

14000

16000

18000

20000

Q
ue

ry
 C

os
t

Relative Error

 LR-LBS-AGG-0
 LR-LBS-AGG-1
 LR-LBS-AGG-2
 LR-LBS-AGG-3
 LR-LBS-AGG

Figure 20: Query Savings of Er-
ror Reduction Strategies

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-9090-100100-150

0

10

20

30

40

50

60

Pe
rc

en
t S

uc
ce

ss

Localization Accuracy (m)

 Google Places
 WeChat

Figure 21: Localization Accuracy

7. RELATED WORK
Analytics and Inference over LBS: Location based Services (LBS)
such as map services (Google Maps) and location based social net-
works (such as FourSquare, WeChat, Sina Weibo) are becoming
popular in recent years. The prior work on analytics over LBS
focussed exclusively on the LR-LBS scenario. The closest prior
work is [10] that seeks to estimate COUNT and SUM aggregates
over LR-LBS using a nearest neighbor oracle. It then corrects
the bias by using the area of the Voronoi cell using an approach
that is very expensive. Aggregate estimation over LBS such as
FourSquare that does not provide nearest neighbor oracle interface

could be done using [19, 27]. [19] proposed a random region sam-
pling method with an unknown estimation bias that could be elim-
inated using techniques from [27]. However, none of them work
for LNR-LBS. There has been work on inferring the location and
other private information of users of LBS. [18] proposed trilater-
ation based methods to infer the location of users even when the
LBS only provided relative distances. There has been other ex-
tensive work [16, 23, 25, 28] on inferring location information and
re-identification of users although none of them are applicable for
the LBS models studied in this paper.
Aggregate Estimations over Hidden Web Repositories: There
has been a number of prior work in performing aggregate estima-
tion over static hidden databases. [12] provided an unbiased esti-
mator for COUNT and SUM aggregates for static databases with
form based interfaces. [11, 13, 14, 21] describe efficient techniques
to obtain random samples from hidden web databases that can then
be utilized to perform aggregate estimation. Recent works such
as [20, 26] propose more sophisticated sampling techniques so as
to reduce the variance of the aggregate estimation. For hidden
databases with keyword interfaces, prior work have studied esti-
mating the size of search engines [8, 29, 30] or a corpus [9, 24].

8. FINAL REMARKS
In this paper, we explore the problem of aggregate estimation

over location based services that are increasingly popular. We in-
troduced a taxonomy of LBS with k-NN query interface based on
whether location of the tuple is returned (LR-LBS) or not (LNR-
LBS). For the former, we proposed an efficient algorithm and vari-
ous error reduction strategies that outperforms prior work. We ini-
tiate study into the latter by proposing effective algorithms for ag-
gregation and inferring the position of tuple to arbitrary precision
which might be of independent interest. We verified the effective-
ness of our algorithms by using a comprehensive set of experiments
on a large real-world geographic dataset and online demonstrations
on high-profile real-world websites.

9. REFERENCES
[1] http://www.census.gov/2010census/data/.

http://www.census.gov/2010census/data/

[2] . http://investor.starbucks.com/phoenix.
zhtml?c=99518&p=irol-financialhighlights.

[3] Google Places API. https://developers.google.
com/places/documentation/.

[4] OpenStreetMap. http://www.openstreetmap.org/.
[5] Sina Weibo. http://weibo.com/.
[6] WeChat. http://www.wechat.com/en/.
[7] WeChat/Weibo Statistics. http://www.guancha.cn/

Media/2015_01_29_307911.shtml.
[8] Z. Bar-Yossef and M. Gurevich. Random sampling from a

search engine’s corpus. Journal of the ACM, 55(5), 2008.
[9] A. Broder and et.al. Estimating corpus size via queries. In

CIKM, 2006.
[10] N. Dalvi, R. Kumar, A. Machanavajjhala, and V. Rastogi.

Sampling hidden objects using nearest-neighbor oracles. In
SIGKDD, 2011.

[11] A. Dasgupta, G. Das, and H. Mannila. A random walk
approach to sampling hidden databases. In SIGMOD, 2007.

[12] A. Dasgupta and et.al. Unbiased estimation of size and other
aggregates over hidden web databases. In SIGMOD, 2010.

[13] A. Dasgupta, N. Zhang, and G. Das. Leveraging count
information in sampling hidden databases. In ICDE, 2009.

[14] A. Dasgupta, N. Zhang, and G. Das. Turbo-charging hidden
database samplers with overflowing queries and skew
reduction. In EDBT, 2010.

[15] M. De Berg, M. Van Kreveld, M. Overmars, and O. C.
Schwarzkopf. Computational geometry. Springer, 2000.

[16] Y.-A. de Montjoye and et.al. Unique in the crowd: The
privacy bounds of human mobility. Scientific reports, 2013.

[17] D. A. Freedman. Statistical models: theory and practice.
cambridge university press, 2009.

[18] M. Li and et.al. All your location are belong to us: Breaking
mobile social networks for automated user location tracking.
In MobiHoc, 2014.

[19] Y. Li, M. Steiner, L. Wang, Z.-L. Zhang, and J. Bao.
Dissecting foursquare venue popularity via random region
sampling. In CoNEXT workshop, 2012.

[20] T. Liu, F. Wang, and G. Agrawal. Stratified sampling for data
mining on the deep web. FCS, 2012.

[21] W. Liu and et.al. Aggregate estimation over dynamic hidden
web databases. In VLDB, 2014.

[22] W. Liu, M. F. Rahman, S. Thirumuruganathan, N. Zhang,
and G. Das. Aggregate estimations over location based
services. arXiv preprint arXiv:1505.02441, 2015.

[23] C. Y. Ma, D. K. Yau, and N. S. Rao. Privacy vulnerability of
published anonymous mobility traces. ToN, 2013.

[24] M. Shokouhi and et.al. Capturing collection size for
distributed non-cooperative retrieval. In SIGIR, 2006.

[25] M. Srivatsa and M. Hicks. Deanonymizing mobility traces:
Using social network as a side-channel. In CCS, 2012.

[26] F. Wang and G. Agrawal. Effective and efficient sampling
methods for deep web aggregation queries. In EDBT, 2011.

[27] P. Wang and et.al. An efficient sampling method for
characterizing points of interests on maps. In ICDE, 2014.

[28] H. Zang and et.al. Anonymization of location data does not
work: A large-scale measurement study. In MobiCom, 2011.

[29] M. Zhang, N. Zhang, and G. Das. Mining a search engine’s
corpus: efficient yet unbiased sampling and aggregate
estimation. In SIGMOD, 2011.

[30] M. Zhang, N. Zhang, and G. Das. Mining a search engine’s
corpus without a query pool. In CIKM, 2013.

APPENDIX
A. BINARY SEARCH PROCESS
Design of Binary Search: Given the half-line ` from c1 passing
through c2, we conduct the binary search as follows. First, we find
cb, the intersection of this half-line with the bounding box. Then,
we perform a binary search between c1 and cb to find a segment of
the half-line with length at most δ, say with two ends being c3, c4
(with the distance between c3 and c4 at most δ), such that while c3
returns t, c4 returns another tuple, say t′. This step takes at most
log(b/δ) queries, where b is the perimeter of the bounding box.

Then, we consider two half-lines `1 and `2, both of which start
from c1 and form an angle of − arcsin(δ′/r) and + arcsin(δ′/r)
with `, respectively, where δ′ is a pre-determined (small) threshold
and r is the distance between c1 and c4. For each `i, we perform the
above binary search process to find a (at most) δ-long segment that
returns t on one end and t′ on the other. Note that such a process
might fail - e.g., there might no point on `i which returns t′. We set
two rules to address this situation: First, we terminate the search
for `i if we have reached a segment shorter than δ, with one end
returning t and the other returning a tuple other than t′. Second,
we move on to the next step as long as (at least) one of `1 and `2
gives us a satisfactory δ-long segment. If neither can produce the
segment, we terminate the entire process and output the following
(estimated) Voronoi edge: the perpendicular bisector of (c3, c4).

Now suppose that `1 produces a satisfactory segment of at most
δ long. Let this segment be (c5, c6). We simply return our (esti-
mated) Voronoi edge as the line that passes through: (1) the mid-
point of (c3, c4), and (2) the midpoint of (c5, c6). One can see
that the overall query cost of the binary search process is at most
3 log(b/δ).

Algorithm 7 provides the pseudocode for Binary Search process.

Algorithm 7 Binary-Search
1: Input: Tuple t, Locations c1, c2 where query(c1) returns t
2: Output: An edge of V (t)
3: cb = Intersection of half-line c1, c2 with bounding box
4: Find c3, c4 s.t. dist(c3, c4) < δ and query(c3) 6= query(c4)
5: r = dist(c1, c4)
6: Construct lines `1, `2 from c1 with angles ± arcsin(δ′/r)
7: (c5, c6) = line segment on `1 or `2 with dist(c5, c6) < δ and

query(c5) 6= query(c6)
8: if none exists, return perpendicular bisector of (c3, c4)
9: else return line segment passing through midpoints of (c3, c4)

and (c5, c6)

Error Bound on Edge Estimation: We have the following theo-
rem on the error bound of this binary search process:

THEOREM 3. For a given tuple t and query location c1 which
returns t, for any other location c2, the Voronoi cell of t must have
an edge `V that intercepts half-line (c1, c2) such that the maximum
edge error for estimating `V satisfies

ε ≤ max(2δ′, b · sin(arctan(δ/δ′))). (6)

In other words, for every point p ∈ `V, there exists a point p′ on our
estimated Voronoi edge `′V generated from (c1, c2) (i.e., p′ ∈ `′V),

http://investor.starbucks.com/phoenix.zhtml?c=99518&p=irol-financialhighlights
http://investor.starbucks.com/phoenix.zhtml?c=99518&p=irol-financialhighlights
https://developers.google.com/places/documentation/
https://developers.google.com/places/documentation/
http://www.openstreetmap.org/
http://weibo.com/
http://www.wechat.com/en/
http://www.guancha.cn/Media/2015_01_29_307911.shtml
http://www.guancha.cn/Media/2015_01_29_307911.shtml

such that

d(p, p′) ≤ max(2δ′, b · sin(arctan(δ/δ′))), (7)

where d(·, ·) is the Euclidean distance between two points. In ad-
dition, for every vertex v of `V, if line segment (t, v) intercepts `′V,
then the interception point v′ must satisfy

d(t, v)− d(t, v′) ≤ max(2δ′, b · sin(arctan(δ/δ′))). (8)

A simple observation from the theorem is that the binary search
process can reach an arbitrary precision level - i.e., for any given
upper bound on d(p, p′), say dU, we can set δ′ = dU/2 and

δ ≤ tan

(
arcsin

(
dU
b

))
· dU

2
(9)

to satisfy the bound. Since both tan and arcsin can be bounded
from both sides by a polynomial of its input (through Taylor ex-
pansion), one can see that the corresponding query complexity is
O(log(b/dU)), leading to the following corollary on the maximum
error edge defined in §3.

COROLLARY 1. The query cost required for achieving a max-
imum edge error of ε is O(log(b/ε)) - i.e., O(log(1/ε)) when we
consider the bounding box size b to be constant.

Error Bound on Voronoi Cell Volume Estimation: A direct corol-
lary from Theorem 3 is an error bound on the estimated volume of
a Voronoi cell. Note from our design of LNR-LBS-AGG that our
estimated Voronoi cell is always a subregion of the real one. This,
in combination with (8) in Theorem 3, leads to the following corol-
lary.

COROLLARY 2. For a given tuple t, the ratio between the vol-
ume of the estimated Voronoi cell V ′(t) and the real one V (t) sat-
isfies (

d− ε
d

)2

≤ |V
′(t)|
|V (t)| ≤ 1 (10)

where d is the nearest distance between t and another tuple in the
database, and ε is the maximum edge error.

	1 Introduction
	1.1 LBS with a kNN Interface
	1.2 Aggregate Estimations
	1.3 Outline of Technical Results
	1.4 Summary of Contributions

	2 Background
	2.1 Model of LBS
	2.2 Voronoi Cells
	2.3 Problem Definition

	3 LR-LBS-AGG
	3.1 Key Idea: Precisely Compute Voronoi Cells
	3.2 Error Reduction
	3.2.1 Faster Initialization
	3.2.2 Leverage history on Voronoi-cell computation
	3.2.3 Variance reduction with larger k
	3.2.4 Upper/lower bounds on Voronoi-cell

	3.3 Algorithm LR-LBS-AGG

	4 LNR-LBS-AGG
	4.1 Voronoi Cell Computation: Key Idea
	4.2 Extension to k > 1
	4.3 Tuple Position Computation

	5 Discussions
	5.1 Aggregates with Selection Conditions
	5.2 Leveraging External Knowledge
	5.3 Special LBS Constraints
	5.4 Extension to Higher Dimensions

	6 Experimental Results
	6.1 Experimental Setup
	6.2 Experiments over Real-World Datasets
	6.3 Online Demonstrations

	7 Related Work
	8 Final Remarks
	9 References
	A Binary Search Process

