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Abstract
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tary abelian inner mapping groups of order p5 are centrally nilpotent of
class at most two.
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1 Introduction

If Q is a loop then the mappings La(x) = ax and Ra(x) = xa are called the
left and right translation. These two mappings are permutations on Q for every
a ∈ Q and the permutation group M(Q) = ⟨La, Ra : a ∈ Q⟩ is called the
multiplication group of Q. The stabilizer of the neutral element of Q is the
inner mapping group of Q and we denote it by I(Q). If Q is a group then
I(Q) = Inn(Q), the group of inner automorphisms of Q.

The centre Z(Q) of a loop Q contains all elements a with the property that
ax = xa, (ax)y = a(xy), (xa)y = x(ay) and (xy)a = x(ya) for every x, y ∈ Q.
The centre Z(Q) is an abelian group and if we write Z0 = 1, Z1 = Z(Q) and
Zi/Zi−1 = Z(Q/Zi−1), then we have a series of normal subloops of Q. If Zn−1

is a proper subloop of Q and Zn = Q, then Q is said to be centrally nilpotent
of class n. Bruck [1] showed that if Q is centrally nilpotent of class at most
two, then I(Q) is an abelian group. Csörgö [3] showed that the converse of
Bruck’s result is not true by constructing a centrally nilpotent loop Q whose
nilpotency class is three and whose inner mapping group I(Q) is an elementary
abelian group of order 26. More examples and constructions of of loops with
nilpotency class three and elementary abelian inner mapping groups of order 26

were given by Drápal and Vojtěchovský [4]. Earlier results by Csörgö, Kepka and
Niemenmaa (see [2] and [6]) cover the cases where I(Q) is elementary abelian
of order p2 and p3 and it turned out that Q is then centrally nilpotent of class
at most two.
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A loop Q is an inverse property loop (in short, IP-loop) if Q has a unique
left and right inverse x−1 and x−1(xy) = y = (yx)x−1 for every x, y ∈ Q.
Niemenmaa [9] proved that if Q is a finite commutative IP-loop and I(Q) is
elementary abelian of order p4, then Q is centrally nilpotent of class at most
two. The purpose of this paper is to show that in the case of finite commutative
inverse property loops, the nilpotency class is also at most two provided that
the inner mapping group is elementary abelian of order p5.

We consider only finite loops and groups in this paper. The proofs of our
main theorems rely on the use of connected transversals in finite groups and
this notion and some basic results about these transversals are explained in the
following section. For basic facts about loop theory and its connections to group
theory the reader is advised to consult [1] and [5].

2 Connected transversals

We shall start with a brief discussion about connected transversals in a group
and try to give some insight into the relationship between loops and groups
given by this notion.

Let G be a group and H ≤ G. If A and B are two left transversals to H in
G and a−1b−1ab ∈ H for every a ∈ A and for every b ∈ B, then we say that
the two transversals are H-connected in G. If A = B, then we say that A is a
selfconnected transversal to H in G. In the following lemmas and theorems we
consider some basic properties of H-connected transversals A and B. We denote
by HG the core of H in G (it is the largest normal subgroup of G contained in
H).

Lemma 2.1. If C ⊆ A ∪B and K = ⟨H,C⟩, then C ⊆ KG.

For the proof, see [5, Lemma 2.5].

Lemma 2.2. If HG = 1, then NG(H) = H × Z(G).

For the proof, see [5, Proposition 2.7].

Theorem 2.3. Let H be a nilpotent subgroup of G. If G = ⟨A,B⟩ and HG = 1,
then H is subnormal in G and Z(G) > 1.

For the proof, see [8, Theorem 2.8].

Theorem 2.4. If H is cyclic and G = ⟨A,B⟩, then G′ ≤ H.

For the proof, see [5, Theorem 3.5].

Theorem 2.5. Let p be a prime number. If H ∼= Cp × Cp and G = ⟨A,B⟩,
then G′ ≤ NG(H).

For the proof, see [6, Lemma 4.2].

Theorem 2.6. Let p be a prime number. If H ∼= Cp×Cp×Cp and G = ⟨A,B⟩,
then G′ ≤ NG(H).
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For the proof, see [2, Theorem 3.7].

Theorem 2.7. Let H be an elementary abelian subgroup of order p4 of G and
let A a be selfconnected transversal to H in G. If G = ⟨A⟩ and A = A−1, then
G′ ≤ NG(H).

For the proof, see [9, Theorem 3.1].

Lemma 2.8. Let G = ⟨A,B⟩. If H is nilpotent and HG = 1, then the core of
HZ(G) in G properly contains Z(G).

For the proof, see [10, Lemma 2.6].

Lemma 2.9. Let H be a nontrivial subgroup of G, HG = 1 and G = ⟨A,B⟩.
Then H ∩Ha > 1 for every a ∈ A ∪B.

For the proof, see [7, Lemma 2.8].

We shall conclude this section by establishing the relation between connected
transversals and loop theory. If A = {La : a ∈ Q} and B = {Ra : a ∈ Q}
are the sets of left and right translations, then A and B are I(Q)-connected
transversals in M(Q). Since M(Q) is transitive on Q, it follows that the core of
I(Q) in M(Q) is trivial. Kepka and Niemenmaa proved the following theorem
in 1990 [5, Theorem 4.1].

Theorem 2.10. A group G is isomorphic to the multiplication group of a loop
if and only if there exist a subgroup H of G satisfying HG = 1 and H-connected
transversals A and B such that G = ⟨A,B⟩.

If Q is a commutative loop, then A = B. Furthermore, if Q is a commutative
inverse property loop, then (La)

−1 = La−1 and thus A = A−1.

3 Main Theorems

In this section we consider the situation that A = B, A = A−1 and H is an
elementary abelian group of order p5. We first introduce the following two
lemmas.

Lemma 3.1. If HG = 1, then 1 ∈ A and Z(G) ⊆ A.

For the proof, see [5, p. 113] and [9, Lemma 2.3]

Lemma 3.2. If ab = ch, where a, b, c ∈ A and h ∈ H, then h ∈ H ∩Ha ∩Hb.

Proof. Now h = c−1ab and ha−1

= (c−1ab)a
−1

= ac−1a−1cc−1abb−1aba−1 ∈ H.

We also get hb−1

= (c−1ab)b
−1

= bc−1b−1cc−1ba = bc−1b−1cc−1abh1 ∈ H (here
h1 ∈ H). Thus h ∈ H ∩Ha ∩Hb.

Theorem 3.3. Let H be an elementary abelian subgroup of a finite group G
and let H be of order p5. If A is a selfconnected transversal to H in G, G = ⟨A⟩
and A = A−1, then G′ ≤ NG(H).
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Proof. We shall prove the theorem by induction on the order of G. From The-
orems 2.4, 2.5, 2.6 and 2.7 it follows immediately that HG = 1. By Lemma 2.2,
NG(H) = H ×Z(G) and Z(G) > 1 by Theorem 2.3. By Lemma 2.8 the core of
HZ(G) in G is equal to KZ(G), where 1 < K ≤ H.

If | K |≥ p4, then we conclude by Theorem 2.4 that G′ ≤ HZ(G) = NG(H).
Thus we may assume that | K |= p or | K |= p2 or | K |= p3. By applying
Theorems 2.4 - 2.7 and Lemma 2.2 on G/KZ(G) and HZ(G)/KZ(G) it follows
that G′ ≤ NG(HZ(G)) = HM . Here M/KZ(G) = Z(G/KZ(G)), M is normal
in G and M ∩HZ(G) = KZ(G). We shall now divide the proof into three parts
depending on the order of K:

1) Let | K |= p. Now we can proceed exactly in the same way as in part 1)
of the proof of Theorem 3.1 in [9].

2) Now assume thatK ∼= Cp×Cp. Let a, b ∈ A and ab = ch, where c ∈ A and
h ∈ H. If d ∈ A, then hd = (c−1ab)d = h1c

−1ah2bh3 = h1hb
−1h2bh3 ∈ HHbH.

As HZ(G) is normal in HM and Hb ≤ HM , we have hd ∈ HZ(G)Hb ≤ G
for every d ∈ A. Thus h ∈ ∩[HZ(G)Hb]g, where g ranges over the elements
of G. This intersection is a normal subgroup of G and we denote it by N(b)
(thus N(b) is the core of HZ(G)Hb in G). From Lemma 2.1 it follows that
HZ(G)Hb = HN(b).

If we write ab = kf , where k ∈ H and f ∈ A, then likewise k ∈ N(a), where
N(a) is naturally the core of HZ(G)Ha in G. Clearly, N(a) ≥ KZ(G) for every
a ∈ A, ab ∈ AN(b) and also ab ∈ N(a)A.

If | N(a) ∩ H |≥ p4, then HN(a)/N(a) is cyclic and by Theorem 2.4,
G′ ≤ HN(a) = HZ(G)Ha. We now consider the conjugates HZ(G)/KZ(G)
and HaZ(G)/KZ(G) and write HZ(G) ∩ HaZ(G) = LZ(G), where L ≤ H.
From Lemma 2.9 it follows that LZ(G) is larger than KZ(G). Now LZ(G) =
Z(HZ(G)Ha) and as HZ(G)Ha is normal in G, it follows that the core of
HZ(G) is larger than KZ(G), a contradiction. Thus we may assume that
| N(a) ∩H |≤ p3 for every a ∈ A.

Then consider the case that ab = ch, N(a) ∩ H ̸= N(b) ∩ H and | N(a) ∩
H |= p3 =| N(b) ∩ H |. By Theorem 2.4, it follows that G′ ≤ HN(a)N(b) =
HZ(G)HaHb. By Lemma 3.2, h ∈ Z(HZ(G)HaHb) ≤ NG(H) = H × Z(G).
As Z(HZ(G)HaHb) is normal in G, we conclude that h ∈ K. Thus ab ∈ AK.

If ab = ch and N(a)∩H = K or N(b)∩H = K, then ab ∈ KA or ab ∈ AK.
By Lemma 3.1, AZ(G) ⊆ A and as KZ(G) is normal in G, we conclude that
AK = KA is a subgroup of G. Thus we see that A2 ⊆ AK < G, contradicting
⟨A⟩ = G.

3) Now assume that K ∼= Cp ×Cp ×Cp. In part two of the proof we showed
that | N(a) ∩ H |≤ p3 for every a ∈ A. As N(a) ∩ H ≥ K, we must have
N(a) ∩H = K for every a ∈ A. But then A2 ⊆ AK < G, a contradiction.

Let Q be a loop and M(Q)′ ≤ NM(Q)(I(Q)) = I(Q) × Z(M(Q)). This is
equivalent of Q being centrally nilpotent of class at most two (see Bruck [1],
also Section 6 in [11]). By combining Theorem 2.10 with Theorem 3.3 we thus
get
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Theorem 3.4. Let Q be a finite commutative IP-loop and let I(Q) be an el-
ementary abelian group of order p5. Then Q is centrally nilpotent of class at
most two.
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